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The eigenfunction-expansion method for calculating scattering of electrons and positrons
from atoms has the very desirable property of providing phase-shift bounds, but is slowly
convergent in some cases. Phase-shift bounds and improved convergence are combined in
recently developed hybrid methods, but these are complicated to apply. An alternative
method based on expansion in target states, some of which are chosen for best convergence
rather than restricted to eigenstates, is proposed. The coupled equations are similar to
those of the eigenfunctjon-expansion method and provide phase-shift bounds. The method
was tested by calculation of 8-wave positron-hydrogen scattering at energies of k2 = 0, 0. 04,
0. 16, and 0, 36. Target states used in the expansions (1s2P' and ls2P'3d') were of the same
functional form as eigenstates, except that orbital exponents were not fixed at & and ~. Cal-
culated phase shifts as a function of orbital exponent value have a broad maximum for ex-
ponent values larger than those of eigenfunctions, and phase shifts are considerably larger
than those calculated with eigenfunction expansions.

INTRODUCTION AND DISCUSSION

In calculating approximate solutions of the non-
relativistic Schrodinger equation for atomic sys-
tems, it is desirable to have methods which are
convenient to apply, converge rapidly, and lead
to improved estimates of the relevant physical
parameter as the approximation ig increased in
scope. A discussion is given of these properties
as they apply to various methods of treating the
scattering of positron& and electrons by atoms,
as well as to bound-state calculations. A coupled-
states scattering method, which is a modification
of the familiar eigenfunction-expansion method, is
proposed, and its effectiveness tested by applica-
tion to S-wave scattering of positrons from hydro-
gen atoms.

Development of appropriate methods for treat-
ing scattering problems' has been more difficult
than for bound states. Trial functions automat-
ically provide an upper bound to the energy of the
lowest discrete state of the same symmetry as
the trial function'; hence variational estimates of
energy necessarily improve as a trial function is
made more flexible. Upper energy bounds are
also provided for higher states by Rayleigh-Ritz
calculations, involving variation of expansion
coefficients, and sometimes by methods involving
continuous variation of functions. ' Of intuitive
appeal are expansions formed from products of
eigenfunctions of a one- electron Hamiltonian. It
has long been realized, however, that such ex-
pansions converge very slowly. 4 This can be ex-

plained by noting that there are non-negligible
contributions from continuum one- electron
eigenstates, Alternatively, one can merely ob-
serve that the excited one-electron eigenfunctions
become spatially quite diffuse, whereas extra
flexibility of the trial function is needed in the
vicinity of the nucleus. Thus, in spite of the
elegance of eigenfunction expansions, it has proven
desirable in bound-state problems to simply choose
expansion states for best convergence. 4

Similarly, it has been appealing to treat the
scattering of pasitrons and electrons by atoms by
the use of a trial function, expressed as a sum of
products of target eigenstates with initially unde-
termined functions of coordinates of the scattered
particle. ' The equations are separated by multi-
plying by each of the target states in turn, and
integrating over target coordinates. The result-
ing set of differential or integrodifferential equa-
tions are then solved numerically. This eigen-
function-expansion method, often called the close-
coupling method, is relatively straightforward in
application. It has been extensively employed and
has led to quite important results, including pre-
diction of scattering resonances, ' but the conver-
gence properties have turned out to be rather
poor in some cases. '

By analogy with bound-state prob1ems, one might
expect improvement in convergence, if the expan-
sion states were chosen to be spatially compact
rather than restricting them from the outset to
target eigenstates. This possibility has been
mentioned by various authors, '~' but has not been.
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extensively investigated. The so- called Sturmian
functions have the desirable properties of being
complete, though entirely discx'ete, ' a,nd of being
spatia. lly compact. With an expansion in these
functions, the lowest of which is the hydrogen
ground-state function, the resulting equations can
be separated by multiplying with each target state
in turn as well as by an orthogonalizing function.
A calculation of positron-hydrogen scattering mith
this approach, ~ however, produced puzzling
results,

