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An S-matrix formulation of internal symmetries reported in a previous paper is extended to the case
of broken symmetries. It was shown before that crossing and unitarity can determine permitted internal
symmetries by determining what constant real orthogonal matrices can diagonalize an S matrix. It is
shown here that a generalization of the S-matrix diagonalization postulate which corresponds to patterns
of symmetry breaking is an S-matrix stationary principle. In a calculation retaining only 6rst-order devia-
tions from the limit of exact symmetry, it is shown that crossing and unitarity determine what linear
relations between S-matrix elements can remain stationary under a perturbation from the symmetry limit.
Amplitude relations of conventional broken symmetries are thus derived for the breaking of isotopic-spin
symmetry and unitary symmetry in the scattering of pseudoscalar mesons from pseudoscalar mesons. The
application of unitarity on these amplitude relations leads to elegant derivations of mass formulas,

I. INTRODUCTION

CONSIDERABLE understanding of the essential
assumptions which go into dynamical derivations

of internal symmetries was achieved in a recent work
by Blankenbecler, Coon, and Roy. ' It was shown there
that rigorous application of unitarity and crossing can
determine what constant real orthogonal matrices can
diagonalize an S matrix. The predictions obtained in
this way coincide with those conventionally obtained
by assuming invariance under certain Lie groups. It
was also shown that in previous approximate dynam-
ical derivations' predictions of results of internal
symmetry are actually due to the above-mentioned
S-matrix diagonalization postulate and further approx-
imations and assumptions such as the bootstrap
hypothesis are inessential. The next natural question
to ask is: What postulate concerning the S-matrix
elements w'ould lead, by a rigorous application of
unitarity and crossing, to the predictions of patterns of
symmetry breaking in the same way as the S-matrix
diagonalization postulate leads to the predictions of
exact internal symmetries' Indeed, the power of the
S-matrix approach would be very limited if it were not
a natural way of understanding broken symmetries, since
the agreement with experiment of broken-SU (3)
predictions such as mass and coupling-constant sum
rules' constitutes a major aspect of the usefulness of
the symmetry concept.

It is clear that a new type of postulate is needed.
When the diagonalization postulate is relaxed, the
internal-symmetry amplitude relations are no longer
valid, and unitarity and crossing alone do not predicate

*Most of this work was done while the author was at the
University of California, San Diego, La Jolla, Calif.

'R. Blankenbecler, D. D. Coon, and S. M. Roy, Phys. Rev.
156, 1624 (1967), hereafter referred to as BCR.' These are listed in BCR.' M. Gell-Mann, California Institute of Technology Report
No. CTSL-20, 1961 (unpublished); S. Okubo, Progr. Theoret.
Phys. (Kyoto) 27, 949 (1962); S. Coleman and S. L. Glashow,
Phys. Rev. Letters 6, 423 (1961);K. C. G. Sudarshan, University
of Rochester Report No. NYO-10268 (unpublished); M. Muraskin
and S. L. Glashow, Phys. Rev. 132, 482 (1963); V. Gupta and
V. Singh, ibid. 135, B1442 {1964).

any pattern of symmetry breaking. A possibility that
suggested itself to us, on examination of the conven-
tional approach to broken symmetries, is that the
interaction may carry remnants of the symmetry in such
a way that while each amplitude is perturbed from the
internal-symmetry limit, certain linear combinations
of scattering amplitudes remain stationary under the
symmetry-breaking perturbation. 4 The present paper
demonstrates, retaining only first-order deviations from
the symmetry limit, that an S-matrix stationary
principle leads via unitarity and crossing to amplitude
relations usually derived from group-theoretical broken-
symmetry hypotheses. We therefore propose that the
S-matrix stationary principle may be taken to be the
meaning of the existence of a broken internal symmetry
in the S-matrix language in much the same way as the
existence of constant real orthogonal transformations
diagonalizing the S matrix may be taken to dehne the
existence of exact internal symmetries. '

One special feature of the present treatment of broken
symmetries is that, since kinematics is an essential
part of the use of unitarity and crossing, we are obliged
to specify the arguments of the scattering amplitudes
that satisfy a certain linear relation, and we know what
kinematic factors to use (reliable up to first order in
the perturbation) in comparing these relations with
experiments, for example, via the optical theorem or
by means of polygonal inequalities for differential
cross sections. ' There has been much discussion in the
literature on this point and empirical guidelines have
been proposed. Our discussion will clarify this point.
We shall mention here two striking results which

'A group-theoretical stability principle for tensor operators
under perturbations has been considered by E. C. G. Sudarshan
and ¹ Mukunda, Phys. Rev. 158, 1424 (1967).' C. A. Levinson, H. J. Lipkin, and S. Meshkov, Phys. Letters
1, 44 (1962); S. Meshkov, C. A. Levinson, and H. J. Lipk. in,
Phys, Rev. Letters 10, 100 (1963);H. J. Lipkin, C. A. Levinson,
and S. Meshkov, Phys. Letters 7, 159 (1963);S. Meshkov, G. A.
Snow, and G. B. Yodh, Phys. Rev. Letters 12, 87 (1964); H.
Harari and H. J. Lipkin, ibid. 13, 208 (1964); P. G. O. Freund,
H, Ruegg, D. Speiser, and A. Morales, Nuovo Cimento 25, 307
(1962); H. Harari and H. J. Lipkin, Phys. Rev. Letters 15, 983
(1966); S. Meshkov and G. B. Yodh, ibid. 18, 474 (1967); M.
Konuma and K. Tomozawa, ibid. 12, 493 (1964).
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illustrate that the questions of broken (or exact)
symmetry predictions for amplitudes and for masses
cannot be considered separately. First, in our approach
mass formulas emerge as simple consequences of
unitarity applied. to the ampHtude relations themselves.
This is to be constrated with the usual derivation, which

