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suitable pion conspirator, having I¢(JP)C=1-(0*)+
at =20 (mmr)2. We have used the Gell-Mann!® ghost-
killing mechanism, which implies that the sense-sense
residue function vanishes at a;=0 (i.e., the trajectory
chooses nonsense), preventing a physical manifestation
of a OF particle at the pion mass.”'8

A similar treatment may provide other conjectured
conspirators, e.g., the K conspirator’” may be the
(5,27) 1 counterpart of the K*(1400). That these
new mesons have small widths was assumed! in order
to reproduce the symmetric two-peak structure in the
case of the 4,? and also explains why these mesons
may be hard to detect experimentally. Application of
this formalism to other relevant reactions involving Vs
exchange is now underway and will be reported in a
later paper.

18 M. Gell-Mann, in Proceedings of the International Conference
on High-Energy Physics, Geneva, 1962, edited by J. Prentki
(CERN Scientific Information Service, Geneva, 1962), p. 539;

M. Gell-Mann, M. Goldberger, F. Low, E. Marx, and F. Zacha-
riasen, Phys. Rev. 133, B145 (1964).
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A general dipole* (i.e., the amplitude is obtained by
differentiating the single Regge pole form for all ¢)
fit to reaction (1) was also tried, as well as some more
complicated forms of the mixed-meson amplitudes. The
best fit we were able to obtain for the general dipole
had X2=67, with 7 parameters and 32 data points. This
rather poor quality fit supports the common view
expressed in Ref. 1 that multiple poles in the S matrix
are produced by the (probably accidental) coalescence
of single poles and that therefore in the Regge picture
trajectories crossing at J=2, M=1.3 GeV would be
responsible for the double pole character of the experi-
mental? mass distribution.

The authors are especially grateful to Vesa
Ruuskanen for useful discussion and suggestions.

4T, Sawada, Nuovo Cimento 48, 534 (1967); R. Gatto,
Instituto di Fisica dell “Universita,” Firenze, report, 1967
(unpublished).
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The asymptotic behavior of electromagnetic form factors is examined for bound states treated by means
of the Bethe-Salpeter equation in the ladder approximation. Results are found which depend on the behavior
of the interaction at small distances, and the models examined are accordingly divided into regular and
singular cases. For spin-0 and spin-} bound states with regular interaction, the form factors go to zero as
(1/¢)? (apart from logarithmic factors). For singular cases (e.g., a spinless N-N bound state) it is shown
that the asymptotic behavior is worse and depends on the strength of the interaction. In all cases a behavior
more convergent than 1/¢? seems to occur, and to be related to the compositeness of the system rather than

to the structure of the interaction.

I. INTRODUCTION

HERE has recently been some interest in the
asymptotic behavior of electromagnetic form
factors.! This is in part due to the experimental result?
that the nucleon form factors decrease as (1/¢?)? for
large four-momentum transfer, g.
The fact that the form factor goes to zero indicates
that the bare electromagnetic charge is zero, while the
fact that there is no 1/¢® term suggests that the bare

1D. Amati, R. Jengo, and E. Remiddi, Phys. Letters 22, 674
(1966); 1. G. Halliday and P. V. Landshoff, Nuovo Cimento 51A,
980 (1967); J. Harte, Phys. Rev. 165, 1557 (1968).

2 See, e.g., W. K. H. Panofsky, in Proceedings of the Heidelberg
International Conference on Elementary Particles, edited by H.
Filthuth (North-Holland Publishing Co., Amsterdam, 1968),
p- 371; D. H. Coward e al., Phys. Rev. Letters 20, 292 (1968).

strong-interaction coupling constant also vanishes. As
this shows the nonelementary nature of the particle
in question, it seems worthwhile to examine simplified
composite models which can be treated rigorously.

The nonrelativistic potential model for s-wave bound
states gives results which depend on the behavior of the
potential at the origin. If the potential diverges as 1/7,
it follows in a straightforward way that the behavior is
(1/¢*)?. If the potential goes like (—\/7?), then the be-
havior depends on the strength of the singular part and
is given by (1/¢)VG0 (0<A<])3

A more realistic model is given by the ladder Bethe-

3 For potentials with hard core, also exponentially falling
behaviors can be obtained. Other conditions for exponential
falloff in nonrelativistic models have been examined by S. D.Drell,
A. C. Finn, and M. H. Goldhaber [Phys. Rev. 157, 1402 (1967)].
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Salpeter (BS) equation (Sec. II) in which the relativ-
istic structure of the composite particle is, at least
qualitatively, taken into account. In this paper we
shall rigorously treat a regular interaction model, i.e.,
g®? theory for spinless particles, and we shall also deal
with particles with spin and with singular interactions,
though on less rigorous grounds. In doing this we shall
exploit systematically the Deser-Gilbert-Sudarshan-Ida
(DGSI)* spectral representation of the wave function.
This representation embodies in a simple way both
analytic properties and asymptotic behavior of the
wave function in the relative momentum.

