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Model equations are studied for the purpose of gaining some understanding about the possible origins
of strong SU(3) breaking. The equations are response equations in the octet space of SU{3).They have
full SU(3) symmetry apart from electromagnetic and weak driving terms. A class of equations is described
for which, amongst others, solutions exist such that (1) they are tilted with respect to the plane dined
by the driving forces, thereby generating the formal equivalent of a Cabibbo angle, and {2) large asym-
metries occur in a direction which is the one of hypercharge up to electromagnetic corrections.

I. INTRODUCTION

lT is the purpose of this paper to make some com-
~ ~ ments on the often asked question whether the
strong symmetry breaking of SU(3) could have a
dynamical origin, in contradistinction to the weak and
electromagnetic symmetry breaking. By "dynamical
origin" is meant that the input forces are fully SU(3)-
symmetric, apart from weak and electromagnetic
violations, and that the strong breaking emerges as an
output, namely, as the consequence of the existence of
preferred asymmetric solutions of equations generated
by this input. The motivation for this question is
twofold. First, the success of mass formulas is hard to
understand, thus far, from any perturbative point of
view. Secondly, no distinct physical attributes can be
ascribed, thus far, to the strong breaking, in contradis-
tinction to the electromagnetic and weak breakings.
It cannot be asserted, however, that either motivation
is entirely compelling.

Of practical necessity, investigations of dynamical
symmetry and of dynamical asymmetry most often
deal with truncated systems. One attempts to reduce
the problem to a 6nite set of algebraic c-number equa-
tions which span one or more representation spaces of
the internal symmetry group at hand. Examples are
the following:

(1) Bootstrap equations, generally obtained from
multichannel dispersion relations with unitarity cuts
replaced with a 6nite set of poles. The bootstrap equa-
tions appear as internal consistency conditions on the
truncated equations. As a typical example, bootstraps
for masses m; and coupling constants g, take the form

m;=P;n;, m, (mj„gp), g;=P;P,~gg(mp, gg). (1.1)

The summation may be over one or over more multi-
plets. Depending on the input, such equations have
been used either to implement a dynamical symmetry'
or a dynamical asymmetry. '

(2) The saturation of current-algebra relations with
a 6nite number of states. Here, too, consistency con-

' See, for example, E. Abers, F. Zachariasen, and C. Zemach,
Phys. Rev. 132, 1831 (1963).' See, for example, S.L. Glashow, Phys. Rev. 130, 2132 (1963);
R. E. Cutkosky and P. Tarjanne, i''. 132, 1354 (1963).

ditions appear. ' Such equations have been used in
attempts to implement dynamical symmetries.

(3) Lagrangian models with truncated equations
for sets of Green's functions, or for scalar multiplets
with a nonvanishing static limit. ' Again consistency
conditions appear. In these Lagrangian models, one
has to face the occurrence of Goldstone particles. ~'
This complication does not necessarily arise in the
bootstrap or in the saturation approach. 5

It should be recalled that the consistency conditions
which appear in all of these approaches are, in general,
nonlinear and have, in general, more than one admissible
solution. One has to seek for stability criteria which

may lie outside the set of equations itself to distinguish
those solutions further.

In order to solve equations like (1.1), one has to find
whether there exists an intersection of a number of
hypersurfaces. Imagine that one could use the equations
for the g; to eliminate the latter from the m; equations,
and, furthermore, that in the set of m; equations, one
could eliminate all but one multiplet in favor of the
remaining one. In this way, one would obtain con-
sistency conditions within one representation space
only. It is this latter kind of consistency condition which
forms the subject of the present investigation. We shall
consider the specific and limited case where one deals
with the octet space of SU(3) in which one real (self-
adjoint) c-number octet y; appears, i=1, ,8. In
the absence of weak and electromagnetic effects, a
typical structure for the consistency condition on the
ys 1S

y, =~3&;;~y,ya, (1.2)

an equation which has been studied by several
authors. 4 ' The d;;~ are the well-known totally sym-

' For examples, see A. Pais, Phys. Rev. Letters 18, 17 (1967);
M. A. B. Beg and A. Pais, Phys. Rev. 160, 1479 (1967).

4 G. Domokos and R. Suranyi, Yadern. Fiz. 2, 501 {1965)
LEnglish transl. : Soviet J. Nucl. Phys. 2, 361 (1966).

~ R. Brout, Nuovo Cimento 47A, 932 (1967).' P. di Mottoni and E. Fabri, Nuovo Cimento 54A, 42 (1968).
N. Cabibbo, Nota Interna 141, Instituto di Fisica Marconi,

Rome University, 1967 (unpublished); lecture delivered at Erice
in the Proceedings of the International Summer School "Ettore
Majorana, " 1967 (unpublished); see also Proceedings of the Fifth
Coral Gables Conference on Symmetry PrinciPles at High Energy,
1968, edited by A. Perlmutter, C. A. Hurst, and B. Kursunoglu
(W. A. Benjamin, Inc., New York, 1968), p. 339,
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nlctrlc quantltIcs which IIIRlM d,&gy,y&yg SU(3)-IIlval'I-
ant. The twofold, linear and quadratic, y dependence in

Eq. (1.2) corresponds to the rank of SU(3). It expresses
the fact that both sides of Eq. (1.2) have the same
(octet) behavior under SU(3) transformations. Equa-
tion (1.2) can of course be generalized so as to include
coefEcients which depend on y~' and on dg, E yg,y~y . To
this possibility we shall return below.

