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Scattering of elementary particles from deuterons at BeV energies is considered. Corrections to the
Glauber theory, resulting from violations of its high-energy and small-momentum-transfer assumptions,
are found significant for experiments already performed. The most important correction results from in-
cluding the principal-value part of the propagator in double scattering. Triple and higher-order multiple
scattering are calculated in a model and are predicted to be important at momentum transfers of —¢>4

BeV2. Available data on the energy dependence of the ¢

are shown to disagree with the Glauber theory, and
agreement is discussed.

I. INTRODUCTION

HE deuteron can be considered a nonrelativistic
bound state of neutron and proton, to a certain
accuracy. One can therefore hope to calculate elastic
scattering of elementary particles on deuterons in terms
of amplitudes for scattering on neutrons and protons,
making use of the fact that the deuteron is loosely
bound to treat the neutron and proton as free particles.
This should be a good approximation, because the
average np separation (~3 F) is large compared to the
range of the np interaction (~#%/mc=14 F).

Elastic scattering from deuterium has been discussed
many times using the “high-energy approximation” of
Glauber.! T wish to reexamine the validity of that ap-
proximation, while staying within the framework of
treating the deuteron nonrelativistically. Various at-
tempts to extend this framework, e.g., by including cer-
tain relativistic effects in the deuteron-neutron-proton
vertices,? or by ‘“Reggeizing” the scattering amplitudes,?
will not be discussed.

The organization of this paper is as follows. Section II
contains a derivation of the multiple-scatlering series,
which relates the amplitude for scattering on a deuteron
to the slightly-off-mass-shell amplitudes for scattering
on free protons and neutrons. The derivation makes use
of formal scattering theory, and is similar to one given
by Everett, following ideas of Chew and Goldberger.*

* Work supported in part by the U. S. Atomic Energy Com-
mission.
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University, Palo Alto, Calif. 94305.

1R. Glauber, Phys. Rev. 100, 242 (1955); in Lectures in Theo-
retical Physics, edited by W. Brittin and L. Dunham (Interscience
Publishers, Inc., New York, 1959); CERN Report No. TH786,
1967 (unpublished); V. Franco and E. Coleman, Phys. Rev.
Letters 17, 827 (1966); V. Franco and R. Glauber, Phys. Rev.
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‘screening correction” to deuteron total cross sections

a possible phenomenological treatment of that dis-

The relation of this series to the Glauber approximation,
and to a certain class of Feynman diagrams, is then dis-
cussed. Section III contains model calculations ap-
propriate to pd, wd, Kd, and pd scattering at BeV en-
ergies. The model consists in assuming simple Gaussian
expressions for the deuteron wave function and the
nucleon amplitudes, in order to facilitate calculation.
More accurate expressions will not be difficult to handle
by computer when new experimental data make their
use appropriate. Despite its simplicity, the model cal-
culation is shown to agree reasonably well with pd data
of Palevsky et al.® Predictions of the theory for total
cross sections are discussed in Sec. IV. They are shown
to be inconsistent with available vd data, and probably
also pd data. Experimental confirmation of this dis-
crepancy, and theoretical understanding of it, should be
sought. For the present, the standard procedures for
extracting cross sections of p, K, , on neutrons from
experiments on deuterium must be considered un-
reliable. Some possible flaws in the theory are discussed
in Sec. V, and recommendations are made for future
experiments.

II. MULTIPLE-SCATTERING FORMALISM

In formal scattering theory, the scattering of a par-
ticle « on a deuteron is described by the Hamiltonian

H=Ho+ V,
where
HO=KJ+Kn+Kp+ Vnp,

V=Vt V:cp- (1)

Here K, K, and K, are the kinetic energies of the pro-
ton, the neutron, and the particle x; V,, is the deuteron
binding potential; and Vz», V., are the two-body inter-
action potentials which cause the scattering. Three-body
forces are assumed negligible. Relativistic kinematics
are used, e.g., K= (¢.2+m,?)''2, so the incident particle
need not be assumed nonrelativistic in the laboratory
frame. The scattering amplitude 7" satisfies the Lipp-

5 G. Bennett, J. Friedes, H. Palevsky, R. Sutter, G. Igo, W.
Simpson, G. Phillips, R. Stearns, and D. Corley, Phys. Rev.
Letters 19, 387 (1967).
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+ -+ TERMS WITH n AND p
INTERCHANGED

F1c. 1. Multiple-scattering contributions to xd elastic scattering.
The lines marked by crosses are put on-mass-shell.

mann-Schwinger equation
T=V+VGT, G=1/(E—Hytie), (2)

where E= E,+ E, is the energy of the initial (or final)
state.® The two-body amplitudes which describe xn, xp
scattering similarly satisfy
ton= Vam+ Vznglzn )
lop= Vapt+Vepglep,
g=1/(E'—K,— K,— K ,+1¢).