It is found® in this way (Secs. IT and III) that, in the
¢®* theory, the behavior of the charge form factor is
(1/¢®)?In(¢?/M?) for a spinless compound particle,
while it is (1/¢%)3In(¢®/M?) for a spin-1 particle. [In
this case the magnetic moment form factor goes simply
as (1/¢??%.] For a spin-} particle composed of spin-0 and
spin-% particles bound together via the exchange of a
scalar boson, we find analogous results (Sec. IV). No
claim of rigor is made for this case.

It must be remarked that, in both cases, the assump-
tion of an interaction mediated by a scalar particle is
essential to get the above-mentioned results. In fact
this assumption makes the interaction “regular” in
the sense that the asymptotic behavior of the wave
function does not depend on the strength of the inter-
action. Things behave differently, at least in the ladder
approximation, in more realistic cases, as, for example,
the pion as a N-NV (or quark-antiquark) bound state.

These singular cases are discussed in Sec. IV, and it
is pointed out that, while a behavior better than 1/¢2
seems always to occur, the (1/¢%? behavior is peculiar

to the regular case.

II. FORM FACTORS IN THE LADDER
APPROXIMATION

In the following we shall consider a bound state of
two spinless bosons with equal mass M. The matrix
elements of the current in the ladder approximation are

given by
Q2T 1)=2i / a*pdy(p+3Po) (p*+M?)
X[%(P1+P2)M+Pll]¢1(p+%l)l) ) (1)

4 S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev. 115,

'2391 60()1959); M. Ida, Progr. Theoret. Phys. (Kyoto) 23, 1151
1 .

% Similar results for the regular case have been recently ob-
tained by D. Amati, R. Jengo, H. Rubinstein, G. Veneziano, and
M. Virasoro [Phys. Letters 27B, 38 (1968)] by summing the
asymptotic behaviors of ladder diagrams, and by J. S. Ball and
F. Zachariasen [Phys. Rev. 170, 1541 (1968)] by inducing the
asymptotic properties of the vertex functions by looking at the
BS equations.

6 S. Mandelstam, Proc. Roy. Soc. A233, 248 (1955); K. Nishi-
jima, Progr. Theoret. Phys. (Kyoto) 13, 305 (1955); M. Ciafaloni
and P. Menotti, Nuovo Cimento, 46A, 162 (1966).
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where” P, P,y are the initial and final momenta of the
bound state, and

8:(p) = (2n) / p——ay

i(%)=(0| TL¥a(32) ¥ +(—32) ]| 4,73, )
Pi(w)= (4, Ps| T[W ' (52) ¥ (—5%)]]0).

The relation between ® and & is given, through the
analytic continuation in p,,® by?

d4
0= [ e -~ O

In Eq. (1), the BS wave functions, ®;(p) and ®.(p),
depend on the momenta Py and P; of the bound state.
They can be expressed in terms of the rest-frame wave
function ®(p) by means of a Lorentz transformation:

(p)=2(L7'p). (4)

As we are interested in the spacelike region g2 —w, we
shall evaluate the form factors using the Breit system:

Py= (O) 07 -9 iKO)) P2=(0’ 0) q; iKU)’ (5)

where Ko= (¢*+m?2)/2 and m is the mass of the bound
state. Then, for a spinless bound state, we have

. Ko ¢
F({Z2)=21/d4f’q’<171: Do, —p3—

Ko q
—po, —po——ps+3im

m m m m
Do
X(p*+M2)| 14—
K

o
Ky q K q

Xéb(pl, P2, —pst—po, —pot+—ps+ %M) . (6)
m m  m m

In contrast with the nonrelativistic case, it is clear
from Eq. (6) that the asymptotic behavior in ¢2 de-
pends in a rather involved way on the structure of the
wave function near the light cone. The use of the DGSI
representation of the wave function allows all the p
integrations to be explicitly performed; in this way
unambiguous results are obtained.

For a spinless bound state of mass » this represen-
tation is given by*1°

+ ® g(z,1)
B(p)=i / i / it o
o oo (B—mpet o

(=M1—3m)

" We shall use 4-vectors with imaginary fourth component and
Hermitian y matrices. A covariant normalization of initial and
final states is understood.