It has been especially difficult to demonstrate
the conditions under which methods for treating
scattering problems mill provide bounds on phase
shifts. The Kohn and Hulthen' analogs of the
Rayleigh-Ritz method do not guara, ntee phase-shift
bounds at positive nonzero energies, even for
one-dimensional scattering from a fixed potential.
The effects of the lack of a bound mere clea, rly
demonstrated in C. Schmartz's extensive. Kohn-
type calculations of sca,ttering of electrons and
positrons from hydrogen, ' though his final results
are very good. Percival' considered this problem
from the point of view of an extended Rayleigh-
Rltz method in which the wave-function compo-
nents which correspond to energetically acces-
sible target states are treated by solution of dif-
fex'entlal equations x'esultlng froIQ continuous
variation of functions (rather than variation of
expansion coefficients). His results were sugges-
tive but incomplete, and the proof mas given rel-
atively recently, in various forms, by Hahn,
O' Malley, and 8pruch'o~" and by McIQnley and
Macek. '~ These proofs constitute a very important
advance in scattering theory. The introduction of
the Feshbach projection operators into atomic
physics by the NYU group has indeed had px'ofound
effects on a number of developments in atomic and
molecular theory (which we will not attempt to
review here), including the treatment of reso~
nances„and has, in addition, served as the basis
of the phase-shift-bound proof by Hahn, O' Malley,
and Spruch. ' ~" The latter authors'3 have pointed
out that their proof does not apply to the Sturmian-
function approach' (which was carried out prior to
derivation of the phase-shift-bound proofs). It
mill be seen below, homever, that these proofs, or
minor modifications thereof, do apply to the meth-
od proposed herein, as mell as to the
eigenfunction-expansion method for which they
mere explicitly given.

The phase-shift bound is a very desirable fea,-
ture which one mould like to incorporate in a
'computational method, but at the same time one
wants rea, sonably good convergence. In order to
achieve these goals, vax'ious morkers have intro-
duced methods in which the open channels are
treated by continuous variation of functions, while
closed- channel components are treated by varia-
tion of coefficients; fox' convenience me mill refer
to these as hybrid methods, and mill not distin-
guish between the different fox'ms mhich such cal-
culations take in the various approaches, since
the results should be equivalent. Such a method
was first developed by Hahn, O' Malley, and
Spruch, "a,nd is referred to by them as a varia-
tional-bound method. It has been vex'y success-

fully used for scattering from hydrogen, " "but
seems quite complex because of the necessity of
dealing with the Green's function of the static so-
lution. It was noted by Hahn and Spruch, "and
also by Ha, hn, '"' that one might be able to avoid
evaluation of the Green's function. Gailitis'8 and
also Burke and Taylor'9 have used hybrid methods
which amount to bypassing the evaluation of the
Green's function; even these calculations, hom-
ever, seem rather involved.

METHOD

The proposed method is motivated by the hope
of combining the relative simplicity of the
eigenfunction- expansion method, improved con-
vergence, and phase- shif t bounds. %e first con-
sider scattering of low-energy positrons from
llydrogell Rtollls (8111111RI' elluatlons Rpply to SCRt-
tering from more complex atoms). Incident
energies are assumed to be below the lowest in-
elastic threshold. The trial function is written as
an expansion in products of target states uf(rl)
and scattering functions F f(r2):

q(rI, r2) =Z.u.(ri)F.(r2) .

Here the uf(rl) are not restricted exclusively to
(energy) eigenstates of the target; only the ener-
getically accessible eigenstates (open channels)
need be included. Othermise the derivation of dif-
ferential equations is similar to that for eigen-
function expansions. ' The exact wave function is
annihilated by

E-0 = V + V + ———+ —-1+0
~l 2 12

The coupled equations are obtained by requiring
that

fu *(ri)(E. H)q(r I-, r2)drl = 0
1

for each va.lue of j. This leads to

Z.[N. .(V2'+k'-1)-E. .—V. .(r2)|F,(r2) =0, (4)¹.= fu. *(rl)u.(r1)dr,

-E..=fu.*(r ) V '+ —u.(r )dr,ji j 1 1 v", i 1 1'

V. . (r )= fu *(r ) ——. —u.(r )dr
&a2

In order that the equations separate, it is neces-
sary that the target states be chosen to be mutu-
a,lly orthogonal:

Although it is not essential, a desirable simplifica-
tion occurs if the finite set of target states are
chosen so as to be diagonal with respect to the
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target Hamiltonian:
E.. =E.5. . .ji j ji '

R d ~(F)= (v' ~ )u~) ). (14)