Equation (1.2) has been studied in connection with
the problem of spontaneous breakdown of SU(3)
symmetry, which does not concern us here. Rather, we
shall consider response equations with octet driving
forces u; like

yi= ~3@y~y&y~++i, (1 3)

and generalizations thereof. The purpose of this work
is to examine further the following pair of questions,
which has been bloached %1th vary1ng emphasis by
several authors'r ' in their discussion of Eq (1.3.):

(a) Consider a system with exact SU(3) symmetry
acted on by electromagnetic and weak driving terms.
Can these forces generate a large breaking of SU(3)
symmetry, thereby obviating the need for the introduc-
tion of a separate "medium-strong interaction" P

(b) If the hadron currents which appear in semi-

leptonic decays are octet currents, one can de6ne a
"weak hypercharge" which is conserved in leptonic
decays in the presence of SU(3)-invariant strong
interactions and electromagnetic interactions but in the
absence of strong SU(3)-symmetry breaking. ' This
argument can also be extended to nonleptonic decays. '0

In this situation, one has a zero Cabibbo angle. Is it
possible that a Axed nonzero Cabibbo angle 0 comes
about as a result of weak and electromagnetic driving
action, so that, once again, a separate medium-strong
interaction need not be introduced from the outset'
This question has especially been raised by Cabibbo. z

As was done in the cited papers, these questions will

be examined here in terms of nonlinear 6nite systems of
c-number equations. Such simplistic model equations
may perhaps be of use to get some insight into the
algebraic structure of the problem. Obviously, it mould

be rash to jump from such models to any general con-
clusions about what happens in the real. world. Never-
theless, it seems of some interest to note that models

do exist in which both questions can be answered

aSrmatively, as wiH be shown in this paper.
It is known' that Eq. (1.3) has no solutions which

correspond" to a Axed nonzero 8. In spite of this
negative answer to question (b), Eq. (1.3) is neverthe-
less important for what follows. We shall call it the

L. Michel and L. A. Radicati, I'roceeCings of the Fifth Coral
Cables Conference on Symmetry I'rinciP/es at High Energy, 1968',
edited by A. Perlmutter, C. A. Hurst, and B.Kursunoglu (W. A.
Benjamin, Inc., New York, 3.968), p. 19.

9
¹ Cabibbo, Phys. Rev. Letters 10, S8i (1963).
N. Cabibbo, Phys. Rev. Letters 12, 62 (1964)."Cabibbo shows in Ref. 7 that either tan28=0 (corresponding

to the indistinguishable values 8=0, ~m} or else 0 is undetermined.
These results &vill be reproduced in Sec. II

y& 8 i 3'2 0» 34 14~ y& 8 ~ y6 1» y&

&~=i(V3—vs~) vs= —s(Vs+e~v3) (1 5)

brings Eq. (1.3) in the form

iIi =~ifij a,ibid+bi &

b, =-', (a,—II,v3'), b,= 2'(a,+II,v—'S)

('1.6)

(1.7)

(Rll other bi=0). Tile y lRIlgllagc bclIlg flxcd by coII
vention, the q language then corresponds to "8"in the
electric-charge direction, while "1,2,3" span the
U-spin directions. The formal equivalence between
Eqs. (1.3) and (1.4) and Eqs. (1.6) and (1.7) should, of
course, not be considered as a physical covariance.

The case of a purely electromagnetic driving force is
characterized by

a3——a@8 or ha= 0.
YVhat is the scale of bs in th1s case, compared with the
coeffIcients of order unity in the terms of Eq. (1.6)P
We shall suppose that" bs=0 (e'), i.e.,

The weak-interaction driving force, conserving the
weak hypercharge, can be expressedz, '0 as a contribution
to a3. %hat is the order of this contribution relative to
the electromagnetic order of

bshe

On dimensional grounds,
one will suppose that the weak driving force is O(GM')
=OL10 '(M/m)'j, where G is the Fermi constant, AE

is a characteristic mass, and m is the nucleon mass.
Thus the relative order in question depends on the
unknown M. If M is not much di6'erent from es, then
the purely electromagnetic relation b3=0 is replaced
with

be«bs (1.10)

In what follows, the numerical values of b3 and bs

will play no role. Rather, they mill be considered as

"Here we follow Ref. 7. While Eq. C1.9) seems plausible, it
remains an assumption, nevertheless, which can only be justified
by a dynamical derivation of Eq. I'I.6).

special response equation. Its solutions will be discussed
in Sec. II, with particular emphasis on completeness.
We shall next use Eq. (1.3) to state the two problems
just mentioned in a concise form which will also be
applicable to more general response equations which
are to follow.

We shall suppose that in Eq. (1.3), "8" is the
(weak) hypercharge direction, while "1,2,3" span the
isospin directions, and we shall say that this is the
equation in the y language. The u; represent the electro-
magnetic and weak driving forces. In particular,

e;=0, i= 1,2,4,5,6,7

while a3, cs are generally nonzero and will further be

specified presently.
Equations (1.3) Rlld (1.4) llavc cel'tRIII forirIQl

covariance properties. For example, the transformation



parameters on which the answers will depend. However,
it will be assumed that both bl and be are &&i.

It may be recalled that the pair of quantities (ba,ba)
in general de6ne a plane in the octet space, if neither
quantity vanishes. There are two exceptions to this,
namely, for h3= +hsV3, in which case only an axis is
defined. It will be assumed that the ba/ba ratio does not
take on either of these exceptional values.