8 G. C. Wick, Phys. Rev. 96, 1125 (1954).

® M. Ciafaloni and P. Menotti, Phys. Rev. 140, B929 (1965);
Y. Ohnuki and K. Watanabe, Nuovo Cimento 39, 772 (1965).

10 M. Ida and K. Maki, Progr. Theoret. Phys. (Kyoto) 26, 470
(1961); N. Nakanishi, Phys. Rev. 130, 1230 (1963).
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[g(2t) can be chosen to be real; in this way &(p)= &(p)].
Clearly some properties of g(z,f) are needed. In the g®3
model, if the mass u of the exchanged particle vanishes,
it has been shown by Wick?® that

g6H=¢@0), ¢ ~ UFD).  (©®

If 45#0 the analogous properties are

[lseola<e, g6~ aF. O

More precisely, we shall prove in Sec. III that

/dtlg(z,t)l <constX (1—22). (10)

The properties (8), (9), and (10) are sufficient to
prove our results.

By substituting the representation (7) into Eq. (6),
and performing the p integrations by Feynmann
methods, we obtain

+1
F(g*)=

-1

o [(M+K? 2 K¢
I
atofl\ D> D Ko

where

K'=1(14+a)(1—2)P1+1(1—a)(1—2") P2,
D=p+3(1+a)+(1—a) +imi3(1+a)(1—2)
+3(1—a)(1—2)— 1]+ 1(1—a?)(1—2)(1—2)g*2 p*
+3(14+a)i+3(1—a)f' +1(1—a?)(1-2)(1—2)¢% (12)
It is then clear that the leading terms in Eq. (11)
are of the form

0 7‘.2
dzdz'do / didt' g(z,)g(z' ) (1—a?) X—

0 24
K/ 1

‘KT,B]’ ()

f dzdz'dtdt de g(2,0)g(# ) (1—a2)?
D12 +H3 (et (1-a)t+ (1) (1—2) (1~ 2)g* T
(13)

By using either the property (8) for u=0 or (10) for
u#0, the leading term of Eq. (13) is written as

1 1 )
f Ad\ / pdp f vdv(M2+Avg?)3=1(g?). (14)
0 0 0
This gives the behavior!!

1 q*
F(g¥)~~const X— 1n<—) , (15)
(¢»)?

M'2
which is valid for the g®* model.

11 The evaluation of 7(¢?) and of other more general integrals is
given in the Appendix.
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The extension of this result to higher partial waves is
not difficult. For simplicity, we shall limit ourselves to
the case u=0, where the following spectral represen-
tation holds for a /=1 bound state?:

+1 dz g(2)
1 (P—mprtp?)?
g(@~(17F2)? as z—1.

2D (p)=p: (i=1,2,3) (16a)

(16b)
The definition of form factors is given by

1/e(2|J,|1)=F (¢ K s&- e1+F 1 (q®) (22- geru— &au€1- Q)
+Fo(¢)K,(4&-q e1rq—&2-erg?), (17)
K#=P1u+P2m QI‘:%(P?M——])I#)’ €= (3*,i€0*) .

By using the expression of the current already given,
one obtains'® (¢=1,2, means transverse polarization in
the Breit system)

F—q*F o= 2i[d4p<f>2“(p+%1’2) (p*+M2)

X(A+po/Ko)®r1*(p+3P1), (18a)
Fy=—2% / d4pD.2(p+5P:) (p>+M?)
X(po/Ko)®1%(p+5P1), (18b)

and a more involved expression for longitudinal-longi-
tudinal transitions which gives the combination
Fstq*Fo—F .

Due to the representation (16), the leading term in
Eq. (18a) is given by the integral

LiNNdp pidy 1 d 1\* /¢
— = —l(qf")z(——) 1n<1?>. (19)
0 (M2+)\MVQ2)4 3 dg? g2 2

On the other hand, an extra convergence factor
A=(1—32) is obtained from Eq. (18b) because of the
presence of po/K, only, in the p integration. It follows!!
that In(¢?) disappears in the magnetic-moment form
factor. The final result is then

Fy(g)~(1/¢%)°In(¢*/M?), Fu(g)~>(1/¢*?,
Fo(g)~(1/¢%*In(¢*/M?).

