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The quantum theory of faster-than-light particles is studied following the earlier classical theory of
Bilanuik, Deshpande, and Sudarshan and of Terletski. The ingenious scheme of quantization formulated
by Feinberg is seen, on closer examination, to violate Lorentz invariance. Another scheme of quantization in-
volving a new physical postulate is formulated. The consistency and novel features of this formulation are
discussed in some detail.

I. INTRODUCTION
" 'N recent years, there has been some discussion of
&- particles with velocities greater than the speed of
light, particularly in relation to the special theory of
relativity. Bilaniuk, Deshpande, and Sudarshan (BDS)
have treated the question of the existence of such
particles within the framework of classical (non-
quantum) relativity theory. ' More recently, Feinberg
(GF) has proposed a quantum 6eld theory of non-
interacting, spinless, faster-than-light particles. The
question is also discussed by Terletski. '

In this paper, we wish to continue this discussion
with particular attention to Lorentz invariance in the
context of local quantum 6eld theory. For a general
discussion of some of the interpretational questions
and answers to some of the standard objections to
faster-than-light particles, the reader is referred to
BDS and GF.

We only mention here the crucial point of immediate
interest. Since we are dealing with spacelike four-
momenta, the mass hyperboloid is single-sheeted.
This implies that a proper Lorentz transformation can
change the sign of the energy in contradistinction to the
usual case. However, one can maintain the usual
interpretation of negative-energy particles as moving
backward in time, only because the same Lorentz
transformation that reverses the sign of the energy also
reverses the time ordering of any two points in the path
of the particle. ' ' As Feinberg points out, although with
this interpretation the qualitative features of faster-
than-light particles can be treated, one must proceed to
a detailed mathematical description in order to de-
termine if a consistent theory can be constructed.

Since we are concerned with a Lorentz-invariant local
geld theory, let us define what we mean more explicitly.

* Supported by the U. S. Atomic Energy Commission.' O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan,
Am. J. Phys. 30, 718 (1962); this paper is referred to as BDS.' G. Feinberg, Phys. Rev. 159, 1089 (1967);this paper is referred
to as GF.

~ Ya. P. Terletsky, Paradoksy Teorii Otnositel'nosti (Academy
of Sciences, U.S.S.R., NAUKA Press, Moscow, 1966). (An
English translation is to be published by Plenum Press. )

We insist on the existence of a set of unitary operators
providing a representation of the inhomogeneous
Lorentz group U(h, a) that implements the auto-
morphisms induced by such transformation on a local
scalar field operator Lp(x) —+p(Ax+a) j. That is, we
demand the existence of unitary U(h. ,u) such that

U(A. ,a)@(x)U '(A, a) =y(Ax+a). (1.1)

We propose to show in Sec. II that with this criterion,
the scalar field theory proposed by Feinberg fails to be
Lorentz-invariant. 4 We wish to emphasize that it was
essential to explore the Feinberg scheme as a reason-
able first attempt and that it was the natural avenue
to quantization that was suggested by previous work
in dealing with this problem. One should attempt to
construct a theory as close to the conventional frame-
work as possible, carry it through until it encounters
difficulty, and then modify it as minimally as necessary
to resolve the difficulty. In this spirit, in Sec. III, we

propose an alternative quantization that deviates
further from the conventional theory and requires an

additional postulate for a physically meaningful inter-
pretation. Ke will then remark. on some of the character-
istics of such a theory. A corollary to this treatment is

that Feinberg's restriction to Fermi statistics is no

4A remark on this criterion for Lorentz invariance might be
in order. It is true that the only really necessary requirement is
that the predictions of the theory should not contradict physical
reality, a reality that appears consistent with special relativity.
Since any theory is a mathematically constructed model, one must
translate the "physical requirement" of relativistic invariance
into precise mathematical conditions on the theory. Since it is
well known in quantum field theory, particularly for free fields,
that our criterion does indeed insure that this requirement is met,
we consider it reasonable to impose this requirement in the case
under discussion. )In fact, it is just the condition stated in equa-
tion (4.2) of Feinberg's paper. g We note here that the criterion of
(1.1) makes sense only in an infinite space, since, for example, we
could not define the translation operator in a "finite box" volume.
If a theory fails to obey our criterion, one may choose to proceed
and argue that perhaps its physical predictions will not contradict
reality, but then it cannot be called a Lorentz-invariant field
theory in the sense generally understood, and in fact cannot be
properly called a Lorentz-invariant theory at all without stating
precisely what the condition is for Lorentz invariance and showing
that the condition leads to relativistically invariant predictions,
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longer relevant. We would have either Fermi or Bose
statistics for the faster-than-light particles.