After these preliminaries, the questions (a) and (b)
will now be stated more precisely. One asks if there
exist solutions for q; which satisfy the following
conditions:

qa= CIV3+Caba,

qa= Cl+Caba+Dba,

(qp+q a)i/a

(1.12)

(1.13)

tan28= Ca/Ca, (1.15)

whence the requirement that the right-hand side of
Eq. (1.14) is 0(ba).

(4) Equation (1.6), as well as related equations to
follow, will coll'ta ill IIlfoiIIlatloll aboll't gp+ ga Ollly, 110t
about ql, qa separately. This freedom (which does not
affect the definability of 8) corresponds precisely to the
following. Consider all SU'(3) transforrnations which
keep h3 and h8 separately fixed and which maintain
Eq. (1.14).These transformations are just the rotations
in the (ql, qa) plane, all else fixed.

(5) We are now ready to state a more delicate ques-
tion concerning the present problem. Does not the
existence of a response with a nonvanishing component
in the q~, q2 plane violate the symmetry of the input

$4= g5= $6= (7=0 (1.14)

where CI,Ca,Ca,D are numbers (indePendent of ba, ba)

of the general order of unity. In explanation of the
Eqs. (1.11)-(1.14), the following should be noted:

(1) The Cl terms represent the leading order, and
corrcspond to a large symmetry breaking in the re-
sponse. The fact that qa=qy/5 up to 0(ba) corresponds
to the fact that this large symmetry breaking should
be in the hypercharge direction to within electromag-
netic accuracy. According to a general argument, ' the
equality qa

——gal is unrealizable. However, it is not
obvious why such a strict equality should be required
physically.

(2) qa may be allowed to have an electromagnetic
component Cehs. It may also have a weak component
Dhe. If D= 0, the strangeness-nonchanging components
have AU=I, hence BI=0,I. If D= —C2V3, one has
DI= j only.

(3) A nonvanishing (qP+qaa)lja= (yaa+yP)ija repre-
sents a response component of the strangeness-changing
EI= Ia kind. Clearly, then, for (qP+ qaa) Ijag 0, a 8 would
be generated characteristic for the response orientation
in octet space. 8 may be identified in terms of (qP+qP)'"
and the weak component of q3.

(namely, the conservation of charge and of weak hyper-
charge) ujaless the solution found is only one of a con-
tinuum of equivalent solutions? The answer to this
question is that there does exist such a continuum, but
that they are not equivalent, for the following reason.
If there exists a solution which satisfies Eqs. (1.11)-
(1.14), then, for example, there must also exist a formal
solution obtained from Eqs. (1.11)—(1.14) by the
slbstitltions q;~ y;, b;-+ ja; given in Eqs. (1.5) and
(1.7). But this new formal solution is jaoi the transform
of the actual solution (1.11)—(1.14) to another frame of
reference. For example, if our initial solution satis6es
Eq. (1.10), then the new solution will satisfy ea(&ua,
which is clearly not the transform of Eq. (1.10). In
other words, the new solution is distinct from the initial
one. In general, what has happened is therefore thc
following: Sy the identi6cation of the 3 and 8 directions
&I the q laegeage with the weak and electromagnetic
driving directions, we have chosen a boundary condition
which selects (to within rotations in the 1,2 plane)
an absolute frame of reference from among a continuum
of equivalent ones.

(6) Because of the arbitrariness in the (1,2) plane
(perhaps connected with the CP question), one can
eliminate q2 in favor of q~ by a rotation; equivalently,

yv in favor of y6. This will be done for simplicity, so
that Eq. (1.13) becomes

qr= «h3 (1.16)

As was stated earlier, the preceding discussion is
rather academic inasfar as Eq. (1.6) is concerned. In
Sec. III, we shall discuss the solutions of a morc general
class of response equations which does yield a (qIWO)-

type solution. The equation is

pqj= ja~~d jjaqjqa+b j+~~jfjjaqjba p

hs =phs ~

(1.17)

Here X represents the relative scale of the weak inter-
action as it enters in d;;~q;hI, ', as compared with the
weak interaction in h;. In a similar way, p refers to the
electromagnetic-interaction ratio. The quantities P and
p, mill be supposed to be of the general order of unity,
so that all weak driving forces will have a common order,
and likewise all electromagnetic driving forces. Note
that, whereas all h;= 0 for i@3or 8, h and h; belong to
the same octet. It will be sho~n in Sec. III that for
given p,o.,h,p this equation has essentially only one
kind of solution with qIQO, provided that p,o.,X,p
are not all numerical constants. It is in accord with the
covariance content of Eq. (1.17} that p,n, X,ja lllay
depend on the bilinear and trilinear scalar products
formed from q's and h's.

As will be seen in Sec. III, one of the equations which
determine the particular solution at hand is

ba(1+Xqa) =0.
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ebs= p —2n/P. . (1.21)

Thus nonlinear equations of the type considered here
may have, under circumstances, special solutions only
for prescribed values of "coupling constants. " (This
situation is not interesting for our present purpose, since
it turns out to yield qi ——0.)