proceeds by assigning a group-theoretical transforma-
tion property I an SU(3) transformation property in the
case of the Gell-Mann-Okubo mass forrnulaj to the
mass (or mass-squared) operator occurring in the
Lagrangian. We are of course not able to decide between
a mass formula with masses and one with their squares
appearing, because in our erst-order calculation they
are identical, and because Lagrangians and mass
operators do not occur in the 5-matrix approach.
Second, the ampHtude relations deduced from the
stRtlonRI'y pI'lnclplc Rre valid to erst 01dcI' 1Q the
perturbation, both when a11 amplitudes are evaluated
at the same c.m. energy and scattering angle, and when
all amplitudes are evaluated at the same c.m. energy
and momentum transfer, in spite of the fact that the
individual terms in the amplitude relations suGer
erst-order changes when we switch from one to the
other mode of evaluation. This happy accident is made
possible by the masses being related according to the
mass formula determined by unitarity. We regard this
as fortunate because, while an amplitude relation at the
same energy and scattering angle has the virute that it
immediately yields the corresponding relation between
the partial-wave amplitudes, amplitude relations
evaluated at the same energy and momentum transfer
have the virtue of reproducing such relations on cross-
ing. We shall also demonstrate that a similar answer
obtains to the much dlscusscd questloQ5 of whether to
evaluate an amplitude relation at a fixed c.m. energy,
or at a axed Q value, etc.

In Sec. II, me explain the origin of 5-matrix station-
ary principles on the basis of conventional group-
theoretical assumptions concerning symmetry breaking.
In Sec. III, the form of the stationary principle ab-
stracted from Sec. II is treated as a basic postulate in

the S-matrix framework, and the methods of using
unitarity to get mass formulas and of using crossing
to get amplitude relations are explained. The special
simpli6cations achieved because of retaining only
6rst-order perturbations and because of choosing the
par'ticular form of the stationary principle suggested in
Sec. II are discussed. In Sec. IV, we apply our stationary
principle to discuss the breaking of isotopic-spin

symmetry in the scattering of pions from pions. We get
tmo solutions to our stationary problem. One solution
has amplitude relations that would be obtained in the
conventional approach by assuming that the symrnetry-
breaking Hamiltonian has no I=2 part, and the other
solution has amphtude relations that would be obtained

by assuming that the symmetry-breaking Hamiltonian
has Qo I=4 part. In Sec. V, we discuss the more interest-
ing but algebraically formidable problem of deriving

the consequences of a stationary principle in the
scattering of the pseudoscalar mesons (x,E,g) 'from

pscudoscR1Rl mcsons& RssuIDlng lsotoplc-spin coQscrva
tion and retaining only first-order deviations from the
unitary-symmetry limit. Again, we find two solutions
to the stationary problem. One solution has amplitude
relations and R mass formula which mould be derived
in the usual approach by assuming absence of octet-
parts in the Hamiltonian and in the mass matrix; the
other solution has amplitude relations and a mass
formula which would be derived by assuming absence
of 27-type tensors in the Hamiltonian and in the mass
matrix. The mass formula in the latter case is the
Gell-Mann-Okubo' mass formula, and the amplitude
relations are a subset of those derived by Itabashi' by
assuming that the Hamiltonian has singlet and octet
parts only. The former solution, although on an equal
theoretical footing to the latter as a solution to the
stationary problem, has a mass formula that is ob-

viously violated experimentally and presumably for
this reason it has not been discussed elsewhere. Conclud-

ing remarks including the discussion of avenues that
need further exploration are made in Sec. VI.

This section is devoted to demonstrating horn 5-
mRtI'lx stRtloQRl y pI'lnclplcs RI'lse fr'oIQ convcntloQRI

group-theoretical broken-symmetry hypotheses. The
5 matrix for a multichannel scattering process of the

type

for particles with masses m~, m2, m3, and m4, mill be
written in the form

p;= q;/(32m'Qs); (2.3)
we de6ne

(P~+P2)' ~= ——(Pi—P3)' I= (Pi P4)' (24)— —

and q; is the c,m. momentum in the ith channel. We
mill consider 6rst-order perturbations of the 5-matrix
elements from Rn 1Qtcl nal-symmetry limit such Rs

isotopic spin or unitary symmetry, assuming that
certain more sacred conservation lams such as charge,
baryon-number, and strangeness conservation split
the perturbed as well as unperturbed scattering matrices
into reducible forms consisting of various sub-blocks

(r) such that matrix elements between channels i„j,
of diferent sub-blocks r, s are zero. The unitary operator
relating the perturbed and unperturbed free-particle
states of two-particle channels with the same c.m.

"' E. Itabashi, Phys. Rev. 137, Si312 (1965).

~= ~+2i(&u)~(v'~) (2.2)

where 3f is the invariant-amplitude matrix and p is a
diagonal phase-space matrix with diagonal elements
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(@;„'IM'I y;, ')=—M';„,;, (2.6)

where
M=e"Sf' ".

