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Recently Tornqvist suggcstcd that wE scattcllng below thc inelastic threshold 1s compatible with the
assumption that the phases of thc ~~ and ~s isospin amplitudes diKer by mx. %'e show in the scalar case that
this phase relation Cannot hold over the whole angular interval; for clastic unltarity would then in gcQcraj,
force the two amplitudes to have equal moduli also,

I. INTRODUCTION

t N R rcccnt. pRpcI', Tornqvist hRs analyzed thc
~ - experimental data on xE scattering below inelastic
threshold in the light of charge independence. He found
that the phases of the 2 and —,

' isospin amplitudes diger

by ex for the spin-nonQip and spin-Qip amplitudes,
separatdy. This relation between the phases of the
isospin amplitudes seems to hold quite well in the
forward and in the backward region, whereas in the
intermediate angular region the data have large errors
and can. only be said to be compatible with the above
phase relation.

In this paper~ wc show that Tolnqvlst s rclatlonq

e)(»(k, g) = p(s)(k, e)+)s)r (rr= integer) (I)

(k= c.m. momentum; 8= c.m. scattering angle), is in-

corlsistcnt with elRstlc unltarlty lf assumed vRlld fol
all 8's and for 0&P&k „~, where k „„is below the
inelastic threshold. In fact, we shall prove that if Eq. (I)
holds, the moduli of the ~~ and ~3 amplitudes must be
equal, as a consequence of clastic unitarity. The result-

ing cquahty of the cross sections rules out, then, on
empirical grounds, the general validity of Eq. (I).

Our result is complementary to the one due to Bessis
Rnd Martin, ' who showed that the knowledge of the
Inoduhls of thc RTQplitudc ln thc physlcRl lcglon Axes

the amplitude entirely.
In this pRpcI', wc limit ourselves to thc CRsc of scRlRI'

par" tlclcs.

Let us dc6ne the amplitudes for the scattering of a
pion on a scalar nucleon as

T(')(k,e) =A ('&(k,e)+sB(')(k, (&).(')(k 0)—'" ' )(s)(s=l 3) (2)

where the index j labels the two isospin channels I= ~~

and I= as. We shaH assume the validity of Eq. (1).
*Supported in part by USAF-EOAR 68-00IS.
I N. A. Tornqvist, Phys. Rev. 16I, j.59I (I967).
'In a recent paper L'Nncl. Phys. 86, 187 (1968)g, T(&rnqvist

claims that the analysis of forward data suggests m=0, but g = 1
in the backward region. His conclusions are in agreement with
the results of the present paper.

~ D, Bessis and A. Martin, Nuovo Cimento 52, 719 (1967).

173

IIl tcI'ms of angular-momentum dccornposltion, t4c
real and imaginary parts of the amplitudes T"&(k,e)
are given by

cc

&(') (k, |&)=—g (23+ I)8)('(k) I')(cos(&),
k E=o

& &")(k)= sinh&")(k) cos8(('&(k),

8(("(k)= sin'8((') (k),
and, below the inelastic threshold, the phase shifts
5((*')(k) are real functions of k Land so, therefore, are
A&"&(k) and 8((*)(k)j.

The elastic unitarity condition for the Ag&'& s and
8)&')'s reads

~ "(k)=L~ "(k)j'+L~ "'(k)1'. (5)

We now assume that the following properties of 8,(k)
RI"c vcr16cd:

(i) The phase shifts 8)(k) are odd functions of k for
k real below the inelastic threshold:

8,(—k) = —8,(k), (6)

(ii) The phase shifts 8((k) satisfy, in the hmit k-+0,
the threshold condition

8,(k) ~ 0{kr(+().