This completes the treatment of the g®* model,
except for some mathematical details which will be
given in Sec. ITI. For further generalizations (Sec. IV),
it is important to investigate what the asymptotic
behavior of the form factors can be when the properties
of g(z,) are different from those used above [Egs.
(8)—(10)]. We shall see how the behavior of g(z,t) for
z—=1and {— oo controls both the asymptotic proper-
ties of the wave function in momentum space and of the
form factor in g2

(20)

12 R, E. Cutkosky, Phys. Rev. 96, 1135 (1954).
18 M. Ciafaloni and P. Menotti (Ref. 6).
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For the wave functions, two asymptotic limits are of

particular interest: p2—o and py=po+3m—o. We

notice that the latter appears naturally in the expres-
sion (6) for the form factor. From (7), for large %, we

have

B(p)~ f s+, Q1)

where we defined

a)=

-1

41
dz g(z,0).

If fo* g1()di< 0, we clearly have $(p)~(1/p*?3. This
is the regular case and the corresponding form factor
has been treated above. If gi({)~¢=? for {—c and
0<4<1, we have

f dt F¥(pr- 1)
~ / dr (1) ()0, (22a)
0

On the other hand, the behavior of g(z,) for z— 114
controls the behavior for ps=34m-+po— 0. In fact if we
put, for z— 1, g(z,)~(1—2)7g(), then we have, for
vl <1,
®(p1, p2, pot3m, po)

dzdt g(at)

=/ Lo+ po-mpo(l—2)+ ML

INMY o didn gll)
,_\,(__) / . (@2b)
mpd o (pitt+piAtatMito) '

From these remarks it is clear that the properties of the
spectral function g(z,f) for z— 1 and {— are related
to the nature of the interaction at small distances. In
particular we notice that, when 6>0, the vertex func-
tion vanishes in the limit p?—c0, so that the bare
(strong) coupling constant between the bound state and
its constituents is zero.

On the other hand, it is clear from Eq. (11) (inte-
grated by parts in ¢ and ') that the coefficient of 1/¢%
for g>— 0, is given by

const X [ e -——g(z t):] (23)
1—zdt

This means that, if g(z, ©)=0=g(1,f) (vanishing of the

bare coupling constant), then the form factor goes to

zero more rapidly than 1/¢? for ¢ — . More precisely,

1 We shall limit ourselves to wave functions which are even in
o and therefore, have positive norm (Ref. 9). This implies that
£(3,8) is even in z.
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the asymptotic behavior of the form factor is connected
with 6 and v as follows: If

gz)~1"(z) as (—,

we have, after performing in Eq. (11) the change of
variables:

=21+ M (1) (1—2)(1—)¢"Tr
and the analogous change for #, that
® drdr'ror'=
d2d? go(2)go(7 ) da(1—a2)1Ho
241 (1—et)(1=)(1=5)g" ]+

In order for the first integral to converge we must
require —% <§< 1. We can distinguish various cases:

(1) g(@~(1—2)"y>0 and 0<é<1.

F(g*)~~const X

(24)

(a) 26<vy<1.
Then

F(Q2)&constx[ f * M :r

-1 (l_z)l+28
+1 1 1428
X / da(l—-az)‘5<——> . (252)
-1 q2
(b)) 0<y<2s.
In this case one performs the change of variables
(1—2)=2%¢""M(1—a?~172,

and the analogous change for 2/, to obtain!?

ol M Gydy'xx’
F(g®) SconstX / R ——
o (14-axaf)ried

X / " da(l——a2)5"7(;12‘)1+7 (25b)

-1
~const X (1/¢) " In(g*/M?).
(2) gl)~(1—2)7, 0<y<1,

(a) 0<v'<28.

d=—¢, 0<d&'<3}.

With the same method as above, we get
ds go(3) 2/ 1\2
LN (i
(1—2)1-2 ] \g2
(@) 0<2<y'<1.
F(g®)~constX (1/¢2)+"" In(g®/M?).

F(g?)~constX [

(26b)
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We see therefore that according to the various cases
the asymptotic behavior of the form factor is dominated
by the behavior of g as £—® or as z— 1. In the last
section we shall comment on the relation between such
behavior of the spectral function g, and the interaction
at small distances between the particles that form the
bound state.

III. PROPERTIES OF THE INTEGRAL OPERATOR
FOR THE SPECTRAL FUNCTION

The purpose of this section is to prove, for the g®?
model, the relation (10) which has been used in deriving
the asymptotic properties of the form factor. Before
doing this, one has to give a characterization of the
function space in which the eigenvalue equation has to
be understood. We shall prove that the integral operator
K for the function

9(z,0)=(1—2")""2(z,1) 27

is bounded! and compact in the space of L? functions.
This result insures that the spectrum of the bound states
is discrete, and the finiteness of the L? norm for §
combined with some properties of the integral operator
will be sufficient to prove (10).