It is, of course, a far cry from the models studied here
to a full dynamics. Nevertheless, there is one quite
qualitative question which one is tempted to ask at
once: If weak driving forces (along with electromagnetic
ones) are really important to generate a large SU(3)-
breaking, then why is the induced large breaking not
strongly parity-violating? The present considerations
are simply not rich enough in structure to answer this
question with any definiteness. Yet, one may perhaps
see in the following consideration a clue to the fact that
such a catastrophe need not necessarily happen. Imagine
that one replaces b3 everywhere in the foregoing with
b3t+&+b3& i and that there exists a transformation
b3&+~ ~ +b3(+~ which de6nes an "even" and an "odd"

This equation demonstrates the curious factorization
which, time and again, plays a role in this problem. If
the small parameter b3 were zero, Eq. (1.19) would be
without content. But if this small parameter is nonzero,
then qs= —1/X, independent of the value of ba. In fact,
from the way X is introduced one sees that the large
value of qs (X 1) is a ratio of weak interactions —a
nonperturbative result.

Thus q8 has the desired order of magnitude. It is then
shown in Sec. III that the solution at hand, has further-
more, the following property: If q& bs, then

3q8' qP= 0—(bs) (1.20)

Equation (1.20) is in accord with Eqs. (1.11) and (1.12).
The remaining question is then if it is indeed true that
q~ b3. This mill be seen to be dependent on more
detailed properties of p,o.,X,p, and, at least by example,
it is shown that q~ b3 is indeed possible. It seems
unsatisfactory that the relation (1.16) does not appear
in a very transparent way.

Apart from this particular solution of Eq. (1.17), one
should ask for all its solutions. A method to classify
those is given in Sec. III B. For this purpose, it turns
out to be useful to have an explicit derivation of the
complete set of the solutions of Eq. (1.6). This problem
is discussed in Sec. II. Once the characterization of a11

solutions of Eq. (1.17) is found, one may ask for the
stability of the solutions other than the particular one
of interest here. A few' remarks are made about this
question in Sec. IIIB, but no complete answers are
derived.

If p,n, X,p are all constants, we shall see in Sec. III A
that something remarkable happens too. It will be
found that then there exists a special solution to Eq.
(1.17) which is possible only for a prescribed value of
bs in terms of the constants of the equation, namely,

x,=Bd,;gq;qi, +b (1.23)

As discussed in connection with Kq. (1.1), eliminate
x;. One gets

(1=3ABqq )q;=d,;qq, qi, +b;+Ad, ,7,qibk', (1.24)

which illustrates that both the coupling in question and
also nonconstant coefficients can readily come about as
multichannel eBects.

In deriving iterates like Kq. (1.24) and related rela-
tions, a number of identities have been found useful,
which are recorded in the Appendix.

As a final question, one must ask if Eq. (1.17) is the
most general form of a response equation for one octet
q; driven by b3, bs. The answer is no, for two reasons.

(1) One may include a term of the type e&3d grab, bz.
This does not qualitatively change the nature of the
special solution, because this quadratic driving term
lies itself again in the 3 and 8 directions only. Note that
in this case, Eq. (1.19) becomes

bs(1+Xqs+2ebs) =0. (1.2S)

This generalizes a previous remark: What is eth order
in general, is actus, lly (n —1)th order for the special
solution. See, further, Sec. III A.

(2) Just as one has two types of terms, linear and
quadratic, depending on q only Lsee Eq. (1.2)g, so
one has two possible distinct couplings of the type
d;;q$;bi, ', namely, either $;=q; or $;=d;i,iqiqi With the.
help of the identities given in the Appendix one shows
that this exhausts the possibilities. As an example of
this general situation, consider an alternative to Eqs.
(1.22) and (1.23), namely,

qs= dsia&g &@++days&j'qi+ba 1''
x;=Bdg&q;qi, +b

(1.26)

(1.27)

part of b3. Such a transformation is the closest w'e can
come to representing a parity operation in this model.
From Eq. (1.19) one sees that q8

———X ' is invariant
under this transformation, and so is the relation (1.20).
Thus, if the large SU(3)-breaking is associated with a
weak-interaction ratio, as in the present case, large
parity violations need not necessarily occur.

One would obtain such large violations if one were
to replace b3' in Eq. (1.18) with Xibg&+'+A~bi& i,
X&/X2. Thus an intrinsic weak-interaction property
should be invoked to prohibit this Lsuch as, for example,
a "chiral" substitution invariance under b3i+i ~ b3 ].

Next, the question may be asked how such a rather
complicated driving force-response coupling as the last
term in Eq. (1.17) could come about. The following
example may indicate that the occurrence of such a
term is not necessarily too far-fetched. Consider, along
with q;, a second octet x;. Let q;, x; mutually drive each
other and let both be driven by weak and electro-
magnetic forces, as follows:

q;=d;, iq, q&+Ad;,7x,qi+b;, (1.22)



wl ich yields, wit the l elp of Kqs. (Ai)-(A7) of the
APPCQC4Xq

(1—s~&qs s&—dsi qsqiq &—qs—bs )q;
=——',q d;;sq;qs ssB—q b +b;+Ad;;sb/qs

+28desd;i qiq bs'+d;p, b/ bg, '. (1.28)

Thc general rcsponsc cquatlon 18 bricQy dlscusscd ln
Scc. IV. Thc equation CRD hRvc spcclal solUtlons qultc
siiliilai' to the oiie discussed foi' Eq. (1.17).