(iii) The partial-wave amplitudes possess the well-
known analyticity properties in the complex k plane. 4

This ensures that we can expand them as power series
in k converging inside a circle centered at the origin.
As a consequence of the above conditions, below in-
elastic threshoM wc can now write

g, (')(k) —g g, (()kr(+(+re

$3(,h)(k) —Q P, (i)k4)'+2+sea

' Scc, for instance, M. Froissart and R. Omnhs, in High-Energy
I'hysies, edited by C. De Vhtt and M. Jacob (Gordon and Breach
Science Publishers, Inc. , New Vork, f965), p. 91.
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Inserting Eq. (8) into the unitarity relation Eq. (5),
we get

k4(+244B (i) P k44+2m+2rA (i)A i (i)

+ g koi+2m+2r+2B {4)B {i) (9)

Turning now to Tiirnqvist s condition, Kq. (1), we
note that it implies

A {"(k 8)B"'(k 8) —A {»(k,8)B('&(k,8) =0. (12)

Using the partial-wave decomposition (3), Eq. (12)
becomes

m, }=0

For the terms of order 2A" with

iV= 2/+24, (10)

(2l+ 1)(2/'+ 1)I'i(cos8) 2'4 (cos8)
l, l'-0

X[A({"(k)Bp{»(k)—Ai{'&{k)Bp('&{k)]=0. (13)

equating equal powers of k on both sides of Eq. (9), we
obtain the elastic unitarity condition for the coefficients
.4l„(') and Bl„('):

N-2l
Bi 2(—2i 2 A 4 )&(—24-44 Aim,

a~0

+ 2 B(,2(—«- -1{')Bi ("8(/("—4/ —1), (11)

where 8(2:) is the usual step function.

%e can now use the completeness of the set of
Legendre polynomials to express the product
Ei(cos8)Pp(cos8) in terms of Ep.(cos8), and we finally
obtain

(&0 l+l"
(2/+ I)(2/'+ IX'ip p

l=o l'-[l—l"
i

X[A i"'(k)Bp"'(k) —A i"'(k)Bp{'&(k)]=0, (14)

where C«. l" is the square of the Clebsch-Gordan
coefficient given by

1 r(-,'(/+ /'+ /")+ 1)I (-,'(l+/' —/"+ 1))r(-,'(/ —l'+l"+ 1))r(-,'(—l+l'+l"+ 1))
~ll'l" =

22r r(-', (/+ l'+l"+3))r(-,'(/+ l' —l")+1)r(-', (l—l'+ l")+1)I'(-', (—l+ l'+ l")+1)

if /+l'+l"=even integer and ~l—/'~ &/"(/+/',
=0 otherwise.

(19)

and the theorem will be proved.

Equation (14) is a set of infinitely many coupled Once Eqs. (17) are proved, from Kqs. (3) and (8),
equations for each possible value of l ' [with / and l we (&btaln

constrained by the conditions specified in Eq. (15)]. A ('& (k,8) =A (') (k,8),If we now use in Eq. (14) the power-series expansions

(8), Tornqvist's condition, Eq. (1), is banally equivalent }ax.}
to the infinite set of coupled equations

co co l+l"
(2/+ I) (2/4+ I)g, „k2(+4P+2n+2m

~,~=0 l-«'-ll-l" I

X[A i (1)Bi, (2) A (2)B, {i)]=0 (16)

Equations (16) and (9) are the basic set of equations
to be solved. One trivial solution of these equations
consists of

Al (')=Al (')

Bp (»=Bp {'& (for all /22, /'2)2) . (17)

and we will show that the trivial solution (17) is, in

general, the only one, since it holds at every order.

In the next section, we shall solve, at each order E,
Eqs. (9) and (16), where, in the latter, Boo"'= [A oo"']'

Boo(2) = [Ao (2)]2
(16')

Illsel'tlllg (16 ) lllto (9 )4 slrlce A oo( ) Q0 and A oo(» g0
[because otherwise the S waves would not satisfy the

3. PROOF OF THE THEOREM

We shall prove the validity of Eqs. (17) by using a
recurrence procedure, namely, we shall prove that they
hold at the zeroth order; then we shall assume that
they are valid at the order g—1 and show that they
are still valid at the order E.

For /Ir=0 [/(r as defined by Eq. (10) and Eq. (18) for
the sets of equations (9) and (16), respectively], we
simply get

g oo(j)goo(3) g 00(3)g 0(&)—0 }
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threshold condition (ii)], we obtain

~oo"'= ~oo"',

B„II=B„II=V„II)

We can then limit our consideration of Eq. (25) to
the case

(31)

when Eqs. (20) become
i.e., Eqs. (1/) hold in the lowest order.