)

The inclusion of both K, and K, in defining the propa-
gator g is permissible because for xn (xp) scattering,
K ,(K,) is a constant. The energy £ is a sum of free-
particle energies: E'=E,+ E,+ E,,.

The impulse approximation consists in setting G equal
to g, i.e., neglecting the deuteron binding potential for
the duration of the collision. This approximation is ex-
pected to be a good one, provided the duration of the
scattering process is short compared to the character-
istic interaction time of the deuteron, which could be
defined as the average separation of the neutron and
proton divided by their average relative velocity. In
general, that will be the case if the particle % is rela-
tivistic; it may be false, however, if the #V interactions
are dominated by resonances which provide long time
delays, as in =d scattering below 2 BeV. Making the im-
pulse approximation, Egs. (3) and (4) can be iterated
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g-7x IR

F16. 2. Kinematics of xd scattering in the Breit frame.

and then combined to yield

Tg(t:m"*‘ txp)+ (t:cngtzp"{‘ t:vpgt.’cn)
+(iwngtxpgtmn"“ixpgtzngtzp)‘l' cee. (4)

The successive terms of this series have obvious inter-
pretations as single, double, triple, etc., scatterings
separated by free propagation as illustrated in Fig. 1.
The multiple-scattering terms can be shown to equal
what one obtains by interpreting the pictures in Fig. 1
as Feynman diagrams, if one (a) includes form factors
at the d-n-p vertices, making the appropriate identifica-
tion of the form factor with the deuteron wave function,
(b) includes form factors at the x-x-n-n, x-x-p-p vertices
appropriate to off-shell x» and xp scattering, and (c)
retains only the mass-shell parts of the propagators for
the lines marked by crosses.?

Before proceeding with Eq. (4), it is necessary to dis-
cuss kinematics. The best coordinate frame for con-
sidering the deuteron to be nonrelativistic is the Breit
frame, in which the deuteron’s kinetic energy is kept as
small as possible for given momentum transfer. In that
frame (see Fig. 2),

t=A=—2q-A,
= md2+mz2+%A2+2(q2+Mx2)1/2(%A2+md2)1/2 ,
do (s—ma?—m,>+31)?
—=167"
at [s— (matmz)*][s— (ma—ms)*]

At small momentum transfer, the Breit frame is similar

to the laboratory frame.
Denoting the momentum-space deuteron wave func-

)

|72

‘tion at relative momentum k by ¢(k), Eq. (4) can be

written explicitly as

*%Avq] T‘%A7 q"'A>= /dk @(k_f‘%A)?’(k"‘%A)ixp("'%A-k: q-— %A_'k, q"A)

—f—/dkds o(s+3k) o(s—3k) - top(—s—3k—2A, g — —s+1k+24A, g—k—3A)

lon(st+3k—%A, (—k—34 - s—3k+iA, q—A)
(@*+m.?) P —[(q—k—3A)*+m.*] e

f /dkdrds o(s+21Kk) o(s—1k)

fen(57+ 3h— 14, q—r—3k—}A = s—Jk-+H1A, q—r+3k—1A)

~

Xiap(—s—3k—1A, 4= —s+1, g—1—3k—3a

fen(— 5+, a—1+3k—3A > —s+3k+1A, 4—4)

(@t 2= [(q—r—3h—1a)hm? ] *ie

(6)

}-- - - ~terms with » and p interchanged.

(@ mD = [+ Ik—3A) 4+ m 2] e

6 M. Goldberger and K. Watson, Collision Theory (John Wiley & Sons, Inc., New York, 1964).
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In writing Eq. (6), I have neglected the contributions
to the energy denominators which result from recoil of
the nucleon. In others, I have approximated both of the
propagators G and g by go=(E,—K,+1i¢)~L. The ap-
proximations G=2g=Zg, are expected to be very good, as
can be shown using the model described in Sec. III. The
lowest-order correction resulting from replacement of
G by g (impulse approximation) can be written as

(tam-,— tzp) (G— g) (t:m‘l‘ tzp)
= (l:cn+t:vp)G[Vnmngn‘l‘txp)]

X (tonttep) 'LV up tonttap], (7)
making use of the fact that 7" is to operate on a state for
which K.+ K+ Vap—E4=0 by the Schrodinger equa-
tion for the deuteron. The further correction resulting

from replacement of g by go (neglect of recoil) can be
written in lowest order as

ton(g§— 80)tapttap(g— g0)tan
gt¢ng02[Kp,tzp:|+tng02[Kn7tivn:] . (8)

The xNV amplitudes in Eq. (6) are to be obtained from
experimental x/V differential cross sections via

|tzn(p,a— 0,4 2=
N ] 64w’