(2.7)

(2.8)

In our matrix notation the indices characterize those
properties of the particles in the scattering channels,
like charge, hypercharge, etc., which are the same in
the perturbed and unperturbed situations. The matrix
elements in (2.6) and (2.7) vanish for res. The real
orthogonal matrix independent of energy and scattering
angle diagonalizing M, will be called U, and is of a
reducible form like M . Ke shall denote

(2.9)

where A' is a diagonal matrix, and A has nonzero off-

diagonal elements on account of the breaking of internal
symmetry. To be specific, we shall consider the breaking
of SU(3) symmetry, but the applicability of the
arguments to other cases will be obvious. Then, the
matrix elements of A' and A are just the matrix elements
of Mo and 3f in the basis of states belonging to irreducible
representations (IR) of SU(3). Thus

A;;=+ U; M U, =Q(U; g 'IMI U;et)'), (2.10)

where we have omitted the suffixes, r, s, etc., of the
indices i, j, k, and / for simplicity of writing. The
matrix elements of a general tensor operator in such a
basis may be expressed, using the Wigner-Eckart
theorem, ' as

(p (») IP T„(v) lp„(w))

p pg
( sIIT'")llv))v (2 11)

)uvY Vy V Vg

This equation can be inverted, with the help of the
orthogonality relations for the Clebsch-Gordan coefB-
cients to solve for the reduced matrix elements. If a
tensor operator T= P„„T.~") does not contain a partic-
ular IR p, , the corresponding reduced matrix element
must vanish, and we obtain

res u~ )r&,+1r
v1 k-v, v) v J

X(g„&»)
I Tls)„,«i')=0. (2.12)

7 C. Kckart, Rev. Mod. Phys. 2, 302 (j.930); E. P. Wigner,

energy, and the same direction of the relative momen-
tum vector will be defined as

(2.5)

where e is a Hermitian operator which goes to zero in
the unperturbed limit. The unperturbed and perturbed
scattering amplitudes will be denoted as

In writing (2.12) we have assumed that the magnetic
quantum number vi, designating isotopic spin and
hypercharge, is conserved. Such equations have been
written down by Itabashi from a spurion method.
We remark that the relations (2.12) are linear relations
between transition elements between a Axed pair of
representations p&, p2 but various magnetic quantum
numbers vq. If T were an SU(3) scalar, all the matrix
elements of T in (2.12) with different values of vq would
be equal and nonzero if @~=@2, and equal to zero if
p)&us. Applying (2.12) to the scattering-matrix
elements we conclude that if a certain IR is absent from
the operators M and half, we obtain linear relations
between the scattering amplitudes of the form

g c„h. ;„,;,(s, cos8) =P cQ;„;„(s,cosg) =0, (2.13)

where the subscripts r exhibit the conservation of the
magnetic quantum numbers, hypercharge and isospin
in the absence as well as in the presence of the perturba-
tion. The fact that all the terms in (2.13) are the
matrix elements of M' and 3E between a given pair of
representations p, ~, p~ implies the condition that:

To all terms A;„,;„in (2.13) correspond u fixe
pair of values, independent of r, for the corres
ponding unperturbed diagonal elements A';„,;„
lsd go;; (2.14)

For u~Wus, the A',„,;, in (2.13) are all zero and further
subject to (2.14). For @~=us, Eq. (2.13) involves
diagonal elements of A and A, all the diagonal elements
of A' occurring being equal according to (2.14).Equation
(2.13) subject to (2.14) states that certain linear
combinutions of the amplitudes A;„,;„remain stationary
under the perturbation, the channels insolsed in each
linear combination being such that the unperturbed
eigenamplitudes h.';„,;„are the sante for all r, und the

Ao;, „;„are the same for all r.

III. 8-MATRIX APPROACH TO BROKEN
SYMMETRIES

In S-matrix theory, the exact internal-symmetry
limit can be defined by the existence of an energy- and
angle-independent real orthogonal transformation U
diagonalizing the S matrix, and then U can be deter-
mined following the procedure in BCR. Knowing U,
we can construct the A.';„,;„.These can be divided into
various sets in each of which all the A;„,;„are equal to
each other, because the eigenamplitudes are independ-
ent of the magnetic quantum numbers (r). Thus eigen-
amplitudes for a given SU(3) representation are
independent of the hypercharge and isotopic spin, and
transition amplitudes between eigenstates of diGerent
SU(3) representations are zero for all values of hyper-

Grlppentheorie (Friedrich Vieweg und Sohn, Braunschweig,
Germany, 1931).%e use the SU(3) notation of J. J. de Swart,
Rev. Mod. Phys. 35, 916 (1963).
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perturbations in the masses from the symmetry limit)
where the channels considered in formulating the stationary
principle are the only open channels with the appropriute
Ituantum numbers, then unI'tarity reItuires the following
relation between the first order -perturbations in the

phase space-factors:

Z c.(lIbp(s) U')'„~,=o (3 1)

bo(s) =p(s) —o'(s)-, (3.2)

PEG. I. Diagrams showing that three sets 8 b c of coinciding
vectors Ao;„,;„ in the symmetry limit become bunches of closely
spaced vectors A;„,;„when the symmetry is broken; g denotes the
set of vectors which have length zero in the symmetry limit.

chRI'gc Rnd lsotQplc spin. If wc represent thc A, &„,&.„Rs
vcctols ill tile Algand diagram (FIg. 1), wc 11Rvc scvcl'Rl

sets Qf colncldiIlg vcctox's lllcluding R sct ln which all
vectors have zero length. The sct with Ao;„,;„=0 is
further divided into subsets such that all vectors
A. s„,~'„of R subset RI'e characterized by R given pRlx' of
values for the corresponding diagonal clexnents Ao;„;„
and A',„,;„.