We now assume that Eqs. (1/) hold up to the
(arbitrary) order A —1 i.e. +(BIN 2, 1 -BI,N—I ) 0 ~ (32)

foI' Rll L,g such that

(3)—g ) {&) (21) Taking the difference 9) ~ 2){')—+E g 2){» from the
llllltR1'lty eqllRtlons (11) wc llRvc

(22)
BI,N—21 BgN 21, —{3) a {1.)

N-2l
= Q LÃg, N—2g—egg'&g. gg' —AI, N 2g IIIAg„log]

X—4$—1

+ Z LBg N—gg—n—I Bga

and we set to prove that Eqs. (1/) are stiH valid at the
order IV (i.e., for RH /, gg and 1',ggg such that i+22&~IV
and 2l'+2gg &&/V).

First of all, because of the structure of Eqs. (16) and
because of (21), (22), (23), (24), it is evident that the
only contributions to Eqs. (16) come, for any given
1"&~AT, from

(a) 1=1", 1+22= /IT, 1'= ggg =0,
(b) /'=P' 2l'+m=gV 1=22=0.

Moreover, the term (b) is absent if IV(2l".
In otheI' woI'ds, the only contributions which suI'vive

arise when the power O'N originates from either A(k, 8)
or B(k,8). All other contributions must vanish because
of the equalities ('21) and (23) already assumed at the
order i V—1.

At the ordergV, Eqs. (16) become, then, for any/~& ger,

gg N gg»Boolog —Ag N I'2IBoo"'+L&oo"'Bg N-21"'
—&oo"'Bg,N-2g"']0(IV —21)=o (25)

—Bg.N-« ——II IBg g I]. (33)

In the second sum on the right-hand side of Fq. (33),
the consldeI'ation Gf the maxlIDUIIl index gives

(21+~). (2ry=X 4/ —22 1—)..—.
= IV—2/ —1 & /g/ 1 — (34)

and therefore this sum is identically zero because of
Eqs. (23) Rnd (24). The fgrst suII1 oil tile right-hand side
of Eq. (33) has, on the other hand, a sum of highest
powers such that

(1+~) ..= (f+e 2/ g.)—,„=—X /—
Therefore, it gives a nonzero contribution only for l= 0.
In other wolds

Bg N 2ggg —Bg N 2II 1=0, (JV~&2l)0) (36a)

BoN
"I—BoN"'= 2(~ oN "»g oogol —~oN"'& ool'I) ~ (36b)

From Eqs. (32) and (36a) we then get

Let us now turn to the llllitRrlty condltlons (11).
First we restrict ourselves to whereas from (32) and (36b)

(I& &~21)0)

21&~gV(4l+1m1) 4(IV+1))0,
ln which cRse

X—2l

BI,N-2glo= Z
n=o

~oo"'(~ oN'" —&oN"')+ (BoN "I—BoN III) =0,
2~oo"'(& oN"' —&oN"')+(BoN I"—Bo I'I) =0

'
(3g)

If we consldeI' the maxiQ1um index on the right-hand
side of Eq. (2/), we have

(1122) = (11/V—21—go), = IV—1 ~& 1V—1, (28)

where the last inequality follows from (26). Therefore,
because of (21) and (22), we get

Bg,N 2gloI=BI, N 2gggg fol' 4l+1)IV&~2l ~ (29)

Using (29) in (25) Rnd (20), we then obtain

gg N gl»=AI N gggg for 41+1)IV~&1. (30)

~ ow "'=~ ow")

which completes the proof of the validity of Fqs. (1/)
and thus of Eqs. (19).

4. CONCLUDING REMARKS

In the present paper, we have shown that if two
amplitudes that are not identically zero satisfy the
Tornqvist relation (1), then their real and imaginary
parts must be related through Eqs. (19), if the very
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general conditions (i), (ii), and (iii) (Sec. 2) hold, as
well as unitarity. Since Eqs. (19) imply that the two
amplitudes have equal moduli, the corresponding
angular distributions should be equal.

