
suitable pion conspirator, having I~(J~)C=1 (0+)+
at f—0—(mw)'. We have used the Geii-Mannts ghost-
killing mechanism, which implies that the sense-sense
residue function vanishes at ns ——0 (i.e., the trajectory
chooses nonsense), preventing a physical manifestation
of a 0+ particle at the pion mass. 7'

A similar treatment may provide other conjectured
conspirators, e.g., the E conspirators may be the
(5,27) 's counterpart of the K*(1400). That these
new mesons have small widths was assumed' in order
to reproduce the symmetric two-peak structure in the
case of the A2, '~ and also explains why these mesons
may be hard to detect experimentally. Application of
this formalism to other relevant reactions involving V2

exchange is now underway and will be reported in a
later paper.

'3 M. Gell-Mann, in Proceekegs of the International Conference
on High-Energy Physics, Geneva, D'6Z, edited by J. Prentki
(CERN Scientific Information Service, Geneva, 1962), p. 539;
M. Gell-Mann, M. Goldberger, F. Low, E. Marx, and F. Zacha-
riasen, Phys. Rev. 133, 3145 (1964).

A general dipole" (i.e., the amplitude is obtained by
differentiating the single Regge pole form for all f)
fit to reaction (1) was also tried, as well as some more
complicated forms of the mixed-meson amplitudes. The
best fit we were able to obtain for the general dipole
had &'= 67, with 7 parameters and 32 data points. This
rather poor quality fit supports the common view

expressed in Ref. 1 that multiple poles in the 5 matrix
are produced by the (probably accidental) coalescence
of slnglc poles and that therefore ln thc Rcggc plcturc
trajectories crossing at J=2, 3f= j..3 GeV would be
responsible for the double pole character of the experi-
mental' mass distribution.

The authors are especially grateful to Vesa
Ruuskanen for useful discussion and suggestions.

14 T. Sawada, Nuovo Cimento 48, 534 (1967); R. Gatto,
Instituto di Fisica dell "ITniversita, " Firenze, report, 1967
(unpublished).

P H VS ICAL REVIEW VOLUME 173, NUMBER 5 25 SEPT EM BER 1968

Asymptotic Behavior of Forxn Factors for Some Composite Models

M. CIAFALONI AND P. MENOTTI

Scuola Normal@ Superiore, Eisa, Italy

Istituto Nationale di Pisica XNcleare, Serio' Ci Eisa, Eisa, Italy

(Received 6 May 1968)

The asymptotic behavior of electromagnetic form factors is examined for bound states treated by means
of the Bethe-Salpeter equation in the ladder approximation. Results are found which depend on the behavior
of the interaction at small distances, and the models examined are accordingly divided into regular and
singular cases. For spin-0 and spin-$ bound states with regular interaction, the form factors go to zero as
(1/g') l (apart from logarithmic factors). For singular cases {e.g., a spinless E'-X bound state) it is shown

that the asymptotic behavior is worse and depends on the strength of the interaction. In all cases a behavior
more convergent than 1/q' seems to occur, and to be related to the compositeness of the system rather than
to the structure of the interaction.

I. INTRODUCTION

HERE has recently been some interest in the
asymptotic behavior of electromagnetic form

factors. ' This is in part due to the experimental result'
that the nucleon form factors decrease as (1/q')' for
large four-momentum transfer, q.

The fact that the form factor goes to zero indicates
that the bare electromagnetic charge is zero, while the
fact that there is no 1/qs term suggests that the bare

'D. Amati, R. Jengo, and K. Remiddi, Phys. Letters 22, 674
(1966);I. G. Halliday and P. V. LandshoB, Nuovo Cimento 51A,
980 (1967);J. Harte, Phys. Rev. 165, 1557 (1968).' See, e.g., W. K. H. Panofsky, in EroceeChggs of the Be@'elberg
Igternatiof/Ial Conference on Elementary Particles, edited by H.
Filthuth (North-Holland Publishing Co., Amsterdam, 1968},
p. 371; D. H. Coward et ul. , Phys. Rev. Letters 20, 292 (1968).

strong-interaction coupling constant also vanishes. As
this shows the nonelementary nature of the particle
in question, it seems worthwhile to examine simpli6cd
composite models which can be treated rigorously.