, When a small symmetry breaking is introduced, the
vcctols 111 cacll sct. (subset) scpR1'Rtc Gilt Into R bllllcll
of closely sp Reed vcctoI's A;„,&„. Thc cxlstcncc of a
broken symmetry will bc taken to mean that;

There exist certain linear combinations of the vectors

A;„,;, in the bunch corresponding to each set (or subset)
zyhgch remaiN stafioricry NrIder the symrflefry-hreakjgg
perturbation at the value sero.

Thus one gets an equation of the form (2.13) subject
'to tile cond 1'tloll (2.14) wltll unknown cocfflclents c„.
We prove now some general consequences of this
stationary principle using unitarity and crossing. The
results proved here will show several simplifying
feRtux'es Qf thc pRl tlculal folm Qf thc stRtlQnal y
principle chosen, and hence provide reasons stated in.

purely 5-matrix language why this form rather than
soxne other should be taken to characterize a broken
symmetry ln 5-matrix theory.

A. Mass Foxmulas

If the perturbed and unperturbed scattering amplitudes

satisfy the stationary principle (2.13) subject to (2.14),
and if there is un energy region (large compared with the

bch.;„,,( )=s0. (3.i)

The codhcients c„must be real on account of the real
analyticity of the A;„,;„(s).Substituting (3.5) into the
llllaglllal y pRI t of (3.7), llotlllg 'that 'tile colldltlons
(2.14) enable us to bring the terms involving A';„,,„(s)
and A', „,„,v(s) outside the summation over r, and that
the diagonal elements of Ao are nonvanishing, we deduce
Eq. (3.1).

Tllc first polll't 'to Ilotlcc ls tllR't 'tllc Eq. (3.1) lll fact
implies two linear relations between the pertuxbations
ln thc DlRsscs of 'thc pRltlclcs ln thc various chRnncls
occurring in (3.1), or two mass formulas. The perturba-
tion in the diagonal element of the phase-space matrix
corresponding to a channel with particles of masses
8' Rnd 8$~q Rt, R Axed sp ls glvcn by

upgo (s)=nl (s) (bmg bms)+e—s(s) (Peg+ &eII),

whclc

(3.8)

1 Ls—(m~'+mII')']'~'
III(s) = — — —(m~"—mII') (3.9)

64 ' LsIr—s(mg' —mo')']ll'

and p and p' are the perturbed and unperturbed phase space-
matrices defined as in (2.2) and (2.3),

For proof, we start from the partial-wave unitarity
equation. Suppressing the angular-momentum label we

ImM(s) =Mt(s)p(s)M(s). (3.3)

Transforming this with thc xnatrix U', we have

ImA (s)=At(s) Vp(s) Urt1(s) . (3.4)

RcIlMInbcrlng thRt A, ls R dlagonRl 111atrlx Rnd satls6cs
a unitarity equation analogous to (3.4), using the sym-
metry of A;„,~„, Rnd lctainlng only erst-order tcITDs ln
the perturbations, we deduce

1mb'. ;„;„(s)
= (1+to'(s)E~' „;(s)+~"„',(s)]} '

)& ((Ubp(s) Ur);, ;„RCLA'*;„;„(s)A';„;„(s)]
+p,'(s)R4„,;„(s)RCLA';„, ;„(s)+IV;„,I,(s)]}, (3.5)

w"crc P. (s} ls thc value of the diagonal elements of
p (s) for the channels with magnetic quantum number

BA (s)—=A (s)—11'(s) . (3.6)

Thc statlonaly pllnclplc (2.13) yields for the partial
wave amplitudes
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ng(s) =-—
1 [s—(1Ng —ms )']—(mp"+m p") . (3.10)

64m's [s—(m„o+miio) q"'

account of (2.14). Using (2.13), we then deduce

Qc, (USSUr), „,,= 0. (3.14)

Substituting (3.8) into (3.1) and noting that ni(s) and

ni(s) are linearly independent functions of s, we obtain

(m~' m—ii')Q c„Q U;„,i„p(mg mii)—I,„U,„,I,„0——(3.11)

As in Sec. III A, we have assumed that for a certain
energy region the channels included above are the only
open channels. As before, the specific form of the
stationary principle plays a crucial role.

aild

Q c, Q U;„i„b(my+ms)i„U;, , i,„0, (3——.12)
r ki.

C. Choice of Fixed Kinematic Variables in Exact and
Broken Internal-Symmetry Amplitude Relations

In comparing scattering amplitude relations with
experiment, one of the important questions to be
answered is: Which of the energy variables c.m.
energy, Q value, etc., and which of the angle variables,
c.m. scattering angle, momentum transfer, etc., are
to be considered fixed in the arguments of the scattering
amplitudes?