[s— (mart- ) TLs— (ma—mx)?]
(@D g ) 2 ) (0 )

do
X—(s,t). (9)
dt

Because these amplitudes are off the mass shell, the
Lorentz-invariant kinematic variables s and ¢ are not
uniquely defined; possible choices for them are, for
example,

sr= =20 D 2 m ) g m A,
Se=m2+my*—2q¢ - p

+2(p’2+m NZ)]/Z(q’2+mx2)l/2,
t1= Zm N2+2p.p’__2(p2+m N2)l/2(p/2+m N2)1/2 ,
ty=2m 2+ 2p-p — 2(p2+m,2) V2(p2H-m )12,

At high energy, elastic cross sections change only
slowly with energy. They are also sharply peaked in the

(10)

(—344|T[34, a— A>~—“—’fw(]A')S(%A)+<qH;:n 12>1/2/
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forward direction, which implies that only small mo-
mentum transfer, and a fairly small region of energy, is
important in the multiple-scattering integrals of Eq.
(6), because the deuteron wave function allows only a
restricted range of Fermi momenta. It is therefore pos-
sible to make the approximation

2 1 de
——— —(s,0), (11)
q2F-m,? 167° dt

where s=2m ~(q>+m,?)'"? and t=—(p'—p)2 [At low
energies, (do/dt)(s,t) may vary rapidly with s because of
direct-channel resonances. In such cases, e.g., for md
scattering below 2 BeV, it is essential to include this
variation when carrying out the double-scattering in-
tegral. Either of the forms s; or s; given in Eq. (10) can
be used for s.]

In obtaining the two-body amplitudes from Eq. (9),
it is necessary to make some assumption about the
phase of the amplitude as well as to choose a way of
going off the mass shell. Unfortunately, phases of elastic
scattering amplitudes are generally known only in the
forward direction where they can be obtained from
measurements of Coulomb interference or by the optical
theorem. It would also be necessary to postulate the
spin dependence of the amplitude, unless one is willing
to ignore spin entirely, as I shall do here, in the hope
that spin-flip elastic amplitudes are relatively small.

When the x/V amplitudes can be considered to vary
only with the magnitude of three-momentum transfer,
Eq. (6) can be written in terms of the deuteron spatial
form factor:

'lzN(p:q - p’)q’) 12%

Sp)= f o(k3p) o(k—3p)dk= f W) 2evadx, (12)

where ¥(x) is the coordinate-space wave function for
separation distance x. Also making the high-energy,
small-momentum-transfer approximation

qp
(>+m2)1?
X[1+0(|pl/]a])] (13)

in the energy denominators, and assuming q-A=|A|/
2| | =20, the result is

(@*+m.") = [(q—p)*+m? ] 2=

K)top(|k+3A])lan(| k—3
dkS( Moo(|k+3A | ten(|k—3A])

§-k+ie

S tap(|r+3k+ 1A Nlon([k—3A [ )tap(|r—3k—FA])
I

2+ z2
(222
q2

q2+mz2
o
q2

[q- (r+3k)+ie][q- (r—tk)+ie]

3/2
) / didrds Stp(|1-+3k-+3A |Von(|s—k—142A )

tzp('%k_r‘f"i‘A thn([r_ s+1A l)

(3 (r+3K)+ieTg- (s— k) +ic][d- (s—r)+ie]

}-+ - --terms with #,p interchanged.

(14)
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If the double-scattering integral in Eq. (14) is written in spherical coordinates, its principal-value part is seen to
vanish. The remaining (8-function) part yields a two-dimensional integral over a plane perpendicular to the beam
direction. If triple and higher-order multiple scattering effects are neglected, Eq. (14) becomes

2+ z2 1/2 00 27
(14, 4|34, q—A>zs<%|AI)D,maAl>+tm<|Al>J—zﬂ(f’—;?—) / dk kS(R) [ a6

Xton((B2+3A2—Fk| A| c0s0) 2t ,((R2+1A2H-E| A| cos)'/?),

which is the standard result of the Glauber approxima-
tion. Important corrections to this formula arise from
two sources: the small-momentum-transfer approxima-
tions and the neglect of higher-order multiple-scattering
effects. The size of these corrections is examined in Sec.
III by means of a model. The small-momentum-transfer
approximations are found to be rather good, with cor-
rection terms being of order #/4mq® and (¢/16|q|)
X (radius of deuteron). However, the correction terms
can be significant at energies of a few BeV or less, be-
cause they alter the phase of the double-scattering term
by making its principal-value part nonzero. This affects
the shape of the differential cross section in the region
around /= —0.35 BeV? where single and double scatter-
ing interfere strongly.