We do not treat here the still unsolved problem of
constructing a consistent, Lorentz-invariant inter-
acting-Geld theory. It is clear that until this is done,
we cannot be sure that such a theory is even possible.
However, in spite of our objections to the particular
scheme proposed by Feinberg, we share with him the
feeling that no compelling theoretical argument has
yet been. presented for the impossibility of faster-than-
light particles.

Not much experimental effort has gone into the
problem of searching for faster-than-light particles.
One experiment is mentioned in Sec. IV, where the
question of such particles being identified in a high-
energy collision is also briefly discussed.

In connection with the recent interest in multimass
relativistic equations, we note that all the known ones
include a spacelike spectrum so that a quantum theory
of infinite component wave functions would contain
faster-than-light quantum-mechanical particles. From
the point of view of the foundations of relativistic
quantum mechanics, it is also important to ask whether
the scattering states which obey the superposition
principle, etc., can be covariantly defined. These
questions are discussed in Sec. IV. Section II reviews
Feinberg's quantization scheme and demonstrates its
lack of relativistic invariance. Section III deals with an
alternative method of quantization that is covariant.

p2 —
p 2 p2 p2

or, in terms of velocity e (c= 1),

(2 1)

E=po p/(u' 1)'(', p= p——v/(v' ——1)'(' (2.2)

where ~E~ ranges from 0 to ~, )p~ from y to ~ as
(( —+ ~ to 1(c).Note also that

~ y ~ /po
——w which is always

&1, so ~p~ is always greater than E.
Under the "boost" A characterized by boost velocity

N, we are interested in the transformation of the energy.

II. FEINBERG'S SCALAR FREE-FIELD THEORY
AND THE QUESTION OF LORENTZ

INVARIANCE

In this section, we will examine in detail the model
proposed by Feinberg. Because we believe that it is the
presence of certain infinite quantities that destroys the
Lorentz invariance of the theory, we will redo his
quantization taking special care to use normalizable
rather than plane-wave solutions of the wave equation.
This will avoid any possible confusion that the infinities
appearing might be due to the use of non-normalizable
solutions.

We begin by writing down a few kinematic formulas
for convenience, referring the reader to BDS and GF
for greater detail. We are concerned with particles whose
momenta are spacelike, that is, we have

where &gq
——+(~k~2 —p)'( and the 8 function in (2.6)

will always be understood to be for functions whose

support lies in the domain ~k~ &p, . A speciGc set of

(C (k)} for this domain is displayed in the Appendix.
If we then define

f-(*)= c '"'c"*i'(lk
I

—~)c'-(k) (2 7)
(27r)"' 2co(,

then the f's are an orthonormal set satisfying

i d'x f "(x)8'fp(x)=8.p,

i d'x f (x)8'ft((x)=0 (2.8)

With these one-particle wave functions, the scalar Geld

operator can then be written, following the conventional
fashion,

&(*)=Z Lf-(*) -+f-*(*).'j (2.9)

We are now particularly interested in the transforma-
tion properties of the a, under the operators U(A. ,a)
implied by (1.1). Choosing Grst a boost U(A) character-
ized by boost velocity u, (1.1) implies

P Lf (x)U(A)a U—'(A)+ f,"(x)U(A)a tU—'(A)]

=P Pf.(A ) x+af.'(Ax)a '] (2.10).
So using (2.8), we have

U(A)a U—'(A)=i d'x f *(x)B'y(Ax). (2.11)

As x —+ x'=Ax, p —+ p'=Ap, where

po'=7(p. u—u), (2.3)
(1 N2)-1/2

Since ~p~ &po, it is clear that a u can be chosen to
change the sign of the energy. With these kinematic
preliminaries, we now proceed to construct the free-
field theory, following Feinberg except for the use of
normalizable wave functions.