The two-dimensional integral operator K for the spec-
tral function g has been given by various authors.0:16
For the s wave, and using the representation (7) with
the cube in the denominator, K can be written in the
form

arl pt dx
K(z,t;z’,t’)=—[— / ——tﬁ(t)ﬁ(Ru—t)] ,  (28)
diL2 Jo x*u?

x2u
where

u(w; ¢5)=p(1—2) "2 [4+0(z)]—0(=), (29a)

Q@) =M>—im*(1—2"%), (29b)
R(z7)=(1—2)/(1—5") for z>7
=(1+42)/(1+5) for 3z<7. (29¢)

Clearly
K@t 2/ t)=(1—28)"12K (a,t; 2 ,t) (1—5 )12, (30)
and the eigenvalue equation we consider is
g=M\Kg. 31

The main difficulty in dealing with the kernel K is due
to the presence of a square-root singularity along the
line

t/R(z,2") = o(s',t) =1+ + 2u[ '+ Q@) 2. (32)

15 Tn the Appendix it is shown that K is bounded also in the
Banach space with the norm

Il =max (s |9 %0

This of course implies boundedness in the L? space.
16 G. Wanders, Helv. Phys. Acta 30, 417 (1957).
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However, it is proved in the Appendix that

| K| < Cit/R(t/R—p*—1) T
X[(t/R—p*—1)2—4u*(t'+Q(z")) 12, (¢/R>70)
S CLV4+QE) I+ +2ulV+0() ]2,
(#/R<7o). (33)
The boundedness of K is then shown by using Tiktop-
oulos’s method,'” choosing as test functions oi(z,f)
=1/, a2(¢,#')=1 and using the bounds (33).

For proving the compactness of K we approximate
it uniformly in the L? norm with operators K. which do
not have the square-root singularity; K. is defined to be
equal to K except for the supplementary restriction
| Ke| SCi[t/R(/R—p*— 1) T

X{LW/R—p* =) =4[+ Q) 1 P+e} 14 (34)
for #/R> 1o(z',¢'). From (33) and (34) it follows directly

that K, is square-integrable; i.e., it has a finite Schmidt
norm:

IR 2= / dzdid?dl | K (a,t; z’t’)|2<oé. (35)

In the Appendix it is proved furthermore that
IR—K||—, as e—0. (36)

Then from a well-known theorem!® the compactness of
K follows.
We come now to prove the relation

/w dt|g(z,8)| < constX (1—22), @37

where g is a solution of the eigenvalue equation (31).
By using again the bound (33), it is shown in the
Appendix that

[ dt]g(a)|

s °°““X/ dZR(52)A—2)[g] (&), (38a)

< const X / d?'R(z,3") / av|gl@, )], (38b)
0

Jel =] | ] g(a) 12]”2.

From the definition of R, and using Schwartz’s
inequality one gets, from (38a),

where

(39)

/ °° dt|g(z0) | < 1=2){C'[In(1-2)]*+C"}. (40)

17 G, Tiktopoulos, J. Math Phys. 6, 573 (1965).
18 See, e.g., F. Riesz and B. Sz. Nagy, Lecons d’analyse fonction-
elle (Academie des Sciences de Hongrie, 1952), Chap. IV.
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Then, by substituting (40) into Eq. (38b), one obtains
the final result, Eq. (37).

IV. GENERALIZATIONS TO SPIN-; PARTICLES
AND SINGULAR INTERACTIONS

In this section we shall first examine a spin-3 bound
state with “regular potential” and then some singular
cases. First we consider a spin-} particle interacting
with a spinless particle through the exchange of a
scalar meson to give a spin-3, even-parity bound state.!
In Sec. IT we have seen how the large ¢* behavior of the
form factors is related to the behavior of the spectral
function for £ — o and z—=-1. We shall now induce the
behavior of g(z,f) for  — < from the asymptotic proper-
ties of the c.m. wave function for p?—co; these can
be derived from the zero-energy equation (m=0) which,
as a rule, takes a rather simple form.? In our case the
general form of a spin-§ wave function is

¢= (Ef-);x>= [A4 (@2 p0)+ip "YB(P2,P0):|()(§> , (41)

where X is a two-component (constant) spinor and
A=A—pB, B=—B.
The BS equation has the form
¢=—G)[—iGP~p)-v+MI\i/=*)