To be specific, let us consider the baryon-meson
amplitude relations given by exact and broken SU(3).
We first state the somewhat obvious answer in the exact-
symmetry case. The amplitude relations here imply via
unitarity (as in BCR) that all the baryon-meson
channels appearing in any amplitude relation are
kinematically identical. Hence, fixed s and fixed cos0
imply 6xed Q value and fixed momentum transfer, and
similarly fixed values for other pairs of kinematic
variables usually considered. Thus amplitude relations
with a certain pair of kinematic variables fixed imply the
corresponding relations with other pairs of variables
fixed. However, it is found, for example, by Meshkov
and Yodh, ' that the exact SU(3) amplitude relations
with certain pairs of kinematic variables fixed fit the
experimental data for the ranges of energy considered
much better than the corresponding relations with
other pairs of fixed variables which are equally good
according to exact SU(3). We have therefore to consider
the approximate validity of the exact SU(3) relations
with only a particular pair of fixed variables, not as a
verification of the exact SU(3) relations, but as an
interesting empirical observation requiring theoretical
understanding. It is, of course, well known that the
deviations of the experimental masses from the exact
SU(3) predictions are quite large; the point we are
making is that the validity of the SU(3) amplitude
relations and the SU(3) mass formulas are connected
by unitarity, and cannot be considered separately. The
broken-SU(3) mass formulas, on the other hand, are
reasonably well satisfied for certain multiplets, and for
them it is relevant to ask what variables to fix in
comparing the broken-SU(3) amplitude relations with
experiment. Each amplitude in an amplitude relation
will suffer first;-order changes in the symmetry breaking
when we switch from one pair of fixed variables to
the other, and first-order changes are not neglected
in the broken-symmetry relations. The question here is
therefore nontrivial and is answered in detail below.

where the second sum runs over all channels with
magnetic quantum numbers characterized by r, and
the symbols (mz —ms)&„and (mal+ms)i„stand, respec-
tively, for the difference and sum of the masses of the
particles in the channel k„. The same two unperturbed
masses m~, m~' have to occur for all the channels
appearing in (3.1) because of the condition (2.14) and
unitarity. The factor m&' —m&' has been written on
the left-hand side of Eq. (3.11) to emphasize that a
nontrivial relation corresponding to (3.11) is obtained
only when the channels consist of two unequal-mass
particles in the unperturbed limit; writing the cor-
responding factor m~'+mii' on the left-hand side of
(3.12) is redundant because we do not consider zero-
mass particles. Equations (3.11) and (3.12) constitute
the mass formulas in the S-matrix approach. The crucial
role played by the conditions (2.14) in simplifying the
consequence of unitarity applied to the stationary
principle (2.13) into these simple mass formulas should

be noted.

B. M-Matrix Stationary Principle and S-Matrix
Stationary Principle

Strictly speaking, our primary postulate (2.13) is
stated in terms of the invariant-amplitude matrix M
rather than the S-matrix elements, and it is not obvious
that a similar relation between the S-matrix elements
holds, since the phase-space matrix in the perturbed
situation is different from a multiple of the unit matrix
even for a given set of magnetic quantum numbers r.
We shall show here that our assumptions (2.13) subject
to (2.14) indeed imply identical relations between the
S-matrix elements, provided that the mass formulas
dictated by unitarity are satisfied. From Eq. (2.2)
we obtain

Qc„(U5SUr);„,,=P c„b;„,;„+2iP c,[p omah. ;, ;„

+-', (h.";„...+A.',„,„)(U8p U );„,,„j. (3.13)

The first sum on the right-hand side of (3.13) vanishes
on account of (2.13) and (2.14), and p„' and A';„,;„
+A';„,;„can be taken outside the summation on
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Kc shall prove that amplitude relations of the form
(2.13) subject to (2.14) evaluated at fixed s and cos8,
plus thc mass formulas required by unltallty imply
that the corresponding amplitude relations evaluated at
fixed s and t are also valid provided that only erst-order
terms in the perturbations are retained.

The fixed (s, cose) relation can be written in the form

Q c„U;„,o~o„I„Ls,t(k„t„)jU;„,I„=0, (3.15)

where the t(k„,l,) are the momentum-transfer values for
the various amplitudes at axed s and cos8. The ampli-
tudes can be expanded around the unperturbed momen-
tum-transfer value P common to all the ampHtudes in

(3.15) to give

3f„, ,„r s,t(k„,t,)j=cV,„,I (s,to)+m, „,t„(s,t ), (3.16)

where

t&ufo, , t„(s,to) = Et(k„,l,)—t']BMoo„.t„(s,t)/Bt~, 44, (3.1/)

Using (3.15), (3.16), and (3.22), we obtain

Q c,l&&.;„,t„(s,to) =0, (3.23)

which is the desired relation at 6xed s and Axed momen-
tum transfer. It can similarly be proved that amplitude
relations of the form (2.13) subject to (2.14) at 6xed
(s, cost&), plus the mass formulas required by unitarity,
imply the corresponding amplitude relations with the
fixed energy variable changed to Q value, laboratory
energy, etc., provided that only erst-order terms in the
perturbations are retained.