This conclusion contradicts Tornqvist s relation, and
therefore we conclude that the only possible way out
is that Eq. (I) is valid only in a part of the angular
interval. We are comforted by the fact that the phases
of the —,

' and ~ amplitudes constructed with the phe-
nomenological mX phase shifts do not satisfy the
Tom, vist relation. ' Of course, our conclusion was

V. Grecchi and G. Turchetti (private communication).

reached only for the spinless case, but we have little
doubt that the proof could be carried out also in the
physically interesting case.
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We obtain a, "double bootstrap" of the p and f mesons, in which the input force consists of both p and f
exchange, and both particles are obtained as ouptut resonances, with corresponding input and output values
of masses and widths being equal to within about 1/&. The values obtained for the resonance parameters are
m, = 750 MeV, F,= 162 MeV, my = 1240 MeV, and Fy = 100 MeV, in reasonable agreement with experiment.
The p width is somewhat larger than most measured values, but much smaller than generally obtained in
bootstrap calculations in which only p exchange is included as an input force. Our calculations are carried
out using the equivalent-potential method, and are free of arbitrary parameters. The model yields a second
I=0, j=2 resonance, presumably to be associated with the f", and also a broad second P-wave resonance.
The latter may correspond to the p' Regge trajectory hypothesized in several Regge-pole analyses of high-
energy data, especially the polarization in xE charge exchange. The parameters of the predicted resonance
do not agree with those of any known resonance, but it might be diQicult to observe because of its width. The
output Regge trajectories predicted by the model are roughly linear. The p trajectory has a slope about half
the generally accepted experimental value of 1 BeV . We comment in passing that general considerations,
based only on the crossing matrix, make it somewhat difEcult to reconcile the latter value with the absence of
an I=0 D-wave resonance at an energy less than 1250 MeV.

A VIGOROUS attack has been made in recent years
on the problem of determining the parameters of

the p resonance in mw scattering by a "bootstrap" calcu-
lation, in which one 6rst assumes that the dominant
force producing the p is p exchange, and then seeks self-
consistent values for the mass and width. A variety of
such calculations have been published. ' ' One 6nds in

general that one can obtain the p from these calculations
at more or less the experimental value of the mass,
though in many of these calculations this is due to the
freedom one has to adjust a cutoff parameter which

enters because of the exchange of a vector particle.

* Supported in part by the U. S. Atomic Energy Commission.
'G. F. Chew and S. Mandelstam, Nuovo Cimento 19, 752

(1961);B. H. Bransden and J. W. Morat, ibid. 21, 505 (1961);
L. A. P. Balazs, Phys. Rev. 128, 1939 (1962); M. Bander and G.
L. Shaw, ibid. 135, B267 (1964); P. D. B. Collins, ibid. 142, 1163
(1966).' F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962);
L. A. P. Bala,zs, ibid. 132, 867 (1963);J. R. Fulco, G. L. Shaw,
and D. Y. Wong, ibid. 137, B1242 (1965); R. Atkinson, III, and
A. E. Everett, ibid. 154, 1430 (1967).' L. A. P. BaMzs, Phys. Rev. 137, B1510 (1965);J. Finkelstein,
ibid. 145, 1185 (1966).

However, one invariably obtains a theoretical value for
the width which is much too large. Most searches for
solutions to this problem have tended in the direction
of including inelastic effects, either through the inclusion
of one or more inelastic channels explicitly in a multi-
channel calculation, or through the inclusion of an
inelasticity parameter in a one-channel calculation.
Examples are given in Ref. 2. While the inclusion of in-
elastic effects has tended to bring the theoretical and ex-
perimental widths into better agreement, the theoretical
values remain too large. ' It is possible that if one could
include further inelastic channels in a correct way, the
theoretical width would be further improved, though in
practice this will be very difFicult to do.

A second possible effect which might contribute to
narrowing the theoretical resonance widths has been
suggested by Chew. 4 Chew works in the context of the
"new form of the strip approximation, " in which it is
assumed that the generalized potential (that part of
the amplitude not containing direct-channel poles) can

' G. F. Chew, Phys. Rev. 140, B1427 (1965).