According to the model, triple and higher-order multi-
ple scattering is negligible at small momentum transfer,
but very important at large momentum transfer. In cal-
culations made by Glauber and his followers for scatter-
ing on deuterium, triple and higher-order multiple scat-
tering is excluded from the outset, on the grounds that
in order for the incident particle to interact with a given
nucleon more than once, it would have to be scattered
through a large angle at least once. This argument is
incorrect because of the finite range of the two-body
interactions. The situation in coordinate space is illus-
trated in Fig. 3. The neutron and proton, as seen by the
incident particle, can be represented as spheres of
radius about 1 F. [Experimental elastic cross sections
behave like do/dt « exp(10 BeV—2), which corresponds
to diffraction from a Gaussian density distribution of
rms radius 1.1 F; this radius is somewhat smaller than
the range associated with pion exchange, #/m.c=1.4 F,
because diffraction scattering is associated mainly with
nonperipheral processes.| If the np separation in the
deuteron is 22 F (probability about 67%), only single
and double scattering are possible. If the separation is
between about 1 and 2 F (probability about 25%),
triple and higher orders of multiple scattering are pos-

X o m @\ ——
&) W

(a) (b)

Fi6. 3. xd scattering in coordinate space. When the neutron
and proton are separated by more than twice the range of the xn
interaction (a) only single and double scattering are possible;
when they are close together (b) triple, quadruple, - - - scatterings
are also possible.

(13)

sible in addition to single and double. If the separation
is less than 1 F (probability 5-109%,), the neutron and
proton are able to interact strongly with one another.
In that case, the impulse approximation may fail; the
nucleons may be relativistic; many-body states may
become important—in short, the entire treatment
breaks down. One must therefore be prepared to find the
present theory in error by a few percent. Data on the
magnetic component of electron-deuteron elastic scat-
tering have successfully been explained” in terms of
deuteron wave functions (calculated from models of the
np interaction) for momentum transfers up to 12 F~2;
this suggests that S(p) is known reasonably well for
$%0.3 BeV, or ¢(x) for x20.6 F.

III. MODEL CALCULATION
As a model of the £V scattering amplitudes, I use
ton([K|)=tzp(| k|) = Cere2, (16)

which corresponds to

do do q? /2
(—) =(—) §167r5(-—————> Clrev (17)
At/ on \dt/op qQ>+m,?

at small momentum transfer. This form is roughly com-
patible with #%p, K+p, pp, pp elastic scattering data at
energies from 5 to 25 BeV and momentum transfers from
0 to 1 BeV28 The best value of vy varies somewhat with
energy and the type of particle, but is never very far
from 10 BeV-2, Typical values of |C| in BeV-2 are
0.26 for pp, 0.21 for pp, 0.13 for £p, 0.12 for K—p, 0.10
for K*p ?; these values decrease slowly with energy be-
cause total cross sections do. The phase of C is such
that ReC/ImC falls from —0.33 to —0.16 in pp, from
—0.22 to —0.14 in 7~p, and from —0.15 to —0.13 in
7~p between 8 and 25 BeV.10

7C. Buchanan and M. Yearian, Phys. Rev. Letters 15, 303
51825;; N. Glendenning and G. Kramer, Phys. Rev. 126, 2159
1962).

8 K. Foley, R. Gilmore, S. Lindenbaum, W. Love, S. Ozaki, E.
\(Nillgx)l, R. Yamada, and L. Yuan, Phys. Rev. Letters 15, 45
1965).

9 W. Galbraith, E. Jenkins, T. Kycia, B. Leontic, R. Phillips,
and A. Read, Phys. Rev. 138, B913 (1965); W. Baker, E. Jenkins,
T. Kycia, R. Phillips, A. Read, K. Riley, and H. Ruderman, in
Proceedings of the Sienna International Conference on Elemeniary
Particles and High Energy Physics, edited by G. Bernardini and
G. Puppi (Societa Italiana de Fisica, Bologna, 1963).

1 K. Foley, R. Jones, S. Lindenbaum, W. Love, S. Ozaki, E.
Platner, C. Quarles, and E. Willen, Phys. Rev. Letters 19, 193
(1967); 19, 857 (1967).
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As a model deuteron wave function I use the Gaussian
o(k)= (a/m)3/4gox?2, (18)

This provides an adequate, though not precise, descrip-
tion of the deuteron. The value a=134 BeV—2 was de-
termined in a variational calculation'; it corresponds
to a rms separation of neutron and proton equal to 2.8 F,
which is not unreasonable. The spatial form factor cor-
responding to this wave function is S(p) =e—*?*/4,

The contribution to the scattering amplitude 7" due to
the two single-scattering terms in Eq. (6) is, in the
model,

T1=2Celv/2Hai1t)e, (19)

The contribution due to the double-scattering terms is
T>=2C? exp(—1vA?
dk e—(‘ﬁ*-azlﬂi)k2

«f .
(@*+m) 2 —[(q—k—}A)*+m2 ]2+ ie

(20)

Using the kinematic relations 2q- A= A2= —/, defining
Q0=(q>—1A%»'2 and performing the angular integra-
tions, Eq. (20) becomes