The nonrelativistic potential model for s-wave bound
states gives results which depend on the behavior of the
potential at the origin. If the potential diverges as 1/r,
it follows in a straightforward way that the behavior is
(1/qs)'. U the potential goes like (—X/r'), then the be-
havior depends on the strength of the singular part and
is given by (1/qs)'+~" "& (0(X&-,').'

A more realistic model is given by the ladder Bethe-

'For potentials with hard core, also exponentially falling
behaviors can be obtained. Other conditions for exponential
falloff in nonrelativistic models have been examined by S. D.Drell,
A. C. Finn, and M. H. Goldhaber LPhys. Rev. 157, 1402 (1967)g.
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Salpeter (BS) equation (Sec. II) in which the relativ-
istic structure of the composite particle is, at least
qualitatively, taken into account. In this paper we
shall rigorously treat a regular interaction model, i.e.,
gC' theory for spinless particles, and we shall also deal
with particles with spin and with singular interactions,
though on less rigorous grounds. In doing this we shall
exploit systematically the Deser-Gilbert-Sudarshan-Ida
(DGSI)4 spectral representation of the wave function.
This representation embodies in a simple way both
analytic properties and asymptotic behavior of the
wave function in the relative momentum.

It ls found m this way (Secs. II and III) that) 1ll 'the

gC' theory, the behavior of the charge form factor is
(I/q')'1n(q'/SI') for a spinless compound particle,
while it is (1/q')' In(q'/M') for a spin-1 particle. LIn
this case the magnetic moment form factor goes simply
as (I/q')'. j For a spin-2 particle composed of spin-0 and
spin--,' particles bound together via the exchange of a
scalar boson, we 6nd analogous results (Sec. IV). No
claim of rigor is made for this case.

It must be remarked that, in both cases, the assump-
tion of an interaction mediated by a scalar particle is
essential to get the above-mentioned results. In fact
this assumption makes the interaction "regular" in
the sense that the asymptotic behavior of the wave
function does not depend on the strength of the inter-
action. Things behave differently, at least in the ladder
approximation, in more realistic cases, as, for example,
the pion as a EE(or quark-an-tiquark) bound state.

These singular cases are discussed in Sec. IU, and it
is pointed out that, while a behavior better than I/q'
seems always to occur, the (I/q')' behavior is peculiar
to the regular case.

(2)

The relation between 4 and C is given„ through the
analytic continuation in po,

' by'

c"(p)= e '"*u'(*)=—Lc'(p,po*)j*.
(2m)'

In Eq. (1), the BS wave functions, i'q(p) and C2(p),
depend on the momenta I'» and I'2 of the bound state.
They can be expressed in terms of the rest-frame wave
function 4(p) by means of a Lorentz transformation:

(4)

As we are interested in the spacelike region q' ~~, we
shall evaluate the form factors using the Breit system:

I'g (0, 0, —q;iE——O), Eg=(0, 0, q; iEp), (5)

where Eo——(q'+vs') '" and m is the mass of the bound
state. Then, for a spinless bound state, we have

~(p+~)(+—
I

po&

E,&

( Eg q Eo q
&&@'I p~ p2 pa+ po, —po+ p—~+5~—I (—6)'m m 'm m

where' I'~,I'2 are the initial and 6nal momenta of the
bound state, and

4,(p) = (2s.)
—' d4xe'&*q;(x),

In the following we shall consider a bound state of
two spinless bosons with equal mass 3f. The matrix
elements of the current in the ladder approximation are
given by

&&I3(&~+&2).+p.j~ ~(p+5&~), (&)

' S. Deser, W. Gilbert, and K. C. G. Sudarshan, Phys. Rev. IIS,
731 (1959); M. Ida, Progr. Theoret. Phys. (Kyoto) 2B, 1151
(196O).

~ Similar results for the regular case have been recently ob-
tained by D. Amati, R. Jengo, H. Rubinstein, G. Veneziano, and
M. Virasoro I Phys. Letters 278, 38 (1968)j by summing the
asymptotic behaviors of ladder diagrams, and by J. S. Sall and
F. Zachariasen I Phys. Rev. 170, 1541 (1968)j by inducing the
asymptotic properties of the vertex functions by looking at the
BS equations.