Thc px'cscIlt exploration raises many ncw qUcstlons.
To name but some: Is there a speciic model which will

give the physically correct Cabibbo angleP By what
criteria could a solution with a tilt out of the 3,8 plane
be preferred over a solution without tilt 2 %hat are the
consistency conditions for representations other than
octetP If strong SU(3)-breaking is dynamical, then
how Unlfox'IQ 18 this brcRklng fox' di6crcnt ploccsscs ox'

vertices' At present, wc shall not speculate whether
satisfactory answers to Rll Such qUcstlons cxlst. Even
so lt, 18 hoped thRt thc prcscnt consldcl RtloDs Inane
pcl'hRps bc lnstl'Uctlvc ln showlDg what Inane happen ln
nonhnear systems, where common intuition fails.

For definiteness, we work in the y language and there-
fore start with Eq. (1.3). The driving terms are os and
88. Thc sct of clght cquRtloDs 18 lnvarlant fox' simul-
taneous rotations in the "4,5" plane and in the "6,7"
plane over an equal angle. For any solution y; we can
therefore arrange it so that by such a rotation one of the
foUl qUantltlcs y4, y5, y6, yv 1s QlRdc to vanish. Wc clloosc
to do this for y4. The solutions with y4&0 can then be
found by rotating back in the manner indicated above.

With ys ——0, Kq. (1.2) yields the following set":

(2 1)

y4= ye= ye= yv= 0
~

yi +ys +ys

(2.18)

(2.19)

(2.20)

Multiply Eqs. (2.6) and (2.7) by ys&3 and use Eqs. (2.1)
and (2.2). This yields

ys(1—2ys) (1+ys+ysv3) =3ysys', (2.10)

yi(1—2ys) (1+ys+ysv3') =3yiys' (2.11}

If yi= ys=O, then Eqs. (2.1) and (2.2) yield ys ——y7 ——0,
since ys~O. Then Eq. (2.5) would become ys(1+ys—ys~3=0, which is agamst the hypothesis. Thus yi
and ys cannot both be zero. Then Eqs. (2.10) and
(2.11)yield

(1—2ys)(1+ys+ys& =3ys'. (2 12)

From Eqs. (2.9), (2.3), and (2.8) we get

3yss= (1+ys+ys~3 (1—2ys)+3os —asv3, (2.13)

3(ys'+yi')= (1+y,—ysVS)(1—2ys)+3a, +osV3. (2.14)

From Eqs. (2.12) and (2.13),

u3 ——~N. (2.15)

Multiply Kq. (2.13) by 1+ys—ysVS and Eq. (2.14) by
1+ys+yg/3; use Eq. (2.15) and subtract. This gives

3ys'(1+ys —ysv3) = (1+ys+ys&3
X[3(yss+yis)+3os+asvBj. (2.16)

Multiply Eq. (2.5) by ys and use Eqs. (2.6) and (2.7).
This glVCS

ys'(1+ys —ysV3) = (ys'+yi') (1+ys+ysv3). (2.17)

From Eqs. (2.16) and (2.17) one 6nds that as ———asv3.
Together with Eq. (2.15), this proves the result.

Cuss Z. If yt; ——0, there are three possibilities:
CGA Zc.

ys(1 —2ys) =~ysys,

y&y6= ymy»

ys(1+ys —ysv3) =v3(yiyv+ysys),

ys(1+ys+ys~3) =v3ysys,

ys(1+ys+ysv3) =v3yiys,

(2.2}

(2.5)

(2.6)

(2 7)

This is possible if and only ii

u3=0.

yj = y~= y4= y~= y6=yv=o »

ys(1 —2ys) =as,

ys= —ys'+ys +os.

(2.22)

(2.23)

(2.24)

(1+ys)'= 3(yi'+y-"+ys'). (2.9)
"The nonvanishing d'8 are 6xed by aliis =d'22s =d'sss = —2&448 =

—2~sbs= —2dsss= —2dzzs= —dsss= ~/~'d14e=disv= —~&4z=d26 =
d844=~855= d366= dszz= g.

ys = ys + (yi +ys +ys )—s (ys +ys +ys')+os (2 8}

Co&s ~ If ysWO and 1+ys&ysVSWO, then there are
solutions if and only if a3 ——ag ——0.

Proof. Multiply Eq. (2.5) by the (nonzero quantity)
1+ys+ysv3 and use Eqs. (2.6) and (2.7). This yields

1+ys+ysV3 =0,
(1+y.)«-2y.)+3 =-:(y:+y }

Case 2c 18 posslblc lf and only lf

83 8@8»

Proof. Since ys
——0, Kq. (2.5) gives

(2.25)

(2.26)

(2.27)

(2.29)
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the solutions in the q language, noting that y5
——q5,

1+ys+ysv3 = 1—2qs, 1+ys—ysv3 = 1+qs—qs&3.
Case 1. If qsWO, qsW-,', 1+qs—qsv340, then there

ale solutions lf and only lf 63=58=0.
Case Za. If and only if(2.30)yl(1 —2ys) =0,

y, {1—2ys) =0,
y, (1—2ys) =as,

(2.31) (2.41)
(2 32) we have

From this and from Eq. (2.4) we have the foHowing:
Cases Za and Zb. y4= y5= y6= yv= 0. Equations

(2.1)—(2.3) and (2.8) then reduce to

ys= —ys +yl +ys +ys +41s (2 33)

Case Za. If yl and/or ys/0, then ys ——-'„which is

possible if and only if as=0.
Case Zh. If ya&~, then y~=y~=0.
C4sse Ze. If ys and yI are nonzero, then from Eqs. (2.5)

and (2.29), yls+yss=0~ yl=ys=0, since we only
allow real solutions. Then Eqs. (2.3) and (2.6)—(2.8)
become

y.{1-2y.)-..=--:~~(y.+y, ),
1+ys+ys~&= o, (2.35)

ys= —ys'+ys' —s(ys'+yv')+os (2 36)

Substituting Kq. (2.35) into Eqs. (2.34) and (2.36),
one obtains Kqs. (2.27) and (2.28).