(42)

% / S~ R+ T o), (43)

G)=[GP+p)+M T [GP—p)+M* T, (44)
and, for P=0, it can be easily reduced to the system
of differential equ- tions (u=0):

d2

;Z_2ES(S+M2) (MA+sB)]=—X\A4, (s=p?) (45)
s

d(1d
- Spetsraru—wmi) s
dslsds

There are two possible asymptotic behaviors of 4
and B in Eq. (45): The irregular®* behavior is given by

A=~s72% Bozpi(N)s2, (46a)
while the regular one is
Ags—'f” B&'I)Z(A)S.-4 ’ (46b)

19 This model is clearly unrealistic. Moreover, we shall limit
ourselves to the equal-mass case; this simplifies the formalism

somewhat.
20 The behavior for z — 1 depends on the asymptotic behavior

of ¢ for ps=po+3m — o, which cannot be deduced, of course,

from the zero-energy case.
21 The irregular behavior gives a divergent normalization

[cf. Eq. (50)].

M. CIAFALONI AND P. MENOTTI

173

and p; and ps are simple functions of N which canbe
easily deduced from (45). If the asymptotic behavior in
p? can be correctly derived from the zero-energy case
(as is usually assumed), then the following spectral
representations hold:

A / dzdt a(z,1)
(p*—mpoztp+1)*’

dzdt b(z,1)
-l |
(p*—mpoztp*+1)*

(47

where ¢ and b are integrable functions.

Now, the form factors Fi, F; and Gg, G are given
by the relations
(1/6) (2]]01 1>= GE(qz)X:ﬂXL GEEFl"— (q"’/m“’)Frz y
(1/6)(2| 71| 1)=Ga(g?) (g/m) (iXelosXa),

Gu=F1+F,,

where, if the charge belongs to the spin-{ constituent
we have®

(1/e)(2] 7, )= — / Epda(p+APs)
X’Yy¢1(P+%P1) (P2+M2) .

(48)

(49)

By substituting the wave function (41) into Eq. (49)
after performing the appropriate Lorentz transfor-
mations, we get

Galg)=i f dp(pH M A A,

+BB_o(p*+ po?+im*+ Kopo)
—BoA_(Kopo/m—gps/m~+3m)
—A4 B (Kopo/m~+gps/m+3im)], (50)
Gulg®)=1i f dp(p*+M)[AA_,

+B,B_y(p*— po*+im?) —BoA_o(mps/q+%m)
—A B_(~mps/g+3m)], (51)
A(p)=A(p1, p2, (Ko/m)ps—(g/m)po,
(Ko/m)po—(g/m) ps+3m),
Ao(p)=—LA4o(p,ps*)1*.

The leading terms of Eq. (51) are of the same form of
the spinless case, while those of Eq. (50) are of the form

(52)

dz didz’ dt'a(z,0)b(z' t') (1—a2)3(1—2)g?

[M2 -3 (=) + 1 (1—ad)(1—5)(1—2)g )¢
(53)
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The asymptotic behavior of (53) can be derived if one
knows the behavior of a(z,), b(2,f) for z—=1, i.e., the
behavior of 4 and B for ps= po+3m —o (Sec. II). As
G(p)~(mpo)~1, the form of Eq. (44) suggests?? that

(54)

This means that ¢ and b go to zero as (1Fz) for s —>=£1.
Then the leading part of (53) is reduced to the integral!

Ax~pe? Bo~pe? for  ps=potim—w.

Ld\ Ndu p2dyv v 1

T), Gy ¢ G

This means that
Gu(g)~(1/¢)*In(¢*/M?), Gr(gd)~1/¢g*,  (56)
Fi(g)~(1/¢%*In(g*/M?), Fa(g)=~=(1/¢»*. (57)

This is in qualitative agreement with the experimental
results on nucleon form factors. It must be remarked
that the assumed interaction is unrealistic; it is also
more regular than that due to the exchange of an ele-
mentary p meson or that due to an N* intermediate
state in the 7~V interaction. These singular interactions
(see the following) should give different asymptotic
behaviors. However, the presence of form factors (e.g.,
in the prr vertex) should bring back this problem to a
regular case.

We shall now examine two examples in which the
interaction turns out to be singular, in the sense that the
asymptotic behavior of the wave function in momentum
space depends on the strength of the interaction. The
simple (1/¢%)? behavior of the form factor is no longer
true, at least in the ladder approximation. The results
we shall obtain are, however, not rigorous because the
p? asymptotic behavior will be deduced from the zero-
energy case.
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Let us first consider a spinless, odd-parity, N-N
bound state (e.g., the pion in the Fermi-Yang model).
The ladder BS equation takes the form?