The Latter property comes about automatically in
the eigenfunction-expansion method, but in the
present method it will require some relatively
simple preliminary calculations unless it is auto-
matically provided by symmetry. The resulting
set of coupled differential equations,

(v2' pk'-I E.)F-.(r2) =Z.V. .(r2)F.(r2),2 z js 2 z 2' (10)

It is again assumed that the expansion states
u&(rl) are diagonal with respect to target Hamilto-
nian. The resulting integrodiff erential equations
are

(V '+a'-I-Z. )F.(r ) =Z.[-V. .(r )F.(r2)

v fK. .(r, r2)F.(rl)dr, ],

where K. (r, r2) = .—1+0'- —u. *(rl)u. (r2)ji 1' 2 )t'

+u. *(ri)v.(r2) +v. *(rl)u. (r2)

are of the same form as for eigenfunction expan-
sions and of course become identical with the Lat-
ter if all the u;(rl) are chosen as eigenstates. The
method of solution is the same, the only differ-
ences being in the values of the E& and the detailed
form of the potentials V&f(r2). In practice, a
partial-wave separation is first made and each
partial wave is then treated as a separate problem.
The choice of u, (r, ) as the target ground-state
function has the result that the asymptotic behavior
of Fo(r, ) approximates that of the exact wave func-
tion, and hence that the calculated phase shift ap-
proximates the exact phase shift and would presum-
ably approach it as the expansion is extended to
completion.

Each target state is to be chosen as a product of
a radial function, an angular function correspond-
ing to a definite angular momentum, and a spin
function. In treating scattering from hydrogen
it is sometimes convenient to explicitly employ the
angle between position vectors of the two light
particles in a manner equivalent to coupling of
angular functions of target-and scattered-particle co-
ordinates. It is the additional flexibility (as com-
pared to eigenfunction expansions) in the choice of
radial functions of target states which we wish to
exploit. In particular, the hope is that convergence
can be improved by choosing spatially compact tar-
get functions.

The scattering of electrons can be similarly
treated; for simplicity the discussion is again re-
stricted to scattering from hydrogen at energies
below the lowest inelastic threshold. The expan-
sion is explicitly antisymmetrized with the spin
factored out;

)j)(r, r2) =Z [u (r )F..(r2. ) +F.(rl)u. (r2)]. (11)

The equations are slightly more complicated than
for the eigenfunction-expansion method, because
of the necessity of introducing the functions vy(r) .

Expansions in eigenfunctions would, of course,
require inclusion of continuum states in order to
attain completeness. The practical difficulty of
actually including continuum states would appIy to
treatments of both scattering and bound states.
For the latter, one at least knows how, in princi-
ple, to do the calculation. For problems involving
a scattered particle which is identical with target
particles, there may be continuum-exchange con-
tributions to the scattering, "unless the scattering
functions are suitably constrained. This difficulty
does not apply to a method, such as the present
one, in which the expansion could, at least in prin-
ciple, be carried to completion with a set of purely
discrete target states.

The present method can be r..ost simply de-
scribed as a modification of th eigenfunction-
expansion method, made with attention to the re-
quirement for phase-shift bounds. There is also
an interesting connection with the hybrid meth-
od, ' ~' ~" which superficially seems quite different.
Consider a modification of the present method for
8-wave scattering of low-energy positrons or elec-
trons from hydrogen, in which the closed-channel
radial function Fo(r2) is permitted full flexibility
and hence treated by a differential equation, while
each of the remaining radial functions F;(r2) is ap-
proximated by a finite expansion

F.(r2) =Z.C, .u) . .(r ), i) 0.i 2 j ij ij 2 '

The functions u)~&(r2) are fixed, but the expansion
coefficients Ci are subject to variation. This can
be described as an example of the hybrid method
in which each closed-channel expansion term has
been restricted to the form of a product of a tar-
get function and a scattering function (this form
was effectively adopted in Refs. 14-16 and 18,
though it is not essential to the hybrid method and
was not adopted in Ref. 1S). The very good con-
vergence which has been obtained with such forms
of the hybrid method'~-" "is probably at least
partially attributable to the inclusion, in the expan-
sion, of target states which are spatially compact.
In the example considered, the finite expansions
of Ff(r2) imply that the hybrid method would not
give quite as good results as obtained by solution
of the corresponding set of coupled differential
equations. At energies not too close to zero, each
Ff(r2) could probably be represented adequately by
only a few judiciously chosen u),&(r2) Presumabl. y
it would be difficult. to choose a convenient set of
u)f&(r2) which would adequately represent the be-
havior of the Ff(r2) at large ~~ for very low ener-
gies, and the hybrid method as such does not seem
to have been used for zero-energy calculations
(at zero energy, the hybrid method is very similar
to the Kohn method). The difficulty of representing
the long-range behavior of the zero-energy wave