Use Of Cf0881Qg Rely, fjolls

%C shall show that the use of the crossing relations
remains as simple in erst-order perturbation theory as
in the unperturbed limit discussed in BCR. The extra
complications when higher-order perturb ations are
retained will also be seen, The crossing relations have
the general form

t (k„t,) &= t'&to—„,1„+t'&tt„, I„, (3.18)
A;(stu) =Q c,A, (tsu) =P coA o(uts) . (3.24)

Each amplitude will be separated into parts odd and
even under cos8 ~ —cose, as in BCR, Thus,

A;(stu) =A;&'& (stu)+A, &'& (stu),

A, (tsu) =A '(tsu)+A;&'&(tsu),

A o(uts) =A, &'& (uts)+A o &'& (uts),

(3.25)

(3.26)

bt„o ———,'L1 —(mg' mI&')—'/s j(mg'+m ')It'&I(my+me)o„

+-', $1—(m~o+mI&o)'/sg (mgo m&&o) t'& (m—g mII)o, —
(to+Is P(m~—')'+(mI&o)oj+P(m„o)o (mI&')'y/2s

&& (Ls—(m~o+mso)') '(m~o+mso)t&(m~+mI&)o,

+$$—(m~o —m&&o)'l-l (mgo —mI&o) t& (m~ —m&I) o„}.
(3 19) RI1&l

-aXo;, , ;„(s,t) aXo;„,;,(s, t)
+

f =to-
(3.20)

In (3.18), bt ls defined to be R dlagollR1 111RtI'lx wllose
diagonal elements are given by (3.19).We then deduce

p c,U;, .1,~mfa, , I,(s, t')f/I, .I,=Z c.(Ub«')'„t.

where the superscripts in (3.25)—(3.27) refer to the re
Qcct1on plopcrty urldcr cos~tt ~ —cosgtt& cose& ~ —cos
and cos8 ~ —eosg„, respectively. If the amplitude on
the left-hand side of (3.24) describes a reaction ml
+ms ~mo+m4, where the masses are used to label
the particles, we can verify that

P c„(UBtVr);„,;„=0, (3.21)
If

and hence from (3.20)

The last two terms witlliI1 tile brackets 111 (3.20) cRI1 be
brought outside the summation, and using (3.19) and
the ms, ss foI'mule, s (3.11) RIld (3.12}we can prove that

COS8s ~ —COSH~

t 4—& u —(ml' mo') (m—o' m4')/s-

cose~ ~ —cos8~

t +-+ s—(ml' —m4') (mo' —mo')/u.

(3.28)

(3.29)

p c,V;„,o,M1„4,(s, to)&;„I,=o Using the crossing relations in (3.24) and the reflection
pI'opcl tlcs IDcIltioncd above wc Qb tain

(A &'&(stu)) (mls —mo') (moo —m4o)

2~ ~=P c&A, (»u)~g co(—Ao&'&+Ao&*&)I t+
& A;&'&(stu) && s

(mlo —m4') (m oo—moo)
s—

t+ (ml' moo) ( 'm—om4')/s—

(mls —moo) (moo —m4'} (mlo —m4') (mo' —moo)
(3.30)

t+ (ml' —mo') (moo —m4o)/s
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As in BCR, (3.30) substituted into an s-channel
amplitude relation between the A s yields a new
relation between the A, 's and the Aq's with the same
arguments in all amplitudes, provided that all the
masses are equal. Even in the unperturbed limit we can
have mq'Wms (mP=ms', ms =m4'), and special con-
siderations are then necessary to deduce relations
between amplitudes with a common set of arguments,
as in the derivation of isotopic-spin-invariance predic-
tions in the scattering of the x's and the E's considered
in SCR. We shall consider here the perturbed situation
corresponding to the unperturbed limit m&'=m9 853'
=m4', and leave the other cases for individual considera-
tion. Our main observation from (3.30), then, is that all
the arguments on the right-hand side of (3.30) become
identical if terms of second and higher orders in the
perturbations in the masses from the sylnmetry limit
are neglected; hence no extra complication arises in the
use of the crossing relations in first-order perturbation
theory. In higher-order perturbation theory one has to
make perturbation expansions of the exact crossing
relation (3.30).

TABLE I. Amplitudes and crossing relations for the elastic
scattering of pions. Factors of 2 and v2 are included so that all
the A; will satisfy the usual two-particle unitarity relations.

($/I) (uts)

~+~+ ~ ~+~+
7f.+~0 —+ m+m0

7l-+X —+ m+X

m+m ~ m'7l-0

7t.om0 ~ ~O71 0

2A2 ——(—A5+A6) = (A5+A6)
(A 3+A 4)

'— VZA 8 — (A 3+A 4)

(A5+A6) = (A5+A6) = 2A2

V2A8 —— (A3+A4) = (—A3+A4)
2AIP = 2AIP = 2A10

themselves into the following sets of equal amplitudes:

Aos Aos Ao, Ao4 Apso Aos Eos 0. (4 6)

Hence the primary stationary principle sa,tisfying (2.13)
and (2.14) can be taken to be any of the following:

(a) csA's+ csA's ——c,A, +csA s
——0, (4 7)

(b) csA s+c4A 4+cipA lo

=csAs+c4A4+cypAyp=0~ (4.8)
or

(c) I's= 0. (4.9)
IV. VIOLATIONS OF ISOTOPIC SPIN

We shall consider 6rst the derivation of the patterns
of breaking of isotopic-spin conservation in the scatter-
ing of the ++, w', and x mesons from each other. The
assumptions will be that a stationary principle of the
form (2.13) subject to (2.14) holds, and that all further
amplitude relations obtained as consequences separate
into relations each satisfying the conditions (2.14).
The notation for the various ~~ —+ m~ amplitudes will

be taken to be the same as in BCR, and is listed in
Table I together with the crossing relations; the
spatially odd and even parts of amplitudes are given
odd and even subscripts, respectively.

The matrices A and A.' corresponding to the subspace
of charge-zero channels and even spatial parity are
given by

(4.1)

(4cs+c4) (As —Ao) =0,
which yields either

Cp= —
4 C4.1

(4.»)