We want local scalar Geld operators p(x) that satisfy
the equation

( cj2

(z'—~')e(*)= I

—&'—~')0(*)= o (2 4)
&ap

For this we need a complete set of one-particle positive-
energy wave functions f (x) satisfying (2.4). It is
easiest to write these in terms of a Fourier transform of
a complete set of functions in three-dimensional k space
in the domain ~k~ &(((, C (k) which satisfy the orthog-
onality and completeness relations

d'k
8(i k

i
—p)C.*(k)Cs(k) = 8.&, (2.5)

20)y

Q C *(k)C (k')=2~(,8(k—k')8(ski —p), (2.6)
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LWe have not explicitly indicated the factor 0( I
k

I
—ti)

since all integrations are restricted to this range. )
To evaluate this horrendous expression, we see that

the summations of n and P give 2&ok8(k —k') times
2coi8(k"—k) in all four terms on the right. Performing
the integration over d'k/2a&1, gives 2~~.5(k' —Ir"). But
the second and third terms have V and h" in non-
overlapping regions, so they vanish; and (2.21) becomes

E=ga ta . (2.28)

Then if we dedne

As Feinberg shows, this vacuum is not Lorentz-
invariant, which is not necessarily a major problem.
Let us, however, as he does, calculate the number of
particles in the transformed state, using the number
operator

U(A)P U-'(A)

d'k
k„C *(Ak)4p(Ak)a tup

(tug„—u v)&o 2k

I0)~—= U(A) I o&

we can calculate

AT
I 0)g——U(A.)QU '(A.)

(2.29)

d'k
k„C.(—Ak)C p*(—At) a,apt

(eu~u k)(,o 2k
Xa tU(A. ) U-'(A. )a U(A) I0&. (2 3o)

(2 22) Modifying (2.14) for U '(A), and. substituting s™
larly to the way used for I'„, we get

Changing variables to k'=Ak in the first term leaves
as the domain of integration all k' such that
(~1, +u k'))0. Changing to k'= —Ak in the second
term we have the domain (r»q+u k')(0, so using
a,apt= apta +—8 p we get

d'k
U(A)P„U '(A)= Q A '„" k,C„*(k)Cp(k)a tap

a, p 2coy

d'k
C (A 'k)C *(A. 'k)a ta

(rulp+u v)&o 2+a

d'k
+Z Cp*(—A k)C (—A. 'k)apa t.

(coIp+u h)(0 2k
(2.31)

Then putting this in (2.30), we get+ A '„"k„C *(k Cp(k b p (2.23)
(s&p+u k)(0 2~k X

I 0&&=~104, (2.32)
ol

U(A)P U '(A)=A ' "P+8
where the constant C is given as

where
(2.24)

k
-QC *(—A.

—'k)C (—A 'k)
(~f,+u v)go 2&k ~

cu~u. k) &0 2k

= b'(0)

A-'k QC *(k)C (k) = P(0)
(culp+u k) +0

= 3~t '(v —1)&'(0)
(cufp+u k) &0

(2.25) (2.33)

a IO)=0, for all n.

Then the many-particle states are

I
t3 "

&
=u-'up' "I0&.

(2.26)

(2.2'/)

The fact that I'„ transforms differently than it should
under the Lorentz transformation by an infinite con-
stant is the first indication of the lack of Lorentz
invariance of the theory. While we can adjust
the generators by finite c-number constants without
changing the global operator relations of the group, an
in/mite constant strongly iinplies the nonexistence of the
unitary operators U(A, a). An even clearer demonstra-
tion awaits us as we go on to examine the Pock space
constructed from these operators. In particular, let us
construct a Pock space from a vacuum IO& defined so
that

Thus, performing the calculating carefully, we find that
there are an infinite number of particles in the Lorentz-
transformed vacuum. But since such states, differing by
an infinite number of particles, are known to belong to
&sequiMknt representations of the commutation rela-
tions, ~ they cannot be connected by a unitary operator. '

' See, for example, S. S. Schweber, and A. S. Wightman, Phys.
Rev. 98, 812, (2955); E. C. G. Sudarshan, J. Math. Phys. 4, 1029
(296'3).