173 COUPLED- STATES METHOD FOR SCATTERING CALCULATIONS 167

function with expansions in functions which are
readily handled was explicitly noted by Schwartz
in his Kohn-type calculations. ' The present meth-
od, in common with the eigenfunction-expansion
method, presents no special difficulties at zero
energy; the solutions are started in the outer
region with a different form of asymptotic expan-
sion~' which, however, is no more difficult to
handle than the expansion used at positive energies.

The use of closed-channel functions of product
form is a limitation of the present method; really
good convergence may require use of several prod-
uct functions for each relative partial wave, on
account of "in-out" correlation. For extensive
calculations it might px'ove useful to consider an
alternative scheme combining features of the
present method and current hybrid methods. The
trial wave function would contain components
treated by variation of coefficients as well as com-
ponents (not limited to open channels) treated by
continuous variation of functions, with the latter
containing some noneigenfunction target states.
We have not explored this alternative in detail,
however. A somewhat similar extension of the
hybrid method has been discussed in Appendix A
of Ref. 13 which, however, does not seem to intro-
duce the idea (which is the essential feature of the
present approach) of using noneigenfunction target
states in the continuous-variation part of the wave
function.

PHASE-SHIFT BOUNDS

That the present method produces lower bounds
on phase shifts, which increase as the target basis
is extended, may be obvious to those familiar with
the proofs given by Hahn, O' Malley, and Spruch~ y'~

and by McKinley and Macek. '~ We note that the
prediagonalization of target states is merely for
computational convenience. The diagonalizing
transformation leads to an equivalent set of equa-
tions which will therefore lead to the same phase
shift as would be obtained from the untransformed
equations, provided the boundary conditions are
imposed consistently. Inclusion of the exact wave
functions of the energetically accessible target
states has the effect that the vanishing and non-
vanishing bounds, ry conditions at infinity do not get
mixed together; hence the calculated phase shift
is unaffected by the prediagonalization.

The proofs by Hahn et al '0~" are based on
Feshbach projectiori operators, and are somewhat
formal in the sense that some of the operators
which appear in the theory cannot be explicitly con-
structed. Our method is equivalent to modifying
some of the projection operators by inclusion of
target functions which are not eigenfunctions.
This preserves the property of P and Q being
Hermitian, nonoverlapping proj ection operators,
but does not preserve the property of P and Q
commutingwiththetargetHamiltonian. Hahn. et al. 's
first type of proof~0 showed that lower bounds on
phase shifts must result from solutions of coupled
equations obtained with P and Q, for any energy
below the lowest eigenvalue of @II'; this result
is unaffected by the present modification, though

and for j =0, 1, . . .N, (1,6)

N
[E . + V .(q)]G.(q, X)

2=

X 1 X 1(q) X

The passage from X =0 to X = 1 corresponds to
passage from the original N-term expansion to the
(N 1)+-term expansion. There is no loss of gen-
erality in assuming all functions to be real. We
first consider separately the equation correspond-
ing to each value of j from 0 through N+ 1. The
equation for G~(q, X) is multiplied on the left by
G&(q, X+6 &). We then take the corresponding
equation for G&(q, X+ LA) and multiply on the left
by G&(q, X), subtract the previous product, and
integrate over q. The left-hand side of the result-
ing equations will vanish for all closed-channel
equations, but for the open-channel j =0 equation
we obtain -kb, tang(X). We sum separately the
left-hand and right-hand side of the resulting equa-
tions over all j. After dividing by rQ. and taking the
limit as bA approaches zero, we obtain

arguments establishing lower bounds on the lowest
eigenvalue of QHQ must be suitably modified.
Their second type of proof" shows that
eigenfunction- expansion calculations must give
lower bounds to phase shifts at all energies below
the inelastic threshold; the proof assumes that
P and Q commute with the target Hamiltonian, and
hence it is not immediately applicable to the pres-
ent type of expansion, though it can probably be
made so by a minor modification. This paper"
also discusses the question of defining an absolute
phase shift.