8wC? o0

gw/4/ dk e=(rtalk?
dy+a —e
1+%/Q

X .
(@24 m.2) 12— (02 ma2+ k24 20k) V24 ie

Let us now assume that A%/4q%<1. This corresponds to
a small-angle approximation in the Breit frame, for
A?/4q?=[sin(%0preit) ]?; however, it is a very good ap-
proximation in most situations of interest—even those
involving relatively large scattering angles in the center-
of-mass frame—for q is approximately the laboratory
momentum of the incident particle. Simplifying the en-
ergy denominator in Eq. (21) using A2/4¢%*<1 and the
fact that large values of £ are made unimportant by the
factor e=(rte/# one obtains

T ~c2<_8i7'2>(q2+mx2>” :
dy+a q’

—1i
yt/4 — a 1/2

)= / i eﬁ=e‘=2<l+§ / ap) 29)

T J o 82— Pptie T

Te=

(21)

is a type of error function.'?
The result one obtains for double scattering using the
Glauber formula [Eq. (15)] is equal to that given in Eq.

11 M. Verde, Helv. Phys. Acta 22, 339 (1949).

12 Handbook of M athematical Functions, edited by M. Abramo-
witz and I, Stegun (U. S. Department of Commerce, National
?glreau of Standards, Washington, D. C., 1964), Appl. Math. Ser.
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(22) except for replacement of the function w by unity.
For small momentum transfer,

—t dy-ta\1/? ¢
w<——(4y+a)1/2)g1-—i( ) —;
16/q| 64r / |a|

the numerical value of [[(4y-+a)/647]'/? is about 1 BeV,
so the correction to the Glauber formula can be quite
large at low energies. Particularly important is the al-
teration in the phase of double scattering which results
from retaining the principal-value part of the propa-
gator. For example, Palevsky et al.’ have concluded,
from the shape of their pd differential cross section in
the region of strong interference between single and
double scattering, that the phases of the pn and pp
amplitudes at {=—0.35 BeV? differ radically from the
phases at {=0. That situation improves considerably
when one includes the principal-value contribution to
double scattering. Figure 4 shows Palevsky’s data, to-
gether with results of a model calculation in which
Ret,,/Imty,=Rety,/Imtpn=—04 was assumed. The
solid curve, which corresponds to the model, gives a
much better fit near {=—0.35 BeV? than the dashed
curve, which corresponds to the Glauber approximation,
i.e., replacing the function w by 1 in Eq. (22). It is diffi-
cult to draw a quantitative conclusion because the
values of Ret,,/Imi,, and Rely,/Imi,, in the forward
direction are uncertain. However, they are probably not
larger in magnitude than 0.4, so some variation in the
phases with ¢ is probably still necessary to explain the
interference being less destructive than the model other-
wise predicts. (The parameters used in the model were
v=35.23 BeV~2 and C corresponding to o,y=48.2 mb,

(24)

1074

-t in Bev?

Fic. 4. Proton-deuteron elastic scattering at 1.7 BeV/c (see
Ref. 5). The solid curve is the prediction of single plus double
scattering; the dashed curve results from making the high-energy
and small-momentum-transfer approximations of Glauber theory.
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as used by Bassel and Wilkin.!® The deuteron form fac-
tor was taken from Glendenning and Kramer?; their
form factor is nearly equal to the one corresponding to
Moravcsik’s wave function,!* and is a distinct improve-
ment over the Gaussian.)

Now assume the energy sufficiently high for the
Glauber type of approximation [ Eq. (14)] to be correct.
In the model, the nth-order multiple-scattering term
then has the form

__1’ q2+m:€2 1/2—n~—1
el 4 T
v q’

Y
exp<—~t> , if »# is even
2n
N (25)
8y+na Y
exp<______ _;> , ifnisodd
8y+(n—1/n)a 2n
where
fl =2 )
p 82
2= ’
4+a/y
3273 (26)
fa= arccot[ (3+a/v)V?],
3+a/y
3275 2+4a/2y
V= arccotl:(3+a/ Y 2+_——“:, :
24a/y (I4a/2)

Each term falls exponentially with momentum transfer.
The slopes of the exponentials decrease monotonically
with #, being given by v/2#x for even # and very nearly
by v/2n for odd »>1. The approximate independence
of the slopes on « implies that the momentum-transfer
dependence of multiple scattering is insensitive to the
choice of a model wave function, whenever #,.(|A|)
<t,p(| A|) xe ¥4’ The momentum-transfer depen-
dence of single scattering, on the other hand, depends
strongly on the wave function: By coherence, it is
mainly determined by the “size” of the deuteron.

The relative magnitudes of the various multiple-
scattering amplitudes are shown in Fig. 5 for the case
of high-energy pd scattering (a=134 BeV—2 y=10
BeV—2 |C|=0.20 BeV—?). Single scattering dominates
the cross section at small momentum transfer, and
double scattering at somewhat larger momentum trans-
fer, as was first concluded by Coleman and Franco.! At
momentum transfers of —#> 3 BeV?, higher-order multi-
ple scattering becomes important.