Remark. The starting point for case 2 was the pair of
equations (2.4) and (2.29). Other ways to satisfy this
pair are checked to be included in the above three
subdivisions.

Case 3. If ys&0 and 1+ys+ygSWO, but

gy= f2= (4= g5=0

1+qs+qsv3 =0,
(1+qs) (1—2qs)+3bs= s (qs'+qv')

gy= gg= (4= (5= f6= (t7=0
&

qs(1 2qs)—= bs,

qs= qs +qs +bs.

ql +qs +qs 4

bshe

Case 2c is possible if and only if

Case 3. If q5=0, q8/» but

(2.42)

(2.43)

(2 44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

{2.50)

then

if and only if

1+ys—ysv3 =0,

(1+ys) (1—2ys)+4ls= sys'

aa ———as&.

(2.37)

(2.38)

(2.39)

(2.40)

lf Rnd only lf

1+qs—qsv3=0,

9~= 9~= 9'4= 9'6= 9'7=0
~

(1+qs) (1—2qs)+bs= sqs',

(2.52)

(2.53)

(2.54)

Remark. The existence of case 3 is a consequence of
the existence of case 2c if one notes the invariance of
Eq. (1.3) for the substitutions y4 ~ yl, ys 4-+ ys,
y3~ yap a3~ —a3.

I'roof. Equations (2.4) and (2.29) are again both valid.
ys=yz=0 liow llllpllcs yl=ys=0 bccallsc of Eqs. (2.6)
and (2.7), as ys=0. Conversclg& yl= ys=O ~ ys= yI=0
as 1+ys+ysv3'WO; so we have Eq. (2.30). Substitute
this information in Eqs. (2.3) and (2.8), and use
Eq. (2.3/). The result follows.

Eerrsarks. (1)The case ys/0, 1+ys+ysV3=0 is readily
checked to be a special form of case 3, since these two
conditions imply Eq. (2.37). (2) The case ys=1+ys
&ysv3 =0 is a special form of case 2c. (3) The rotation
back to general y4 leaves RH answers unchanged, except
for the right side of Eq. (2.39), which becomes

s (y4'+ys')
Thus @re have now found all solutions by considering

ys, 1+ys+ysv3, 1+ys—ysv3, whether zero or not, in
all combinations. We translate the classification of

Thus Cabibbo's conclusion~ that the special response
equation does not yield a prescribed component in the

(ql, qs) plane is clear: In the cases 2a, 2b, and 3, one
has qq=q2=0. In the case 2c, the problem is under-
determined, since Kq. (2.49) is the only equation which
governs the behavior in the (ql, qs, qs) subsPace. For
CRse 1 %'e hRve not written down the RctuRl mRnlfold
of solutions, but it is known that in that case, the
solutions suHer from either one or the other of the
defects just mentioned.

ql (p 2o4qs /4bs) =4'/3qsql-, —

qs(p 2nqs I4bs) —=nV3q—sqs,

(3.1)

(3.2)

HL A MORE GENERAL RESPONSE EQUATION

A. The Special Solution

We start from Kqs. (1.17) and (1.18) and rotate q4

to zero, as described in Sec. II. The following set of
equations results:
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q3(p —2&qs —ebs) = ba(1+&qs)+ &&x&/3(q&&'
—q6' —q72)

&

(3.3)

qyq6 = qgqv, (3 4)

qg (p+nqs —nqsv3) =nv3'(qiq7+ q2q6)

+,'(Xb-»v3 pb—»)qs, (3.5)

q, (p+aq, +aq,~3) =»%3q,qs+2 (Xbg/3+ebs) qs &
(3.6)

q7(p+nqs+nqs&3) =nV3qiq +-', (V3~&+I&bs)qv, (3 7)

pqs= ~[—qs'+qP+qP+q32 —l (qs'+q6'+q7') 3
+bs+Xqsba pq»bs— (3.8)

The special solution is obtained by putting

get in addition is b3 . We shall give just one example to
show that q~ b3 is indeed possible. Namely, one can
easilv verify that the p and 0, can be such that

3qs' —(qs+Xbs/2n)' =0, (3.17)

so that q~ b3 if 'A= —2p. Observe that it is possible to
have Eq. (3.17), because it is admissible that qsib»

occurs separately. This would not have been possible
for bs=0! We also note that p and/or n should contain
some second-order contribution in b3 in order to get
Kq. (3.17).