McKinley and Macek's proof" applies to coupled-
states equations of familiar form and does not
introduce abstract operators; it is applicable to
all energies below the appropriate inelastic thresh-
old. Their proof is given for eigenfunction expan-
sions, but a straightforward extension applies to
the present method, and since the modified proof
is brief we give it here. We consider only the
simplest case of S-wave scattering with a single
open channel. It is assumed we have first solved
the system of equations resulting from expansion
in N target states which have been previously di-
agonalized with respect to the target Hamiltonian.
We wish to show that the solution of the system of
N+1 equations, resulting from including one ad-
ditional target state, must necessarily result in
an increased estimate of phase shift. We intro-
duce the parameter X and write the radial equations
which result after making the partial-wave decom-
position:

N
[-T(q)+E E.]G.(q, X-) = Q V. .(q)G. (q, X)

0 j y
2 2

2

+X[E. + V. (q)] G (q, ~),
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d N
I ~tang(X)= g fG.(q, ~)[E. . +V,

This leads to the desired final result

exact N+ I (24)

X
x G (q, X)dq+ g fG (q, X)[E

2=

+ V .(q)]G.(q, l&)dq+2Xf G (q, X)

x V~ 1 ~ I(q)G~ 1(q, X)dq.

—jV
i j ji'

We next consider Eq. (17) for the (%+1)st scat-
tering function. We multiply to the left by
G~+ 1(q, X) and integrate over q. The sum of inte-
grals appearing on the right-hand side, by virtue
of the symmetry of V& f(q) and E1 f& is just 2X

times the sum of integrals appearing in Eq. (18).
Thus we have that

-k(d/dX) tanr/(X) = (2/X) fG~ 1(q, X)[-T(q) +E

{2o)

The kinetic-energy operator T(q) is positive-
definite. The numerical quantity (E-Elq + 1 IV+ 1)
must be negative for all energies up to the first
inelastic threshold, since the target function
u~ 1(r) was required to be orthogonal to the
ground-state function u, (r). It follows that

-u(d/d~) tang(X) - O. (2i)

Actually this equation holds only for values of X

for which the derivative exists. We adopt the con-
vention that 7l(A) varies continuously as tan&(X)
passes through infinity. " With this understanding,
it follows that

1
——'q (X = 1) ~ 7l (X = 0) =q (22)

The purely manipulational part of the proof is con-
cluded by simply putting

t=lime ac (23)

If the scattered particle is distinguishable from all
target particles, the Vj &(q) are ordinary potentials
and are unaffected by interchanging j and i. For
scattering of a particle which is identical with tar-
get particles, the V& z(q) are integral operators
with the property that the above integrals involving
Vf ~+ 1(q) are equal to the integra, ls involving

V~+ 1 f(q). The present case differs from that
discussed by McKinley and Macek only in the ap-
pearance of the additional quantities E~ ~+ y and

E~+ y z. But, of course, we also have that

We next attempt to at least partially justify
Eq. (23). The asymptotically nonvanishing part
of the overall scattering wave function is associ-
ated with the target ground-state eigenfunction,
which has been included in the expansion states.
The remaining portion of the wave function is a
complicated short-range function which we wish
to represent by the remaining terms in the ex-
pansion. For this purpose it is only necessary
that the expansion states uf(r) form a complete set
of functions. The set of target eigenstates, in-
cluding the continuum eigenstates, constitutes one
such complete set. But we may also, in various
ways, form a complete set of target functions
which are purely discrete and include the target
ground state. Thus, the present restriction to a
purely discrete set of target states presents no
difficulty in this respect. On the other hand, we
have not mathematically demonstrated that q~
approaches a. limit, though this seems eminently
plausible. Provided the limit exists, we further
need to identify it with the exact phase shift. We
will merely assume this identification, while noting
that there may even be difficulties in giving a
logically satisfying definition of the exact phase
shift (a measurement only establishes the phase-
shift modulo v). We do not claim that the present
proof is mathematically rigorous; there could be
further complicating features such as nonexistence
or nonuniqueness of solutions, bound states em-
bedded in the continuum, etc. Hahn et al ."~"
have given an excellent discussion of some of
these possible complications and of the important
differences between scattering from a static po-
tential and scattering from a compound system.
With these qualifications in mind, we consider
the above to constitute a, "proof" that the present
method provides lower bounds to phase shifts. As
a special case, the proof applies to a truncated
expansion in discrete eigenstates, i. e. , to the
usual close- coupling scheme.