If the amplitudes ¢., and #;, are pure-imaginary, as
has been conjectured for elastic amplitudes at small
momentum transfer and very high energy, then double

13 R. Bassel and C. Wilkin, Phys. Rev. Letters 18, 871 (1967).
14 M. Moravcsik, Nucl. Phys. 7, 113 (1958).
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RELATIVE AMPLITUDE
3
&

1078 !
0o 1 2 3 4 5 6

-t in Bev™?

Fic. 5. Relative sizes of the multiple-scattering amplitudes in
the model calculation of proton-deuteron scattering. Curve 1 is

single scattering, etc.

scattering is 180° out of phase with single scattering, as
required by its correspondence with classical “‘shadow-
ing”: Double scattering must act to reduce the total
cross section. As a result, the differential cross section
should have a zero at the point where single and double
scattering are equal in magnitude. (Higher-order multi-
ple-scattering contributions would in principle shift the
position of the zero very slightly.) At available accel-
erator energies, elastic amplitudes are known to have
sizable real parts,!® so the “dips” in deuteron cross sec-
tions are expected to be filled in to some extent, as in
Fig. 4.

The shape of the differential cross section beyond the
double-scattering region cannot be predicted reliably
without using accurate expressions for the deuteron
wave function and ¥V amplitudes, because it results
from the delicate interference of several terms. With
that qualification, the cross section given by the model
for Ret,ny/Imé,ny=—0.2 is shown in Fig. 6. Fifth- and
higher-order multiple-scattering terms are negligible
at the momentum transfers shown. Third and fourth
order tend to cancel in such a way that substantial de-
viations from pure single+double scattering do not
occur until —¢>4 BeV2.

The multiple-scattering amplitudes for =d, %d, and
Kd are similar to those shown in Fig. 5 for pd. However,
7V and KN cross sections are smaller than p/N, causing
the dip to move from about {=—0.33 BeV? to about
t=—0.38 BeV?; PN cross sections are larger, so the dip
moves in to about —0.29 BeV2.

It may be possible to predict the scattering amplitude
successfully at relatively large momentum transfer,
while treating the deuteron nonrelativistically, because
the amplitude is dominated there by high orders of
multiple scattering. For example, to calculate the single-
scattering amplitude for —#20.5 BeV?, one would have
to understand the coordinate-space wave function in the
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F16. 6. Model calculation of proton-deuteron elastic scattering
(solid curve), together with the result of pure double scattering
(dashed curve).

nether regions of radii $0.5 F. Fortunately, however,
single scattering is negligible at the momentum trans-
fers for which it cannot be calculated. In nth-order
multiple scattering, a three-momentum transfer A is
achieved by means of # interactions of three-momentum
transfer =~ A/n; thus N scattering with —¢<1 BeV?
accounts for double scattering with —¢<4 BeV? triple
scattering with —1<9 BeV?, etc.

The coordinate-space description of scattering from
a deuteron, discussed in Sec. IT, can be verified by ex-
pressing the multiple-scattering amplitude in terms of
the wave function:

o sin(3| A|x)
T1=87rCe““’Az/2/ dx a2 [Y(x) |2 )
0 Glalwx)

—873C? q2+7nx2 1/2
ne )

v q’
><e““f“/4—/nc dx 22| Y(x) | ZD_(x/Z\/'y)
0 @/2v/7)

—128W4C3<q2+m12) A2/6 N 2 y(x) | @27

8% e~ / dxx ¢x 2 27

3\/372 q2 0
(1AL
Sln(l lsx)e“ﬁ/%,
(lagx)

64wt (V2= 1)iC* g’ m.2\
T )
73 \ q?

Xe‘”z“‘/ dx x?|Y(x)| 22127,
0
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where

D(z)= e“zzfz e’dt (28)

is Dawson’s integral.'? From Eq. (25) it is apparent that
single scattering “probes” the wave function to dis-
tances of order #/| A|. Triple scattering “probes” only
to 3%/| A|. Both triple and quadruple scattering are
cut off exponentially when neutron and proton are too
far apart for the incident particle to interact with them
simultaneously. The momentum-transfer dependence of
the even orders of multiple scattering is independent of
the wave function; as was stated above, this result de-
pends heavily on the Gaussian model of the x/V interac-
tion. Equation (27) could be used for employing a more
accurate deuteron wave function, while retaining the
high-energy, small-momentum-transfer approximations
involved in Eq. (14), and keeping Eq. (15) as the form
for the two-body amplitudes. Additional minor ap-
proximations were made in 75 and T4, however.

IV. SCREENING CORRECTION TO
TOTAL CROSS SECTION

The total cross section for scattering a particle « on
deuterons differs from the sum of total cross sections on
neutrons and protons by an amount ozx+0zp—0za
which is called the screening correction. It may be
thought of as the reduction of the deuteron cross section
which results from one nucleon lying in the “‘shadow” of
the other. A procedure for calculating the screening
correction is necessary for extracting neutron cross sec-
tions from experiments on deuterium.