6 $. Mandelstam, Proc. Roy. Soc. A233, 248 (1955); K. Nishi-
jima, Progr. Theoret. Phys. (Kyoto) 13, 305 (1955); M. Ciafaloni
and P. Menotti, Nuovo Cimento, 46A, 1.62 (1966).

In contrast with the nonrelativistic case, it is clear
from Eq. (6) that the asymptotic behavior in q' de-
pends in a rather involved way on the structure of the
wave function near the light cone. The use of the DGSI
representation of the wave function allows all the p
integrations to be expHcitly performed; in this way
unambiguous results are obtained.

For a spinless bound state of mass m this represen-
tation is given by' '0

g(s, t)
ds dh

0 (p epos+ p'+~)'

(p'—=M' —4es')

7 We shall use 4-vectors vrith imaginary fourth component and
Hermitian y matrices. A covariant normalization of initial and
final states is understood.

8 G. C. Wick, Phys, Rev. 96, 1125 ($954).
9 M. Ciafaloni and P. Menotti, Phys. Rev. 140, 8929 (1965);

Y. Ohnuki and K. %atanabe, Nuovo Cimento 39, 772 (1965).' M. Ida and K. Maki, Progr. Theoret. Phys. (Kyoto) 26, 470
(1961);N. Nakanishi, Phys. Rev. Do, 1230 (1963).
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ASYMPTOTIC BEHAVIOR OF FORM FACTORS

We see therefore that according to the various cases
the asymptotic behavior of the form factor is dominated
by the behavior of g as t —+'~ or as s —+ 1. In the last
section we shall comment on the relation between such
behavior of the spectral function g, and the interaction
at small distances between the particles that form the
bound state.

III. PROPERTIES OF THE INTEGRAL OPERATOR
FOR THE SPECTRAL FUNCTION

The purpose of this section is to prove, for the g4'
model, the relation (10) which has been used in deriving
the asymptotic properties of the form factor. Before
doing this, one has to give a characterization of the
function space in which the eigenvalue equation has to
be understood. We shall prove that the integral operator
K for the function

(t(s, t) =—(1—z') '"g(z, t) (27)

is bounded" and compact in the space of I.' functions.
This result insures that the spectrum of the bound states
is discrete, and the 6niteness of the L,' norm for g
combined with some properties of the integral operator
will be sufficient to prove (10).

The two-dimensional integral operator E for the spec-
tral function g has been given by various authors. ""
For the s wave, and using the representation (t) with
the cube in the denominator, E can be written in the
form

IE, I'=— dzdtds'dt'IE, (z, t; s't')
I
2& (35)

In the Appendix it is proved furthermore that

IIX,—Eff —& p as « —+0. (36)

Then from a well-known theorem" the compactness of
E follows.

We come now to prove the relation

However, it is proved in the Appendix that

IR'I & C&Cl/R(t/R )22—t')—] '
&& I:(t/R —t

'—t')' —4t '(t'+Q(s'))]'" (t/R) «)
& cpl t'+Q(s')] '(t'+t '+2t Lt'+Q(s')]'") '

(t/R&«). (33)

The boundedness of E is then shown by using Tiktop-
oulos's method, '~ choosing as test functions o2(s, t)
= 1/gt, o.2(s', t') = 1 and using the bounds (33).

For proving the compactness of K we approximate
it uniformly in the 1.' norm with operators K, which do
not have the square-root singularity; E, is dehned to be
equal to E except for the supplementary restriction

I K,
I

& C,Lt/R(t/R —t
2—t')]-'

&&(L(t/R —
t
'—t')' —4) 'I:t'+Q(z')]]'+") '" (34)

for t/R) «(s', t'). From (33) and (34) it follows directly
that E, is square-integrable; i.e., it has a finite Schmidt
norm:

where

d 1 'dx
R(z, t;z', t') =—— te(t) e(R2t—t), (28)

dt-2 0 s I dt
I g(s, t) I

~& const)((1 s'), — (3'/)

where g is a solution of the eigenvalue equation (31).
By using again the bound (33), it is shown in the

Q(s') =—M2—42222(1 —s"), (29b) Appendix that

R(s,z') —= (1—s)/(1 —s') for s) z'

—=(1+s)/(1+s') for s &s'.