We wish to note that the present choice of purely
discrete target functions obviates the "continuum-
exchange" difficulty which arises in connection
with the eigenfunction-expansion method. With the
latter method, extension of the expansion to com-
pleteness would require introduction of continuum
target eigenstates. This can lead to difficulties
for scattering of a particle which is identical with
target particles, e. g. , e-+H scattering. If some
of the scattering functions Ff(r) associated with
continuum target states are not orthogonal to u, (r),
there are additional contributions to q, which is
no longer entirely given by the asymptotic behavior
of F,(r). This problem has been discussed at some
length by Levin. ' In this respect McKinley and
Macek's" phase-shift-bound proof was perhaps not
complete. The complicating feature of
"continuum-exchange" contributions does not arise
(or perhaps one should say it is automatically ac-
counted for) in the proofs by Hahn et al "&"based.
on projection operators. Aside from the phase-
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shift-bound property, there remains the problem
in practice of computing the contributions which
correspond, in an eigenfunction expansion, to the
continuum target states. Within the framework of
the projection-operator approach, this problem
was solved by Hahn et al."by treating a portion
of the wave function by varying the coefficients of
expansion in a fixed set of functions, i. e. , by
adopting a hybrid approach. The present approach
attempts to account for these contributions in a
manner which involves exclusively the numerical
solution of integrodifferential equations, an ap-
proach which in practice involves calculations
very similar to those involved in the conventional
eigenfunction- expansion method.

We have, of course, assumed that the u, (r) used
in deriving the equations is the exact ground-state
wave function of the target, and hence that

E . —E.
0

—0.
Z Zp

Without this assumption, the above proof does not
go through, and me have not been able to demon-
strate phase-shift bounds for a method which does
not employ the exact target function. Hahn et al."
have noted that a very important extension would
be ta eliminate the requirement that the ground-
state wave function be known exactly. Since the
exact functions are not actually known for atoms
with more than one electron, it is apparently not
possible at present to guarantee phase-shift bounds
for scattering from multi-electron atoms (by con-
trast, it may be possible in some cases to establish
bounds on QHQ eigenvalues without making use of
the explicit form of target functions"). We wish
to note the folloming, however. Without knowing
the exact target ground-state function, we might
indefinitely continue a process of extending the tar-
get basis by one state, diagonalizing with respect
to the target Hamiltonian, and solving resulting
coupled equations. In the limit of a complete ex-
pansion, the lowest-energy target state would ap-
proach the true ground-state wave function, and
presumably the calculated phase shift mould ap-
proach the true value.

CALCULATIONS

As a test of the method, we have performed low-
order calculations of the 8-wave phase shift for
positron-hydrogen scattering. This problem has
by nom been thoroughly treated, so that there are
available not only very good approximations to the
exact phase shifts, '~" but also the best values that
can be obtained by expansions containing a speci-
fied number of angular momentum states of the
target'4. The phase shift converges only slowly
as the number of angular momentum states (rel-
ative partial waves) is increased. Thus one cannot
hope to obtain a really good over-all result with a
low-order expansion. Of particular interest here is
is the extent to which one may approximate to the
various relative-partial-wave limits with expan-
sions of very low order; the eigenfunction-
expansion method is poor in this regard. The in-
clusion of all l =0 target states results in a phase

shift only slightly better than the static approxi-
mation (retaining only the Is state); for this rea-
son it is convenient to employ an expansion con-
taining the ground state and a few higher angular
momentum states of the target. It is also con-
venient to choose radial functions of the same an-
alytic form as eigenfunctions, but with initially
arbitrary orbital exponents which can be adjusted
for best results; thus we chose P — and d- type tar-
get functions with (un-normalized) radial f.&nctions
of the form x exp(-S ) and r' exp(-7lr). This choice
enables us to make a simple check of the (IBM
1620) computer program by reproducing
eigenfunction- expansion results after setting or-
bital exponents to their nominal values. In this
way we reproduced to three significant figures the
phase shifts obtained by Hahn et al. '4 for scat-
tering at an energy of 0. 16 Ry using (a) Is, (b)
Is2p, (c) Is3d, (d) Is2p3d. For brevity, we refer
to our expansions as 1s2P ' and 1s2P'3d', the prime
indicating an orbital exponent different from the
hydrogenic value.