Assuming that the amplitudes ¢, and f,, are func-
tions of the magnitude of three-momentum transfer
only, neglecting higher-order multiple scattering and
recoil effects, and applying the optical theorem, Eq.
(6) yields

Tonlap 1

47  Imty,(0) Imé,»(0)

a'zd:U:cn'"}'pr"

00

>< / dk kS(E) Re[—tan(B)lap(®)].  (29)

Inclusion of recoil and triple-scattering effects would
modify the screening correction by at most a few per-
cent. Equation (29) can be rewritten in the form

“ 1N 4
<‘_> = (Uzn+azp_azd)
72 TonTsp

1 00
It (0) Itz (0) o
XRe[—ton(R)tzp(k)].

The experimental quantity 47 (004 02p— 02d)/T2nTzp

dk kS(k)

(30)
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T1c. 7. Experimental nd screening correction: “(1/¢2)’ = (4x/
Ot p0r-p) (Ot pt0r-p—3%(0r+ra+04-a) ] as a function of energy (see
Ref. 9). A constant value of about 0.03 mb™! is predicted on the
basis of double scattering.

is denoted by “(1/r2)” in the literature, based on the
fact that the right-hand side of Eq. (30) would equal the
expectation value of 1/r? in the deuteron wave function,
if the NV amplitudes were purely imaginary and purely
s wave. The name is misleading, for unlike the calcu-
lated value of “(1/7%),” (1/1%) is independent of the xV
amplitudes and extremely sensitive to the wave func-
tion at small distances. Numerically, the two quantities
differ by ~30% in typical applications.

The ratio Re[ —ton(k)lap(k)]/[Imtzn(0) Imt,,(0)] is
found experimentally to be nearly independent of energy
for small 2—i.e., the shape of the diffraction peak is
about constant. Since only small values of % are im-
portant for the integral in Eq. (30), the Glauber theory
predicts “(1/7%)” to be independent of energy. This can
be tested using 7*p and w*d measurements, assuming
Or*,=0,%p by charge symmetry. (It is desirable to
measure both o,*; and -4, even though these quanti-
ties are expected to be equal by charge symmetry, in
order to cancel certain systematic errors.) Experimental
results are shown in Fig. 7.°
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Fi1c. 8. Experimental pd or nd screening correction (see Ref. 15).
A constant value of about 0.03 mb™! is predicted on the basis of
double scattering.
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The screening correction appears to increase with en-
ergy, in disagreement with the theory. The predicted
value of the constant is about 0.030 mb~! (this is the
result of the model, namely 2/(4y-+a); if wave functions
such as those given by Glendenning and Kramer? are
used instead of the Guassian, the predicted value stays
about the same: 0.028 mb™!). The data seem to be in
agreement with this value at low energies. However,
energy-independent systematic errors in the experiment
would allow the entire set of values for “(1/72)” to be
shifted by £0.005 mb~!, so that agreement is uncertain.
The relative normalization of the data above and below
5.5 BeV is also uncertain, because two separate experi-
ments are involved.

The screening correction can also be measured in Nd
scattering, making use of neutron beams to obtain the
np cross section. Data are shown in Fig. 8.1% Again the
screening correction appears to increase with energy, in
contradiction to the theory. The possibility of unknown
systematic errors makes this conclusion uncertain, how-
ever, especially since there is no measurement of ¢, at
the crucial 27-BeV point, so systematic errors in mea-
suring incident fluxes cannot be canceled.

In view of the results above, determinations of the
energy dependence of pn, pr, and Kn cross sections
from experiments on deuterium must, for the present,
be considered unreliable.

V. CONCLUSION

I have discussed two theoretical refinements of the
Glauber approximation, applied to scattering ele-
mentary particles from deuterons at BeV energies. The
first is a correction to the double-scattering amplitude.
The correction vanishes in the limit of high energy and
small momentum transfer, but may be important for
experiments to be performed soon. One aspect of it is
a change in the phase of double scattering, which re-
sults from the particle x going off the mass shell in the
intermediate state. At energies of a few BeV or less, this
phase change will be significant for attempts to extract
real parts of x/V amplitudes at nonzero momentum
transfer, from interference between single and double
scattering on deuterons. The shape of the differential
cross section in the interference region is determined, to
a first approximation, by the average relative phase be-
tween single and double scattering there, =phase
of {tan(3Adip)top(3Adip)/[Lzn(Adip) +12p(Adip) ]} X phase
due to principal-value term. If the x/V' phases prove to

1> Galbraith ef al. (see Ref. 9); Foley et al. (see Ref. 10); Phys.
Rev. Letters 19, 857 (1967); M. Kreisler, L. Jones, M. Longo, and
J. O’Fallon, ibid. 20, 468 (1968); H. Palevsky, J. Friedes, R.
Sutter, R. Chrien, and R. Muether, in Proceedings of the Interna-
tional Congress on Nuclear Physics, 1964, Comptes Rendus (Centre
National de la Recherche Scientifique, Paris, 1964), p. 162; D.
Bugg, Salter, G. Stafford, R. George, K. Riley, and R. Tapper,
Phys. Rev. 146, 980 (1966); M. Khachaturyan and V. Pantuev,
Zh. Eksperim. i Teor. Fiz. 45, 1808 (1963) [[English transl.: Soviet
Phys.—JETP 18, 1239 (1964)7]; T. Coor, D. Hill, W. Hornyak, L.
Smith, and G. Snow, Phys. Rev. 98, 1369 (1955).