The inclusion of a term e&3d;;A,b;bI, on the right-hand
side of Eq. (1.17) leads to the following modifications:
Equation (3.15) becomes

q5= q6= q7=0,

so that we are left with

q&(p
—2aqs pb. s) —=0, i=1,2

i&b8) = b3 (1+~qs) i

pqs ar qs +ql +q2 +q3 j+b8+~q3b3 pq8b8'

The solution is further characterized by

q~, q~ not both=0,

which is possible, provided that

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

b3(1+Xq»+2ebs) =0,
which has been commented on previously )see Eq.
(1.25)j. Furthermore, Kq. (3.14) remains unmodified,
while Eq. (3.16) becomes

X+2p e ) X
3 qs' bsqs —bs' —

q3
—b3

3a n ) 2n i

(X 46Q
=q2 —

I
b32 (3.19.)

p —2Qqs —pks=0
&

bs (1+Xqs) =0.
(3.14)

(3.15)

Equations (3.12)—(3.15) specify this solution. Equation
(3.15) was already referred to in Sec. I, Ecl. (1.19).
As described in Sec. I, we now rotate q2 to zero in the

(qi, q2) plane. With the help of Eqs. (3.14) and (3.15),
Eq. (3.12) can then be written as

An argument similar to the one used in connection with

Eq. (3.17) readily yields parameter ranges for which

qj. I53

Note that q&' rather than qj can possibly be deter-
mined, corresponding to the sign ambiguity for 8.

B. Characterization of AO Solutions

Define Q; and 8; as follows:

X+2@
3qs —

q3
—bs = qy

—— --53 bs. 3.16
20. 4e' Xo,

0.'

Q =-q+—b'
p 2p

(3.20)

If p,&r,X,p all were constants, then Eqs. (3.14) and
(3.15) would determine b» in terms of these four
numbers. This is the result mentioned in Eq. (1.21).
On the other hand, if these four quantities are not all
constant, then we have three equations for the three
unknowns qi, qs, qs (unless p,n, X,p were such that
functional dependence between the equations would
arise). For example, if a,X,p are constants and p does
not depend on qi (which is possible), then qs is fixed by
Kq. (3.15), q3 by Ecl. (3.14), and qi by Kq. (3.16).
Furthermore, it follows from Ec!. (3.16) that, if qi b8,
we have Kq. (1.20).

The final question is if there exist p,n, 'A,p such that
q& b3. These quantities may depend on the scalar
products q;, d@I,g;q;qp, qsb3, qsbs, d;;3q;q, b3, and d;,sq;q; bs.

Let us assume that X is a constant. Then it follows
from Eq. (3.15) that, for the special solution, this set
reduces to qP+q32, q»b3, b», and qPb» If we also intro. -
duce scalar products quadratic in the b's, then all we

nb; 1 v3
+—b'' — d'&&b b&'.

p' 2p 4p'

Equation (1.17) can be reexpressed as

Q'= ~&d;;aQ,Q&+&',

(3.21)

(3.22)

which has the same formal structure as the special
response equation (1.6). Of course, the 8; are now in
general functions of the q's, while, furthermore, one will
have to check from case to case whether the transforma-
tions (3.20) and (3.21) are properly nonsingular. Never-
theless, it is evident that we can begin to classify the
solutions by means of the case distinctions of Sec. II.
We shall use the results of Sec. II in the q language,
Eqs. (2.41)—(2.55), and make the substitutions q; ~ Q;,
b; —+ 8; in those equations.

First, let us recognize the special solution discussed
in Sec. III A in terms of the new variables. One verifies
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that that solution is case 2c, Eqs. (2.49)—(2.51).Indeed,
Eqs. (3.14)—(3.16) are equivalent to

Q22+Q22+Qss=-' —&s, (3.23)

d;, kd; ~ q~q bk. In order to be able to apply the arguments
of Sec. IIIA, it is convenient to make use of the
following identity, which is readily proved with the
help of the formulas given in the Appendix:

Qs= 2

83——0.
(3.24)

(3.25)
dijkd jlmqlqtn~k 2dijldjkmqlqm~k

+sq-'b'+sb-g-g' (4 1)

83= &s=0. (3.27)

Since we are interested in the special-solution condition
83——0, we must ask if this condition can. imply that
Bs= 0 as well. From Eq. (3.21) one checks that, since bs
and bs are linearly independent parameters, Bs/0.
Hence one can exclude case 1 altogether. Thus we have
shown that all solutions with q~/0 are contained in the
special solution.

Furthermore, cases 2a and 3 can also be thrown out,
as long as 83——0, by the same argument as just given.
Hence the only alternative solution to the special
solution is given by

qy= qp= $4= qg= q6= q7=0 ~

Qs(1—2Qs) =Bs,

Qs = —Qs'+Qs'+&s.

(3.28)

(3.29)

(3.30)

One can now ask the following question. Suppose a
specific form for p, X, o., and p, is given in terms of the
scalar products. This form then governs the behavior
of both the special and the alternative solution. Can
this form be such that the requirements on the special
solution are satisfied, while, at the same time, the
alternative solution gives rise to a qa, qs which are not
both realP If this were the case, only the special solu-
tion would be stable, a desirable situation. Ke have no
general answer to this question, but we have found some
cases where the answer to the question is negative.

Thus solutions with q~/0 are class 2c. There may
be more than one solution of this kind, depending on
the structure of p, n, X, and p. If so, further distinguish-
ing criteria will be necessary; similarly for the alterna-
tive solutions which are all class 2b.

IV. GENERAL RESPONSE EQUATION

As was mentioned at the end of Sec. I, there remains
the discussion of the role of terms with the structure

'4 We exclude the uninteresting case e=0.

Of course, while Eq. (2.51) implies the absence of a
weak driving term, Eq. (3.25) does not imply this at
all!