The differential equations were solved by a nu-
merical method given by Hartree. ' Solutions were
started in the inner region by a Taylor series and
in the outer region by an asymptotic expansion.
The inner and outer solutions were then joined at
a pair of intermediate radii, as described by Burke
and Schey." The matching was carried out at two
or more pairs of radii in each calculation, as a
consistency check. It turned out that satisfactory
results could be obtained with radial increments
of 0. 1 in the inner region and 0. 4 in the outer
region. The asymptotic solution was usually
started at x=15.

As a means of facilitating comparison of results
at various energies, the phase shifts have been
reduced to a normalized form in which 0 repre-
sents the static-approximation value and 1.0 rep-
resents the essentially exact value. '~" The nor-
malized value is a measure of the extent to which
the calculations account for the effects of correla-
tion on the phase shift, analogous to the correla-
tion energy in a bound-state calculation.

Figure 1 shows dependence of the calculated
scattering length on the values of orbital exponents.
With a 1s2P' expansion, there is a broad maximum
at an orbital exponent of about 0. 875. The upper
curve shows dependence on the orbital exponent of
3d' for a 1s2P '3d' expansion in which the 2p

' ex-
ponent has been fixed at 0. 875. Here also there
is a broad maximum. In view of the relative in-
sensitivity to value of an orbital exponent, the ex-
ponent values used for other energies were some-
what arbitrarily selected.

Results at various energies are compared in
Fig. 2 with results of other methods. The present
two-term expansion gives considerably better re-
sults than a six-term eigenfunction expansion. "
The two-term results are only slightly poorer than
those obtained by Ruffine, "who used a two-term
expansion in which the radial dependence of the
P orbital was optimized in a self-consistent man-
ner. Approximately optimal values of the 2P'
orbital exponent in the present 1s2p' expansion can
be deduced from Ruffine's" tabulated values of
orbital energies.
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PIG. 1. Calculated values of e+ —H scattering length as a
function of the values of orbital exponents of the target
states used in the expansions. Normalized values of
scattering length are presented on a linear scale in
which 0 corresponds to static-approximation value
and l. 0 corresponds to the (essentially) exact value
(Refs. 8 and 14). The upper curve shows dependence
on exponent of the d orbital, with the p-orbital exponent
fixed at 0.875. Note that the maxima are broad; hence
satisfactory results only require that the radial functions
be reasonably compact.

FIG. 2. Normalized values of S-wave phase shifts for
e+- H scattering at various values of k (points are con-
nected by curves only for convenience in reading). Pres-
enhI results are labeled 1s2p' and 1s2p' 3d' . Results
of Ruffine's self-consistent calculations {Ref. 25) are
labeled 1s, self-consistent P. The three upper curves
correspond to limiting values attainable by retaining
in the expansion only the first two, three, or four reI-
ative partial waves (Ref. 14). The lowest curve gives
results of a six-term eigenfunction expansion {Ref. 24).

The principal conclusion, as illustrated in
Fig. 2, is that two- or three-term expansions of
the present type provide phase shifts that are con-
siderably larger (better) than those obtained from
even longer expansions of the eigenfunction type.
The 2P

' function accounts for perhaps 80% of the
correlation which can be introduced by including
all p orbitals. Further inclusion of the 3d' func-
tion, however, only increases the normalized
phase shift by perhaps half as much as it can be
increased by including all d orbitals. The three-
term expansion accounts for some 60/0 (Depending
slightly on energy) of the overall correlation effect.
This may also be compared with the value of some
90% which was obtained by Hahn and Spruch'4 by
use of a variational-bound (hybrid) method which
employed 53 expansion terms and dealt with the
six lowest relative partial waves.