(4.12a)

(4.12b)

The even-parity part of (4.10) on separation into
relations subject to (2.14) yields

2 (co+c4)A s—(4cs+ 7c4)A 4+ (2cs+Sc4)Ago=0 (4.13a)

The procedure will be illustrated for case (b) and the
results for the other cases stated. Substituting for
A/p from (4.5) into the perturbed amplitude relation
in (4.8) and using crossing, we deduce

pcs( —As+As)+ pc4(vZAs —As+A 4)+ scop

XLo (As+As+2As) —2(As+A4)+2A~o]=0. (4.10)

Requiring A'&p/0, we have cs+c4+c&o——0. Substituting
for cqp, the odd-parity part of (4.10) becomes

Ao U U~=— (4.2)
(4cs+c4)Ps=0, (4.14)

where the matrix U has been determined in SCR to
within certain irrelevant phases. The arguments (s,
cos8) etc. , of the amplitudes will be suppressed except
when crucial. Explicitly, Eqs. (4.1) read

the relation involving As being an identity. If (4.12b) is

true, (4.13) gives

A 2
—4A 4+3Ago= 0, (4.13b)

and

As ——-', A s+';V2A s+-', A gp,

I' s= —-',v2As+ siA s+ igv2A ao,

~i.o= g~6—3~2A8+ ~A j.o.

(4.3)

(4.4)

(4 5)

which is also obtained by substituting (4.12b) in (4.8);
(4.14) is automatically satisfied in this case, and no
further amplitude relations can be obtained by using
crossing. Unitarity applied to Eq. (4.13b) gives the
mass formula

Aos and A &p are given by equations analogous to (4.3)
and (4.5). The unperturbed eigenamplitudes divide but allows nz o to be diGerent.

(4.15)
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TABLE II. List of the 2S odd- and even-parity pseudoscalar
amplitudes. Subscripts denote isotopic spins. Note that there are
four two-by-two and one three-by-three amplitude matrices
indicated by brackets. The numbers correspond to subscripts for
amplitudes used in the text.

Odd-parity amplitudes

1. (EE I EE)p

2. (ICE i EE&p-
&EE~~~),

4. (prpr [prpr)r

5. (prE
~

prE)i/ p

6. (prE j rrE) pr p

7. &gE~gE&prp

8. (prE ( ~E)p(p
9. (AEi EE)p.

10. (gpr ( pipr)p

Even-parity amplitudes

11. (EE~EE)o
12. (EE ( prpr)p

13. (prpr [prpr)p

(nels&o
13. (gg I prpr)o

16. (gg ~
EE)p

17. (EE i
EE)g—

18. &EE i g~),
19. &g~ ~g~),
20. (EE i EE)p
21. ( Epr( Ep)rpr —p

22. (prE
~ gE), fp

23. &gE ~qE), )p

24. (prE (prIi)pgp

25. (o pr [ prpr)p

If (4.12a) is satisfied we are really assuming case (a),
Eq. (4.7). It can be readily seen that cases (a) and (c)
are equivalent and each leads to the following amplitude
relations and mass formulas:

and
A3= A5) P8 0 ) 2A2 A4 Alo 7

m„+=m -=m 0.

(4.16)

(4.17)

Note that the relation (4.16) cannot be further de-

composed via the three-eigenamplitude theorem in
BCR, because Eqs. (4.16) have been proved to be true
only up to first order in the perturbation, and unitarity
up to this order will be guaranteed.

We 6nally have two distinct solutions to our station-
ary problem. One is contained in the relation (4.13b)
and the mass formula (4.15). In the conventional
group-theoretic language, this solution can be shown
to correspond to the scattering operator M in Sec. II,
having no I=4 part. The other solution is contained
in the Eqs. (4.16) and (4.17), and can be shown to
correspond to the operator 3/I having no I=2 part. If
3f has neither any I=2 part nor any I=4 part, we
recover all the relations of the exact-symmetry case for
these amplitudes. It may be noted that the electro-
magnetic nature of the isotopic-spin violations has
nowhere been used in our approach; we have found the
only stationary principles satisfying (2.13) and (2.14)
consistent with unitarity and crossing.

V. PATTERNS IN THE BREAKING OF
UNITARY SYMMETRY

We now describe brieQy the rather tedious derivation
of broken-SU(3) predictions in our approach which
constituted the original motivation for the present
work. We consider the scattering of the eight pseudo-

scarar mesons (pr, E, p1) from each other assuming
isotopic-spin invariance and adopt the labels for the
various amplitudes given in BCR; these labels are
restated in Table II for reference. The crossing relations
are listed in BCR. The real orthogonal matrices V that
diagonalize the scattering matrices in the internal-

symmetry limit have also been found there. In the
perturbed situation we define

(5.1)

and similarly define the amplitudes

~5 ~6 ~7 ~11 +12 ~18 ~»4

~15 ~»6 ~17 Pls ~19 ~21 ~22 and ~28

In these definitions, I'; always stands for an oR-diagonal
element, A; always stands for a diagonal element of
UMU~, and the subscripts correspond to those of the
M-matrix element similarly situated. The unperturbed
A. ; and I'; are similarly de6ned, and all the I'o; are
zero, The unperturbed amplitudes can be divided into
the following sets of equal amplitudes;

So,=So,=O,
o~ po5 A os Ao9 A

A 11) P12 0, P'ip 0) Alp A17 Agit (52)
I'o»5= ~o»s= ~o2~= o,
~18 ~19 A 20 ~28 A 24 A 25 ~