Next, note that for the cases 2a, 2b, and 3, we have
from Eqs. (2.42), (2.45), and. (2.53) that'2

Q2=Q2 ——0 ~ q2= g2=0. (3.26)

Thus none of these cases can generate a Cabibbo angle.
There remains case 1, which is characterized by

This relation leads to the following standard form for
the general response equations for one octet:

pgg=uv3d~& sgg gs+'b~+'V3dgrsgg bs'
+34~sg~(At~gtbm )+34;sb/ 4 ~ (4 2)

The distinguishing primes on the b factors represent
the independent freedom of scalings, as was discussed
in connection with Eq. (1.18). p and a, as well as the
scaling factors, may depend on the scalar products
made from q's and b's.

De6ne Q; and 8; as follows:

Q'= (~/p) q'+ (1/2p) (b''+~'), (4.3)

&'= (~/p') (b'+3d'Jsb "bs'")+ (1/2p) (b +4)
—(v3/4ps)d;, s(b +c,) (bs'+cs), (4.4)

where

C'=V3d "kq 4k (4.5)

Then, once again, we get the formal structure of the
special response equation

Q'= v3d';2Q, Qs+&;. (4 6)

Equations (3.20)—(3.22) must now be read as special
examples of Eqs. (4.3)—(4.5). With this understanding,
the content of Sec. III 3 can now be applied without
modi6cation to Eqs. (4.3)—(4.5). The special solutions
of Eq. (4.6) (special in the same sense as in Sec. III A)
are again contained in Eqs. (3.23)—(3.25). Also, it
remains true that none of the other cases can generate
a Cabibbo angle. One small difference should be noted:
Instead of Eq. (3.26), we now have

Ql Q2 0 +g1 g2 0p

provided that
2n+bs" &0.

(4.7)

(4.8)

It remains true that Eqs. (3.23)—(3.25) will in general
be sufhcient for the determination of q&, q3, qs. However,
one can easily verify that the simple factorization, as in
Eq. (1.19) or Eq. (1.25), does not hold for the general
case without further quali6cations.

APPENDIX

In the derivation of consistency conditions for
coupled SU(3) multiplets )as in Eqs. (1.22), (1.23),
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3'*;k&'l = jjjltjk +tj;m&kl &—;k&im

+fj lifkmi+fjmifkli y

fijkfilm= bgjAm &jm4l]+dj lAmi djmAli y

3 (ifikniflma+ifimaifkla+4'lsdkma)

=&'k% +&; fjkl+&;A

dkaldlbm~mck 2debc p

fka lAbmifmck =
b fa bc y

(A1)

(A2)

(A3)

(A4)

(AS)

(1.26), and (1.27)], the following identities are helpful: fkalflbmifmck 2ifsbc c
= —3

fkal flbmfmck g fake ~

(A6)

(A7)

The d symbols have been dehned previously. " The
f;;k are the totally antisymmetric structure constants
with the normalization f»k=1. Note that the identity
(A3) is to the d's what the Jacobi identity is to the f's.

Note added ijb proof Iam. indebted to L. Michel for
pointing out to me that such identities also occur in
I. Ogievetskii and I. V. Polubarinov, Yadern. Fiz. 4,
853 (1966) LEnglish transl. : Soviet J. Nucl. Phys. 4,
605 (1967)].
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The asymptotic behavior of amplitudes for meson photoproduction o8 fermions is investigated in a simple
perturbative model. It is found that a fixed power behavior and hence a fixed J-plane pole may occur even
if the produced meson is "composite. "The implications of this result are discussed.

I. INTRODUCTION

S INCE the discovery that Fubini —Dashen-Gell-Mann
sum rules lead to right-signature 6xed poles in

the complex angular momentum plane for Compton
scattering, '' there has been speculation that 6xed J-
plane poles may also occur in meson photoproduction. '4
Both processes, Compton scattering and meson photo-
production, have in common the fact that they do not
satisfy quadratic but only linear unitarity relations. A
fixed angular momentum pole for meson photoproduc-
tion could explain very naturally two features of this
process'. (1) The forward peak' (or at least a large
fraction of it) in mr+ photoproduction can be understood
without taking resource to a conspirator or a large cut
contribution. ' " (2) The fact that there is no shrinking
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2098.
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but that s'(do/dk) is independent of s Dor ~t~ )0.1
(GeV/c)b] in the energy range above 5 GeV' (up to
16 GeV to date) would, of course, be a direct conse-
quence of a 6xed pole at J= 0 in the angular momentum
plane.

Model investigations of Bronzan, Gerstein, Lee, and
Low' and Abarbanel, Low, Muzinich, Nussinov, and
Schwarz" have made it plausible that the fixed poles
are brought into the weak amplitudes (i.e., amplitudes
not subjected to quadratic unitarity) by the s- and
I-channel Born terms and are not cancelled by the
strong final-state interaction in the t channel.

Rubinstein, Veneziano, and Virasoro" have investi-
gated the relation between fixed poles and composite-
ness in a specific model. They consider a case where the
elementary particles are scalar and find that for photo-
production off scalar particles a fixed pole occurs at
J=O if the produced (scalar) particle is elementary,
but not if the produced particle is composite (composed
of two scalar particles). The results of Rubinstein,
Veneziano, and Virasoro apply also for the Born term
alone, and therefore one is led to the following conjec-
ture: A fixed pole occurs then and only then in a weak
amplitude, if the s- and m-channel Born terms give rise
to a 6xed pole.

"D.I. Abarbanel, F. E. Low, I.J. Muzinich, S. Nussinov, and
J. H. Schwarz, Phys. Rev. 160, 1060 (1967).
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