Similar expansions can be used for scattering
from helium, though in that case the phase-shift
bound is no longer rigorous, because of the neces-
sity of approximating to the target ground-state
function. By assuming the fractional extent of
convergence to be the same as for positron-hydro-
gen scattering, we obtain phase-shift estimates
which are in reasonable agreement with various
other calculations. " " Until recently there had
apparently not been a quasibound type calculation
of positron-helium scattering. Recently
Drachman" has calculated scattering of positrons
from both hydrogen and helium by solving coupled
differential equations based on use of the elliptical-
coordinate adiabatic function. He accounted for
some 90/o of the difference between static-
approximation and exact value of positron-hydrogen
phase shifts, as compared to the value of about 60%
obtained with the present method. The present

method can of course employ larger numbers of
expansion terms; the limited calculations reported
here were primarily intended to test effectiveness
of the method.

The present choice of closed-channel target func-
tions was made with short-range correlation
effects primarily in mind. Since the initial report
of the present work, "our attention was called to
a recent paper by Damburg and Karule" which sug-
gests "a modification of the close-coupling approx-
imation for e-H scattering allowing for the long-
range interactions. " They note that the 2P term
of an eigenfunction expansion accounts for only
65. 8% of the full dipole polarizability of the hydro-
gen atom(a2) s' and suggest replacing the 2P radial
function by an adiabatic function of (un-normalized)
form (r + ~')e ~, which accounts for the full po-
larizability. Although they comment that their
proposed modification itself accounts insufficiently
for the short-range interactions, the adiabatic
function is, in fact, rather compact and similar
in form to the present 2p' function. Damburg and
Karule do not seem to have carried out any cal-
culations, but a zero-energy calculation of this
form for positron-hydrogen scattering was earlier
carried out by Ruffine"; the result accounts for
almost as much of the over-all correlation effect
as does either the present 1s2P ' expansion or the
Ruffine self-consistent calculation. Both the lat-
ter results have the property of accounting for
most of the dipole polarizability in zero-energy
calculations (about 4. 4), but for smaller amounts
at higher energies (about 3. 6 at k' = 0. 36). A com-
parison of the results of these various calculations
does not permit assessment of relative importance
of short-range and long-range effects. The rela-
tive importance of these effects will be considered
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from a different viewpoint in the following para-
graph.

In expansions which effectively involve target
states of definite angular momentum, the poten-
tials V& f(x) between states of zero angular mo-
mentum vanish exponentially for large r. The
asymptotic falloff of other potentials (including
diagonal potentials" ) is slow, involving negative
powers of x. As a result, some of the closed-
channel scattering functions Ff(x) also fall off
essentially as negative powers of r (contrary to
the assumption often seen in the literature that
all closed- channel functiogs vanish exponen-
tially'~'4). The leading terms in the asymptotic
expansion of the open-channel function F,(t') be-
have like those of a single-channel problem with
an asymptotic potential V(x) = nr ', where n is
the dipole polarizability which is accounted for
by the expansion. An estimate of the short-range
contribution to a scattering length or phase shift
can be obtained from the slope and value of the
open- channel function I 0(r) at some reasonably
large cutoff value of x =r&, under the assumption
that the potentials vanish beyond x~. At zero
energy the long-range contribution is roughly pro-
portional to n. Thus a suitably modified P-orbital
radial function might improve the long-range con-
tribution by as much as a factor of 1/0. 658= 1.5.
At zero energy, the long-range contribution is
substantial (it is comparative to the short-range
contribution when estimated with r~ = 8, using
either a lsd or a ls2p '.expansion). The overall
contribution of the 2P

' expansion term turns out

to be roughly 1.9 times as large as that from a
2P expansion term, however, and hence even at
zero energy the improvement cannot be ascribed
predominantly to long-range effects. Further-
more, the long-range contribution is quantitatively
important only at very low energies. On the
whole, it seems that the improvement which re-
sults from going from a 2p function to either the
2P' or the adiabatic function is largely a result of
short-range effects. It is gratifying that use of
spatially compact target functions improves both
the short-range and long-range contributions.

%e have-not yet performed any calculations of
electron-hydrogen scattering, but feel that an ex-
pansion of the form 1s2s'2p ' is promising for this
application. The (un-normalized) 2s' radial func-
tion could be taken as [3-(P+ 1)~]e "~. The first
two angular momentum states of the target are
known to provide some 93% of the correlation
effect for 'S (even more for 'S) scattering at k'
= 0. 16;~ this compares very favorably with the
value of 6390 for positron-hydrogen scattering at
the same energy. '4 It would be particularly inter-
esting to investigate the effect of the spatial com-
pactness of the 2s' and 2p' functions on the pre-
dicted positions of the lowest resonances.
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