Clearly

( )
dt fg(s, t)

I

0

& const&( ds'R(s, s') (1—s")'tp
I fg I f,(s'), (38a)

E(s t; z' t') = (1—s')-'"E(s t s' t')(1—s' ')'" (30)

and the eigenvalue equation we consider is

g= kKg. (31)

The main difBculty in dealing with the kernel K is due
to the presence of a square-root singularity along the
line

where

llgli (z)=— dt fg(z, t) I' (39)

~& const)& ds'R z,s' dt' g s',t', 38b
0

—1/2

t/R(s s&) «(s& ti)=t&+t22+2t2[f+Q(z&)] —1/2 (32) From the definition of R, and using Schwarts's
inequality one gets, from (38a),

"In the Appendix it is shown that E is bounded also in the
Banach space with the norm

Ilnll'= ~ax(J'lu(p, t) I
«dt)'"

This of course implies boundedness in the L' space.
' G. Wanders, Helv. Phys. Acta 30, 417 (1957).

dt fg(s, t)
I

& (1—z')(O'Lln(1 —s')]'t'+C"). (40)

'~ G. Tiktopoulos, J. Math Phys. 6, 573 (1965).
'8 See, e.g., F. Riesz and 3; Sz. Nagy, I.egons d'analyse fonctzon-

elle (Academic des Sciences de Hongrie, 1952), Chap. IV.
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Tllen by substltutlng (40) lllto Kq. (38b) 011e obtallls
the final result, Eq. (37).

IV. GENERALIZATIONS TO SPIN-~i PARTICLES
AND SINGUI AR INTERACTIONS

In this section we shall erst examine a spin-~ bound
state with "regular potential" and then some singular
cases. First we consider a spin--, particle interacting
with a spinless particle through the exchange of a
scalar meson to give a spin- —', even-parity bound state."
In Sec. II we have seen how the large q' behavior of the
form factors is related, to the behavior of the spectral
function for t ~~ and s ~&1.We shall now induce the
behavior of g(s, h) for h ~~ from the asymptotic proper-
ties of the c.m. wave function for p' —+~; these can
be derived from the zero-energy equation (m= 0) which,
as a rule, takes a rather simple form. "In our case the
general form of a spin-~ wave function is

and pl and pq are simple functions of X which can be
easily deduced from (45). If the asymptotic behavior in
p' can be correctly derived from the zero-energy case
(as is usually assumed), then the following spectral
representations hold:

(~/)(2IJ. II)=G-«)"", G.=~. «/ ».-,
(I/e)(2IJII &)=&~(q')(q/m)(&x '~2x2)I

Gsr=—~1+~1,
(48)

dsdh a(s, h)

(P' mpos+-p2+h)'

dsdh b(s, h)

(P' mPoz—+p'+ h)
'

where a and b are integrable functions.
Now, the form factors P~, Ii 2 and Gg, G~ are given

by the relations

I=LA(y', po)+&p vB(y', po)jl I, (4&) where, if the charge belongs to the spin--,' constituent
we have'

where X is a two-component (constant) spinor and

A =A poB, B=—B—. (42)

The BS equation has the form

&=—&(P)L—i(V' —P) v+Mj(&i/~')

d'&L(P —&)'+p'3 '0(&) (43)

(I/)&2I~. I»=- d p~.(p+ ,~.)-
XVAI(P+2I'I)(P'+M') (49)

By substituting the wave function (41) into Eq. (49)
after performing the appropriate Lorentz transfor-
mations, we get

GII(g') =i d'P(P'+M') PA,A,
«p) =-L(-'&+p)'+M'3-'L(-'&-P)'+M'j-' (44)

and, for I'=0, it can be easily reduced to the system
of d16erentlal equ~tlons (p,=0):

d2
[s(s+M')(MA+sB)]= —XA, (s=—p') (45)

ds2

6———Ls'(s+M')(A —MB)j =)B.
ds sds

There are two possible asymptotic behaviors of A
and B in Eq. (45): The irregular" behavior is given by

A~s-', B~pI(X)s ',
while the regular one is

+B,B,(y'+ po'+ ,'m'+Eopo)-
—8, A, ( ltopo/m—gpa/m+-, 'm)

—A,B,(Kopo/m+gp3/m+ ', m)], (50)-
d4P(P'+M') EA aA a-

+B,B,(Ps' —po'+ ,'m') —B,A, (m-ps/g+-, Im)

—A,B,(—mp, /g+-,'m)j, (5i)

A, (p) =—A (pI, ps, (Eo/m) ps —(g/m) po,

(Eo/m)PD (g/m)Ps+ ,'m), —(52)-
Ao(p) =——LA o(y,P0*)j*.