'

'The quantum field theory of faster-than-light particles was
first attempted by S. Tanaka, Prog. Theoret. Phys. (Kyoto) 24,
172 (2960). His theory is also unfortunately not relativistically
invariant for the same reasons that Feinberg's work fails to satisfy
relativistic invariance. t Compare his equation (3.22).g The
problem has been studied more recently by D. Kroft' and Z. Fried,
Nuovo Cimento 52, 173 (2967), who seem unaware of the work
cited in Ref. 1. In their approach, however, Kro6' and Fried do
not even attempt to construct a four-vector energy-momentum
operator.
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Thus the unitary operator U(A) does not exist, violating
the criterion for Lorentz invariance of the theory. ~

III ALTERNATIVE QUANTIZATION

The next question to consider is: How may one
surmount this de.cultyP It should be clear that the
noninvariance has come from the attempt to retain the
standard positive-energy particle interpretation by
associating creation operators with the negative-fre-
quency part of the scalar field. It is because of the well-
known fact that this separation is not covariant for
spacelike momenta that the unitary operators do not
exist. ' Ke will avoid this problem by not making that
separation. The result will be a I ock space that ex-
plicitly allows negative-energy states. Ke will achieve
a physically "sensible" theory by insisting that the
only physical quantities are transition amplitudes and
a negative-energy in (out) state is physically understood
to be a positive-energy out (in) state. This will be now
made explicit. (For simplicity, since we are not con-
cerned with proving any rigorous result here, we shall
go back to the planewave limits. It is straightforward
but tedious to transcribe what follows in terms of the
normalizable wave functions used. in the previous
section. )

We write the non-Hermitian scalar 6eld satisfying
(2.4) in terms of destruction operators,

P(*)= — d4k

(2~)s/2

X8(k'+p')e-"'a(k) 8(i k i
—p),

where, for example, the energy-momentum operator is
then explicitly

E = d'k k at(k)a(k)8(k'+p')8((k~ —p). (3.5)

Similarly, the generator for homogeneous I.orentz
transformations is then

1
M„„=—— d4k 8(k'1p')

2

X8(ziti —p) k„—k„at(k)a(k). (3.6)
Bk" Bk"

Ke can then proceed to calculate the commutation
relations of the p's

4k
e'~ &* *'& costs~(t —t'), (3.7)Le(*)A'(*')j=

(2m)' cog

which gives at equal times

d'k
eik (x—x') (3 g)

Since now the boosts do not mix creation and destruc-
tion operators, we are not forced to use anticommuta-
tion relations as in Sec. II. In fact, we are free to use
either commutation or anticommutation relations.
For convenience we will choose the former. Then (3.3)
ls consistent with'

~(k'+t ')8(k"+t ')La(k),a'(k') j
= 8(P+p')84(k —k'), (3.4)

X8(k'+p')e*"'~a~(k)8(lit
I &) (3 1)

As before, we wish the existence of V(A, a) so as to
satisfy Eq. (1.1):

This shows clearly that for this theory, p and P~

do not commute for spacelike separations, a major
difFerence from the usual 6eld theory. We then con-
struct a Pock space with an invariant vacuum ~0)
in the usual manner:

U (A a)Q {x)U ~ (A a)

=y(Ax+a)
a(k) ~0)=0, for all k

(k,) (k,)".l0). (3.9)

d'k 8(k'+p')e '~'e'~'~*a(k)8(j lr
~

—p)
(2m.)"'

d'k 8(k'+p')e '~" e'" 'a(Ak)*8(~lr~ —p),
(2x)"'

(3.2)
which implies that the a transforms as follows:

V(A, a)a(k) V—'(A, a) = e '~"a(Ak) . (3.3)
";The noninvariance can already be seen in the work of Feinberg.

He indicates that as long as you quantize "in a box", the constants
occurring are Gnite Lcontrast our (2.24), (2.25), and (2.33)j.But
we insist that only in the inGnite-volume limit is the requirement
for Lorentz invariance mathematically precise, and then the
inhnities are unavoidable.

Since the at(k) can create negative-energy states, we
need a physical postltate which is stated as follows.

8I. E. Segal, in considering representations of the proper
Lorentz group on a complex Hilbert space for the scalar Geld, where
the complex structure is connected to the separation of positive
and negative frequencies, states: "When m is not real, the trans-
formations are deGnitely not unitary, a situation closely related to
what is referred to in the theoretical physics literature as the
impossibility of making a covariant separation of a Geld with
imaginary mass into positive- and negative-frequency parts".
Irving E. Segal, 3fathematical Problems of Relativistic Physics
(American Mathematical Society, Providence, R. I., 1963),
p. 34.

9 We could rewrite everything in terms of a+(k) —=a(k)/(2coI, )'~~,

ko = +(o7e and a (k) —=a (k) / (2' k) '~', ko ———
auIe, in which case,

La+(h), a+~(k') g =b(k —k'), which are the more familiar relations.
For simplicity we retain the covariant notation.
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Physical postulate: The only physically relevant
quantities are the transition amplitudes. Any transi-
tion amplitude is to be interpreted as the amplitude for
transition between positive-energy particles where all
negative-energy particles (of momentum p) in the
initial state are interpreted as outgoing positive-energy
particles (of momentum —p); similarly, for negative-
energy particles in the final state.