173

be slowly varying, it will be possible to obtain their
average at Agjp crudely by assuming their values at
2A4i, are equal to their values at A=0 (which are
known from Coulomb interference measurements, the
optical theorem, or forward dispersion relations). That
procedure could be improved somewhat by requiring the
average real part at A, to be, say, halfway between
the value at 0 and at Agip. Very accurate data should
enable one to obtain the average phase variation over
the entire region where single and double scattering are
of the same order of magnitude—from ¢=0 to {=—0.5
BeV2 This technique of extracting phases could be
tested by performing a wd experiment at 2 BeV, where
phase-shift analysis of 7V scattering is possible. One
could at the same time check whether the spin-flip
amplitude contributes significantly in filling up the dip.

The second refinement of the Glauber theory is the
inclusion of triple and higher-order multiple-scattering
effects. These effects are predicted to become important
at momentum transfers of —¢Z4 BeV% So far, no
elastic scattering experiments have been done on deu-
terium at such large momentum transfer. These experi-
ments should be possible, although the cross section be-
comes very small. If experiments are performed at
relatively low energy, the calculation of triple and quad-
ruple scattering, as in the case of double scattering,
must be modified.

The energy dependence of the screening correction to
deuteron total cross sections is in disagreement with the
prediction based on double scattering, as pointed out in
Sec. IV. Details in the calculation such as the choice of
deuteron wave function or the model of #/V amplitudes
(including real-part and spin dependence) seem in-
capable of resolving that disagreement. Side effects like
triple scattering or recoil also do not help. Steps must
therefore be taken to alter the calculation in some way.

One possible extension of the Glauber theory would
be to include inelastic intermediate states in double
scattering. For example in high-energy wd elastic scat-
tering, the intermediate state in double scattering could
contain, in addition to the two nucleons, not simply
a pion, but rather any particle or group of particles
which can be produced diffractively in =V scattering:
e.g., the A; resonance(s), or any of the incoherent 3=
states usually thought of as background to the 4. In
order to calculate the contribution due to an inter-
mediate particle of mass 7, one can simply replace ¢za
and ¢, in the double-scattering term of Eq. (6) by the
appropriate inelastic amplitudes obtained from inelastic
#N cross sections, and replace [(q—k—3A)%m,*]!/?
by [(q—k—2A)2+4m?]/2, When one then integrates
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over the mass spectrum, only states such that [ (m?
—m,2)/2|q] ]X (radius of deuteron)<1 will contribute
significantly, because to produce states of higher mass,
more momentum transfer would be required than the
deuteron wave function allows. For example, in wd
scattering at 20 BeV, states of mass up to about 2.5
BeV can be important. This calculation may overesti-
mate the contribution of states containing several un-
correlated particles, whose relative wave function will
spread somewhat before being absorbed.

The contribution of inelastic intermediate states to
double scattering is in the right direction to improve
agreement with the total-cross-section data: It lowers
the deuteron cross section because some of the flux
scattered out of the incident beam at the first nucleon
gets scattered back into it at the second. The magnitude
of the effect is, however, probably not large enough to
explain the data as they stand. In pd scattering at
20 BeV, for example, it would increase the double
scattering by about 209.1%

A possible way to understand the remaining discrep-
ancy with Glauber theory would be to treat scattering
from the core region of the deuteron phenomenologi-
cally. At least 59, of the deuteron state vector is associ-
ated with the core, where multiple-scattering theory is
unreliable, so a reduction on the order of 509 in single
scattering from that region could account for the total-
cross-section data. Such a phenomenological theory
could be tested by examining the momentum-transfer
dependence of the discrepancy between Glauber theory
(with the contribution of inelastic double scattering
added) and experiment. For if the correction is associ-
ated with the core, it must have a ¢ dependence ap-
propriate to scattering from a region with that size, and
therefore fall about like, or slightly faster than, double
scattering. Hopefully, the energy dependence of the wd
or pd differential cross sections will be measured soon;
measurements in the region where single scattering is
negligible will be very sensitive to the discrepancy with
Glauber theory. Finally, it may be possible to relate the
phenomenological treatment of the core region to effects
in scattering from nuclei.'’
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