A —s-', B~pg(X)s ', (46b)

'9 This model is clearly unrealistic. Moreover, we shall Hmit
ourselves to the equal-mass case; this simplifies the formalism
somewhat."The behavior for s -+ I depends on the asymptotic behavior
of @ for ps =p0+ ~m —+ ~, which cannot be deduced, of course,
from the zero-energy case.

2' The irregular behavior gives a divergent normalization
I cf. Eq. (50)j.

The leadIng terms of Eq. (51) are of the same form of
the spinless case, while those of Kq. (50) are of the form

ds dhds' dh'a(s, h) b(s', h') (I—n')'(I —s)g'

LM'+l(I+ )h+l(l —)h'+l(I —')(I—s)(I—s')g'3'

(53)
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The asymptotic behavior of (53) can be derived if one
knows the behavior of a(s, t}, b(s, t) for s-+%1, i.e., the
behavior of A and 8 for pa

——po+x~m —+~ (Sec. II). As
G(p) (mpo) ', the form of Kq. (44) suggests" that

A~pa ', B~p~ ' for pa
——pa+2'waco. (54)

This means that a and b go to zero as (1&s) for s —+&1.
Then the leading part of (53) is reduced to the integral"

'D. Xdp p'Ck s'
gr2

o (M'+Xpuq') 4 q'

Let us first consider a spinless, odd-parity, S-S
bound state (e.g., the pion in the Fermi-Yang model).
The ladder BS equation takes the form"

[i(-,'P+p)p+M)p$ —i(,'P -p)7—+Mj
d'k

V~PVs, (5g)
(p —k)'+y'

while the form factor is given by

This mcRIis that

G (q2)~(1/q2) 2 in(q2/MR) G (q2)~1/q2 (56)

Fg(q') (1/q')' ln(q'/M'), F (q') (1/q')'. (57)

This is in qualitative agreement with the experimentaI
results on nucleon form factors. It must be remarked
that the RssuIIlcd lntcI'action ls Unrealistic; lt ls Rlso
more regular than that due to the exchange of an ele-
mentary p meson or that due to an S* intermediate
state in the x-S interaction. These singular interactions
(see the following) should give different asymptotic
behaviors. However, the presence of form factors (e.g.,
in the ps-s vertex) should bring back this problem to a
regular case.

We shall now examine two examples in which the
interaction turns out to be singular, in the sense that the
asymptotic behavior of the wave function in momentum
space depends on the strength of the interaction. The
simple (1/q')' behavior of the form factor is no longer
true, at least in the ladder approximation. The results
we shall obtain are, however, not rigorous because the
p' asymptotic behavior will be deduced from the zero-
energy case.

The indicial equation near the s= 00 singularity gives,
for the regular behavior (0&X&-„'),

s s-&-', S=-',+(-,' —X)'»&1. (61)

From the discussion of Sec. II it follows that, if for
mx0 we also take y=y5p(p), 24 with

dsdt f(s, t).(p)=
(p' ~pos+p'+f}2

(62)

f(s,t) t'f~( )sfor-
By substituting (62) into (59), we easily obtain

(63)

XT ~~.(p+ .P.).-~.(p+ ,P }(-p ~+Mn (59}.
In the zero-energy case a plausible 0 wave function is of
the form p=y~y(p'), where y satisfies the Goldstein
equation (taken for @=0, as we are interested in the
large-p behavior)

d2

Ls(s+M') p]= —Xq, (s—=p').
Js

ds ds'dhdt'du f(s,t)f(s', t'}(1—a') (1+u)(1—s)
F(q')~constX

$M'+-2(1+a) t+-', (1—a)/1 x'(1—u') (1—s) (1—s')q' J
Sy changing variables as in Sec. II, one gets