In other words, the calculated amplitude

'P=(pi'". p'I 2'IPi" p-)

is to be interpreted as the amplitude for {p;}~ {p;},
where the bars mean take all negative-energy p's and
put them in {p }as —p and vice versa. "

Remarks

(1) This physical interpretation has allowed us to
keep the understanding of negative-energy particles
as positive-energy particles moving backward in time
without requiring the noncovariant separation for the
underlying field theory that destroyed Lorentz in-
variance in the Feinberg scheme.

(2) Although the field P(x) has the property that it
annihilates the vacuum, the usual theorems that would
require it to vanish do not apply because of the lack of
spacelike commutativity. "

(3) The physical postulate gives us s-u crossing
symmetry as a consequence of Lorentz invariance.
Consider the elastic scattering of a particle of type I
(s(c) (momenta Pi, P2) with a particle of type III
(v) c) (q] q2) pi+qi ~ p2+q2 with all energies
positive.

Now we consider the amplitude in a new frame where
qyo'&0, q20'(0. These amplitudes are equal by Lorentz

'0 An exactly soluble static theory (the "charged scalar theory")
in which crossing symmetry was obeyed and which involved both
negative- and positive-energy particles was constructed by E. C. G.
Sudarshan, in Brandeis

University

Lectures in Theoretfcal Physics
(W. A. Benjamin, Inc. , New York, 1961).The scattering ampli-
tudes in that theory were to be reinterpreted using this physical
postulate. In the present work, it is to be noted that the rein-
terpretation contained in our physical postulate is to be made
only on the transition amplitude. If it were to be extended to the
S matrix, contradictions would follow. This is because of the
fact that S=1+2ql-iT, and the reinterpretation should not be
applied to the unit operator. To see this, consider, for example,
the matrix element of the creation operator for a positive-energy

article (kp=+o), k) between a one-particle state and the vacuum
~=+ (&'—~')'"j:

H-co', k'i u; t(ra, kl i Ol= s(k—k').
(Because of the stability of the physical one-particle state, we
need no "in" or "out" designations on the one-particle states. )
Yet had we attempted to apply the reinterpretation to the whole
S matrix, we would require that the above matrix element be
equal to the matrix element of the destruction operator for nega-
tive energy (ko ———co, —h) between the same states:

(co',k'[u; {—cu, —kl(Ol.
However, the later matrix element is equal to zero, not b(k —k').
We avoid this type of contradiction by applying our reinterpreta-
tion only to the transition part of the S matrix."R. F. Streater and A. S. Wightman, TCP, Spin, Statistics,
gnd gll That (W. A. Benjamin, Inc. , New York, 1964).

invariance, yet our physical postulate gives us

2'""'(pi)qi i pmq2) = &""(pi')—q2'i pm'~ —qi') ~ (3.10)

but in terms of the invariant variables,

S (Pi+ qi) Q

t= (q&
—q2)'= t',

~= (Pi qm—)'= ~',
so we have

T(s,t,N) = 1'(N, t,s) (3.11)

as a consequence of Lorentz invariance.
(4) Because we do not know how to get the commuta-

tion relations from a Lagrangian and because the lack
of spacelike commutativity makes the time-ordered
(or retarded) product noninvariant, the problem of
proceeding to a consistent interacting theory seems far
from easy to solve.

IV. DISCUSSION

The study presented in this paper has two aims: first,
to point out that the quantum theory of faster-than-
light particles according to the scheme of Feinberg is
not compatible with Lorentz invariance Pin the sense
of (1.1)j; and to outline a new quantum-theory scheme
which realizes the physical reinterpretation discussed in
BDS. The construction of a theory of interacting fields
associated with such particles is a considerably harder
problem. It is not attempted in this paper. We are
content to draw attention to the novelty and con-
sistency of the quantum theory of faster-than-light
particles.

While we have confined our attention to "single mass"
fields, similar considerations apply to the quantization
of most "infinite component" wave equations with a
mass spectrum. These spectra usually include spacelike
solutions and the quantum theory of these fields would
exhibit the novel features encountered in the single-
mass case. It is known that nontrivial local fields which
annihilate the vacuum exist."Todorov has discussed~
some of the related problems connected with the quanti-
zation of infinite-component wave Qelds.