LGP+ p)y+MI[—iGP—p)y+M]

A d‘k
——Y5%7s,
=) (p—k)+w

while the form factor is given by

=i

(58)

Fg)=—Ki [ &

XTr{go(p+3Po)vabr(p+3P1) (ip-v+M)]. (59)

In the zero-energy case a plausible 0~ wave function is of
the form ¢=r;p(p?), where ¢ satisfies the Goldstein
equation (taken for u=0, as we are interested in the
large-p behavior)

dZ

;;;ES(S+M Del=—Ne, (s=p%). (60)

The indicial equation near the s= « singularity gives,
for the regular behavior (0<A<}),

g0, b=j+(—N<L. (1)

From the discussion of Sec. II it follows that, if for
m==0 we also take p="y;0(p),?* with

dzdt f(z,1)
o= [ )
(p*—mpoz+p*+1)?
then
fe )t f1(z) for (—o, (63)
By substituting (62) into (59), we easily obtain
dz dg'didtda f(2,t) f(',¥)(1—a2)(14a)(1—2) (6

F(g*)~const X /

By changing variables as in Sec. II, one gets
F(g?)~~const

y /dzdz' HEAE) 1= (1+a)(1~2)
DI+1(1-)(1=2) (1=

(65)

The asymptotic behavior of (65) can depend on the
behavior of fi(2) near z==1. If fi(z)~(1—2)7, v>0,

22 Equation (55) is based on the assumption that, in Eq. (44),
the integral over the interaction term goes as 1/po for ps=gpo
+4m-—w, This can be justified, although not rigorously, by
noting that the % integral, which gives the coefficient of the 1/po
behavior, is_convergent if the behavior (46b) is assumed.

D22+ ()i B (1) + (=) (1—2)(1—2)g]t

one has simply
F(g¥)~constX (¢®)~"1In(g¥/M? if (14-v)<28, (66a)
~constX (¢2)~% if (14v)>25. (66b)

From Eq. (66) it is clear that the A-dependent be-
havior (1/¢%)?% is the best one can expect, and that the

28 Equation (58) is written for symmetric pseudoscalar inter-
action in the isospin-1 channel; therefore it is not quite the Fermi-
Yang model which assumes a vector interaction, but can be
treated in the same way. One should notice that no proof is
available, to our knowledge, for the existence of solutions of this
equation. Therefore, until this proof is produced, no rigorous
treatment of the form factor can be made.

24 This form of the wave function is certainly inconsistent with
Eq. (58) for m<0. However, terms of this form clearly occur in
the form factor and our argument assumes that these are dominant.
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behavior (1/¢%? is possibly reached only for A — 0.
However, if ¥>0, the form factor goes to zero faster
than 1/¢2.

Analogous remarks hold for the case of a (neutral)
vector interaction between two scalar particles bound
together to give an s-wave bound state. After subtrac-
tion of the divergent part by means of a g¢* counter-
term, the ladder BS equation is written as

4’(?)=G(P)(—ik,/rz)/d4k[p.k+%(m2_ﬂz)]
X[(p—k)+u2T9(k). (67)

The zero-energy equation reduces to the differential
equation (u=0)

d(ld
- Snrarreoa) = ne, @9
dslsds
which admits the regular behavior
p(s)~s—2-8 §=(1—-N)12, (0<A<1). (69)

If the same behavior is assumed for m>=0, from the
discussion of Sec. II it follows that?s

(28<1), (70)

F(@=(g,
is the best behavior one can expect for 1>A>3.

In conclusion, while a behavior of the form factors
more convergent that 1/¢* seems to be a common feature
of these composite models, the actual behavior is model-
dependent. For the lowest partial waves (spin-0 and
spin-} cases) the (1/¢%)? behavior is reached [Eqgs. (15)
and (56)] only if the relativistic interaction is regular
at the origin; otherwise a behavior occurs which is
dependent on the strength of the singular part (Egs.
(66) and (70)] as in the nonrelativistic case. For higher
partial waves, one has similar results, with a scaling of
one power of ¢ (Eq. 20) in the regular case; in the
singular case the ! dependence is more complicated
because the critical value of X is by itself / dependent.
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. % Equation (70) refers to the form factor of Eq. (6). For vector
interaction there is another contribution to the form factor in
the ladder approximation, which is not examined here.
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APPENDIX

1. Evaluation of an Integral

In the text we have used several times the asymptotic
behavior of the integral

1 1 1
/ e / du / dv (- wg?)—i-¢, (A1)
0 0 (1]

(0<a<b<c<d).