(3di+dp) (3Ai+Ap —4A7)+~&(15di —13dp)Pp
—(12di+28dp)Pp+ (24di+8dp)Ag+ (6di+14dp)Ap

(12di+28dp)Ag+ (6dp 18di)Ag=0. (5.4)

We now separate this relation into three relations each
satisfying the criterion (2.14). We then obtain from the
part containing A», A4, and A7, either

oi
(a) do ———3di, (5.5)

(b) 3Ai+Ap —4Ag=0. (5.6)

For case (a), we find the amplitude relation correspond-

The amplitudes I', which are all zero, have further
been divided into subsets in each of which the conditions
(2.14) are valid. There are now many canditates for a
primary stationary principle many of which are in the
end equivalent. It will be enough for our present purpose
to derive all the consequences of a stationary principle
stated in terms of A», A4, and A7.

dlA 1+dpA p+d7A 7 d1A1+dpA4+d7A7 0 ) (53)

where d», d4, and d7 are constants, not all zero, As

befOre, tO haVe Ao»&0 We muSt haVe d»+d4+d7 ——0.
Using the crossing relations in (5.3), we obtain for the
odd-parity amplitudes, after some simplification,
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ing to (5.6) as
Ay —3A4+2A.)=0. (5.7)

Applying the unitarity relation to Eqs. (5.7) and (5.6),
we find, respectively, the mass formulas

and
(a) 3&n —28m~ —bm„=0

(b) 8m —48ns~+3bm, =0.

(5.8)

(5 9)

Of these, (5.8) is badly violated experimentally, and
(5.9) is recognized to be the famous Gell-Mann —Okubo
mass formula for the pseudoscalar octet, in quite
reasonable agreement with experiment. From the point
of view of the present theory, however, we have no
reason to expect one of these relations to be favored
over the other. The further amplitude relations in the
two cases (a) and (b) can be derived by repeated use of
crossing and unitarity. We shall omit this painful
detail; in the end, we obtain two sets of amplitude
relations, each having its own mass formula and each
satisfying crossing and unitarity to first-order terms in
the perturbations. These two sets of amplitude relations
are listed in Table IIL The relations in set (a) arise in
the conventional language by assuming the absence of
octet-type operators in M, and the relations in set (b)
arise by assuming the absence of 27-type operators in 3f.

Note that the relations in set (b) are a subset of the
relations' obtained from the often used assumption that
M has singlet- and octet-type operators only. Since the
relations in (b) already satisfy unitarity and crossing
completely, and in addition have the mass formula
which is one of the important successes of broken-SU(3)
predictions, it is worthwhile to investigate whether this
set of amplitude relations is better satisfied experi-
mentally than the full set of amplitude relations
obtained from the usual assumptions.

VI. CONCLUSIONS

We have shown that an 5-matrix stationary principle
together with unitarity and crossing can yield results
conventionally deduced by assigning specific group-
theoretic transformation properties to the Hamiltonian
and to the mass matrix. One special virtue of this
approach is the elucidation of the intimate connection
via unitarity between the kinematic relations and the
scattering-amplitude relations obtained in exact and
broken symmetries. Further, since mass formulas are
deduced from scattering-amplitude relations using
unitarity and assuming the absence of open channels
other than those contributing to the mass formula for a
certain range of energies (large compared with the
perturbations in the masses), it is readily understand-

TABLE III. The two sets of amplitude relations for P-P scatter-
ing and the corresponding mass formulas that follow from the
assumption that a linear combination of A1, h.4, and A.7 remains
stationary under a perturbation from the SV(3) symmetry limit.

Case (a)

A I—3A4+2h. 7= 0
Pg ————,'42P6
h.5

—2AS+A 9
——0

A14—3417+2',gI =0

4A]3+3'.$9+15A 20

+13'.g3
—10A 24

—25A 26 ——0

P16——0

P15 2P18 (3+6)P22=0
Mass formula

38m —2bmlf: —Bm„=0

Case (b)

3A,X4—M, =0
Pg ——v2P6
5h.2+245—4A 8—3A 9

——0
A2 ——A 1P

3A14+A17—4A.gI =0
26~13+27419—90A 20

+52&23—40A g4+25A g5
—0

~13+2&19—5A go+2'. 23 =0
&13+2419—5A 2O+2A23 =0

PIg=0
2V3PI5+643PIs —3~P22 =o

Mass formula
&n~—4bm~+3&n„= 0

able that the mass formula for the vector-meson octet
can be violated because of neglecting the contribution to
unitarity of another vector meson close in mass. A
detailed study of this eGect remains to be done. One
limitation of the present results, although shared by
most theories so far, is the neglect of second- and higher-
order perturbations; it is hoped that the reason why
some multiplets obey mass formulas better, and others
obey mass-squared formulas better, would be under-
stood in a higher-order perturbation theory. One
question raised by the results of Sec. V is: Can a broken
symmetry containing the correct mass formula, but
less restrictive in its other predictions than the conven-
tional broken symmetry, actually be experimentally
obeyed better? Such a broken syrrunetry has arisen in
Sec. V quite naturally. It will be interesting to confront
the analogous relations, for example, for baryon-meson
scattering with experiment to test this question.
Another important question to ask is: What is the
connection of previous S-matrix derivations of broken-
symmetry results under some approximate dynamical
schemes with the present exact derivations We hope
to answer some of these questions later.
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