It is our belief that the Isla/ objections to the possi-
bility of faster-than-light particles in relativistic quan-
tum theory can be overcome. There may be hitherto
unforeseen difhculties of a fundamental nature which
may make it impossible to entertain such entities.
However, no reason really exists for not investigating
the possible existence of them experimentally. The only
experiment of this kind known to the authors is due to
a group at the Nobel Institute, who searched for such
particles in the emissions of an intense P emitter. "They
made the arbitrary but plausible assumption that such

'2D. Tz. Stoyanov and I. T. Todorov, Trieste Report No.
IC/67/58, 1967 (unpublished); I. T. Todorov, in Proceedings of
the International Conference on Particles and Fields, Rochester,
1W7 (Interscience Publishers, Inc. , New York, 1967).

» P. Erman (private communication).
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particles have a mass whose absolute value is equal to
the electron mass. They could place an upper limit of
IO ' for the frequency of faster-than-light particles
of this (imaginary) mass. More systematic experiments
of such a nature would be very desirable.

In a high-energy reaction as recorded, say, in a bubble
chamber, such an event would look like an apparent
instability of a known stable particle (like the proton).
As discussed in detail in BDS, the elastic scattering of a
faster-than-light particle by an ordinary (slower-than-
light) particle will appear, in a suitable reference frame,
as the instability of the ordinary particle of a certain
four-momentum into the same particle with another
four-momentum and a pair of faster-than-light par-
ticles. In the normal course of events, such an event
would be discarded since it would be said not to satisfy
usual kinematic criteria.

From the theoretical point of view, an interesting
possibility about the structure of relativistic quantum
theory is revealed by the quantization scheme that we
have discussed. In quantum theory the "principle of
superposition of states" must hold, and hence the
states must form a linear manifold. " Consequently,
the scattering amplitudes must factorize; it is the scalar
product of an initial "in" state and a 6nal "out" state.
On the other hand, by definition, in a relativistic
quantum theory the scattering amplitudes must be
relativistically invariant. It is natural to demand, in
the normal course of things, that the factorization of the
scattering amplitude into the "in" and "out" states
be relativistically invariant. It is also natural to demand
that the particles that we observe, must have positive
energies only. We And that these requirements are not
all compatible; the notion of only positive-energy
particles is not compatible with relativistic invariance.
We could now ask whether the following question is
relevant for relativistic quantum field theory in
general. Is it possible that the notion of a physical
state itself is not expressible in a relativistically in-
variant fashion, though the physical predictions like
mass levels and transition probabilities are all rela-
tivistically invariant? We do not know the answer.
But we remark that this is akin to the question: Is it
possible that relativistic formulation of a quantum
field theory is not expressible in a local form in a theory
with positive de6nite metrics
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14P. A. M. Dirac, Principles of Quantum Mechanics (Oxford
University Press, London, 1958), p. 1.4.

APPENDIX: A COMPLETE SET OF FUNCTIONS
e (k) IN THE REGION (ki)p

We wish to have a set (C (ir)) such that

(A1)

and

8([k[ —p)8(ik'[ —p)g C *(k)C (k')
a

=2&upb(k —k')8(ski —p). (A2)

Let us use spherical coordinates: Let k= ~k~ and 0
be the solid angle. Consider

(A3)

where the I ' satisfy

dQ F„'*(0)I' '(0) = 8E) 5 (A4)

where or~= (k' —p')'".
Let us consider a complete orthonormal set on the

real line from 0 to ~, e.g., the Laguerre polynomials
Q„(x)"' such that

dxe *Q„(x)Q„(x)=8„. (A6)

Changing variables to

k= pe, x= ln(k/p),
we get

(A7)

If we dehne

f-(k) = (2p~~)'"Q-Dn(k/p) 31k'

(A7) becomes

k dk
f.(k)f„(k)8(k p)= 8.. . —

2M'

which is the required relation (AS). Thus, if we write

C.(k) =V2pcol Q„(ln(k/p)) I'„'(k), ik i)p

we have the desired. orthonormal set.

'~ R. Courant and P. Hilbert, Methoden der Mathematischen
Physik (Springer, Berlin, 1931),Vol. 1, p. 80.

Putting (A3) and (A4) into (A1) shows that we need

f„(k) satisfying

k'dk
f„*(k)f„.(k) 8(k—p) = b