By using the change of variables

v=2"/u!, u=u'/N, A=N/¢g, (A2)

one obtains

q2 A’
(QZ)—I—a / d)\/}\/a:—-b-»l / d#/ﬂ’b—o—l
0 0

’

W :
X / dv'v' (1414, (A3)
0

It is now clear that the behavior of this integral is
constX (1/¢9)*ex 1 if a<b,
XIng? if a=6<c,
X(lng?)? if e=b=c<d,
X(lng®? if ae=b=c=d.

In the same way one can obtain the asymptotic be-
havior of (A1) in the case ¢>d.

(Ad)

2. Bounds on the Kernel K

We shall prove here the inequalities (33) for the
kernel K. For ¢/R> 1, K can be rewritten as follows:

1
K==

1 dx Ldx
——~6(Ru——t)—-12—R/ — 8(Ru—1t). (AS)
2 /o x°u? 0 X’u
Defining
H(t/R,%'1)6(t/R—1)
. ldx
=%R/ —(Ru—t)=———
0o« 2(0+0()
(¢/R—u2—1¢)0(/R—70)
, (A6)
{(/R—p*— 1)~ 42 [/ +Q() ]} 1/
we have
R(z,2")
K=/ dR't'H(/R' & ¥)— (R/OH(/R,Z ')
0
* dr d d ari
;:f — —H(r,7 )+ dr—[—H('r,z',t’):,
yr T2 dT yr drlr
° dr d
=/ CHGg ). (A7)
t/R T dT
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For /R <1, on the other hand, we have

1 rldx *
K=- f _=f dr o H(rd ). (A8)
2 0 To(t',2')

x2u?

One may note how in this region K does not depend on
¢t and 2. Noting that

oH
B—(7’,Z’,t’)<0 for t/R>r,
i

we have

R 0 0
K| <—[— / ir ——H(r,z',m}
14 t/R or
R t 1 t/1t 1
ey sl o]
L \r 2040 R\R

t
><|(E—u2~z')2—4mtt'+@<z'>3}—w. (49)

For {/R< o we have, from (A8),
1 © dr’
“erawn )
20040 Jo ()H2(r'+710)%2
SCLI+0E) I [, ) 1.

By making use of this bound we prove now Eq. (38)
of the text:

00 0 +1
[ it ¢(z,)| < Cy / it f i
0 0 —1

« /‘*’ drR(z,7)|g(# )|
o T(r—p2 =) (r—p2 =)~ 42 [+ Q(z") ]} 112

K|

(A10)

+C f dtds' R(z,2)[{+Q() ] gz t)|. (A1)

By changing variables, the first term on the right-hand
side can be put in the form

1 00 o0 R ! 4 t’
/* dz,/ dt,/ 0 (2,2)]g(#,1)| .
-1 0 0 (x24-70) {x2+ ZMD"{‘ Q(zl)jm}
(A12)
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Equation (38b) is then obvious and Eq. (38a) follows
from the Schwartz inequality.
3. Compactness and Boundedness of K

In order to prove the compactness of K, one considers
the kernels K., defined through Eq. (34) of the text.
From the inequalities (33) and (34) it follows that the
kernels K. are square-integrable, i.e., have a finite
Schmidt norm [Eq. (35) of the text]. We now have to
prove that

IE~EK||—0 as e—0.

Of course one needs to examine only the region £/ R> 7o.
Here one applies the relation

1 dye
A'—I/Z_ (A2+62)—1/4=— / —_—
4 0 (A2+62y)5/4

<C(m)end—12= (A13)

with 0<5<3%, and
A= (t/R—p*— )= 41 +Q(=) ].

All the reasoning on the boundedness of K can be re-
peated with 41/2+7 replacing A2 and this proves that

|[K—EK| <constXe?— 0, (0<n<3}). (Al4)

Finally we note how K is bounded also according to
the more stringent norm

gl =maxlgl (9 =ma{ [ wal) . @

This means that ||g||:(z) goes to zero for z—=1 at
least as (17F3)!/2, To obtain this result, we note that

IRall <max [a1R]GEl @) (16)

But using Tiktopoulos’s method one obtains
IIK||e(2,2") < const X [R(z,2") ]*2, (A17a)

so that
[|K1|:(z,2") < const. (A17b)

From (A17b) and (A16) we get the stated result.