F(q')—const

d.ds' y, (s)/, (s')(1—u )&(1+u}(1—«)
(65)

t M'+-'(1 —a') (1—s)(1—s')q'g"

The asymptotic behavior of (65) can depend on the
behavior of f~(s) near s=~i. U f~(s) (1—s)&, y)0,

~~ Equation (55) is based on the assumption that, in Eq. (44),
the integral over the interaction term goes as I/po for pg=po
+~m —+~. This can be justified, although not rigorously, by
noting that the k integral, which gives the coefBcient of the 1/po
behavior, is convergent if the behavior (4') is assumed.

one has simply

F(q')~constX(q') ~' ln(q'/M') if (1+y)&28, (66a)

constX(q') " d (1+7)&26. (66b)

From Kq. (66) it is clear that the X-dependent be-
havior (1/q')" is the best one can expect, and that the

I' Equation (58) is written for symmetric pseudoscalar inter-
action in the isospin-I channel; therefore it. is not quite the Fermi-
Yang model which assumes a vector interaction, but can be
treated in the same way. One should notice that no proof is
available, to our knowledge, for the existence of solutions of this
equation. Therefore, until this proof is produced, no rigorous
treatment of the form factor can be made."This form of the wave function is certainly inconsistent with
Eq. (58) for m/0. However, terms of this form clearly occur in
the form factor and our argument assumes that these are dominant.
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H(t/R, s', t') 8(t/R go)—
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'dx '" '
2(+O(. ))0 x

(t/R t" t') 0(t/R— —
—'-t')'-4"Lt'+a(")])'"{(t/R —t4' —t —

p,

RR' ' t') —(R/t)e(t/R, s', tdR't 'H t R,s,

a(~,s', t')—+-
dT

dr H(r, s',t')——
f,/Bg d7 '-T

( 3',t'). (A7)
t/R T 4T

nds on the Kernel E
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For t/R&T», on the other haand we have

1
E=—

2

' dx

X Q
dT T 'H(—T,s', t') . (AS)

we have

dT H(T, s',t-IKi

——1

2(t'+Q') R RE.

&& )" )'—' 41"—L~'+—Q(s') j '" (A9)

AsFor ty vo w/R& we have, from ( ),

2t' Q(")) o (')"'("+ o)'"

(A10)&C L~'+Q(s')j 'ETo(s, t)7

E . 38)f this ount
'
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of the text:

dt fg(s, t)
I
&C~ dt'

0

dz

de(s, s') fg(s', t')
f

T ' t')' 4y'[—f+—Q(s')—j ' '
T(T )J, 3 T )«S0

0
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, ', ') 0 for t/E)T0,( TS,t)&
87
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from the Schwartz inequality.
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Here one applies the relation

dy &2

A ')' —(A'+»') '"=-

(Cg c&—C '«A-'~'-» (A13)
with 0(g(~, and

A=—t E~—'—&')'-4 'L~'+Q(")j.
on the boundedness of K can be re-All the reasoning on e

d with A'"+«replacing 2')' an ipeated wit

~ 0 -') . (A14)K,—Kll &const)& e ~ 0,'»~0 0&»)&~ .

E is bounded also according toFinally we note how E is oun

the more stringent norm
Z/2

g = =—max dtfgf' . (A15)llgll'=m»llgll (s)=—m» g

for z —+&1 att,(s) goes to zero for
'/'. To obtain this resu, wleast as (1&s . o o
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IIK,—Zff -+0 as e~ 0.

C, dt'ds'E(s, s')
I t'+Q(s') j- lg(s, '', t')

I
. (A11)

y c
' '

es the first term on th 'ge ri ht-handBy changing variables, e
side can ebe put in the form

IIKgll'&m» ds'IIKII (s,")llg
g

ethod one obtainsBut using 1T'ktopoulos's metho

ZZ'IIKI f,(s,s') ~&constX LR(s,s )

(A16)

(A17a)

dZ

so that

ffKII (s,s') &const. (A17b)
E(s,s')

f
g(s', t')

I

(*+T,)(*'+2&f f+ Q(")]')~
(A17b) and (A16) we get the stated resu t.(A12) From


