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The sum rule for the Bethe inelastic-scattering cross sections is applied to the negative
hydrogen ion, for which it yields the asymptotic total cross section for electron detachment

by charged-particle impact. The calculation requires knowledge of two properties of H

the incoherent-scattering function, which is computed from several different ground-state
wRve functions, Rnd the osclllatol-stlength distrlbutlon, which ls deduced from a vRrlety
of experimental and theoretical data. The resulting detachment cross section for electron
impact, including all final H-atom states, is 0'tot= 4mo (A/X) I7.484ln(l'jA) + 25. 3 + 1.5],
where ao is the Bohr radius and T/8 the incident energy in rydbergs. Our result is
consistent with the exoerimental data of Dance, Harrison, and Rundel, but incompatible
with those of Tisone and Branscomb. A tabulation of the incoherent-scattering function and

the atomic form fRcto1 ls Rlso given.

I. INTRODUCTION

Electron detachment from the negative hydrogen
ion by electron impact has been the subject of
many expex'imental and theoretical investigations,
in part because of its relevance to solar and
stellar opacities. However, current understand-
ing still appears to be unsatisfactory. Of the
theox'etical schemes so far published, ' ' some
give widely different results, and two recent sets
of experimental data'~' are discordant in thei. r
asymptotic behavior at high incident velocities.

As we have shown in Paper I of this series, ' the
asymptotic total cross section for inelastic scat-
tering, namely @tot, the sum of all the Bethe
inelastic-scattering cross sections for fast
charged-particle impact, can be evaluated by use
of a sum rule. Because H possesses no bound
excited state below the first detachment threshold,
Otot in this case is the total cross section for
detachment; it includes detachment resulting in
any final state of atomic hydrogen ——excited and
ionized states as well as ground state. Use of
the Bethe theory implies neglect of the Coulomb
interaction between the incident particle and the
net charge of H, but this simplification is ex-
pected to be permissible fax sufficiently high
incident velocities. The use of our sum rule dis-
penses with explicit calculation of continuum wave
functions; instead it requires knowledge of two
accessible properties of H: the distribution of
optical {dipole) oscillator strength df/dE over
excitation energy E, and the incoherent-scattering
function Sinc{K) as a function of momentum trans-
fer K5. We have constructed df/dE using both
theoretical and experimental data and the optical
sum rules We have c.omputed Stnc{K) from dif-
ferent approximate ground-state wave functions.
[The resulting 8;„c(K), together with a related
property, the atomic form factor E(K), is given
in Appendix 1 for use in x-ray physics. ]

Our effort is directed to the best possible deter-
mination of the asymptotic cross section, an
aspect that, in the literature, has been treated
only casually or as a matter of secondary concern.
Indeed, most of the earlier theoretical studies,
motivated primarily by intexest in lower-velocity

regions, have explored causes of failure of the
first Born approximation, and all have failed to
exploit it fully within the range of its validity. '

II. THEORY

As shown in Paper I, the total cross section
otot for inelastic scattering of a particle with
charge ze and sufficiently great (but nonrelativis-
tic) velocity v by an atom can be written as

ot t=4vao'z'(R/T)M t t'in(4ct tT/If),

whex e x 1 and r, are positions of electrons in H

and ( ) denotes a ground-state expectation value.
Evaluation of the less familiar parameter etot by

M ' inc = -2I (-1)+Il-I2tot tot

is made possible by the sum rule. Here I.(-1) is
another optical quantity, which for H takes the
form

I.(-1)= JE (df/dE)(It/E)ln(E/It)dE,
1

(4)

where E, is the first detachment threshold and I1
and I, are integrals involving Sino(K) [defined by
Eqs. (Al) and (A2) in Appendix 1]:

I = Jl 28. {K)d(Kao) 4d(Kao)',

I = J [M 2-28. (K)/(Ka )2]

x d(Kao)-'d(Kao)'. (6)

where ao is the Bohr radius, A the rydberg energy,
and T = ~&v', m being the elect.en mass. Gf the
two atomic properties Mtot2 and c tot the former
is simply an optical property, the total dipole
matrix element squared (in atomic units), and can
be evaluated from

,'=((r + r2)2)/(sao'), (2)
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In order to have some basis for assessing the
accuracy of the final results, we have calculated
Mtot' and S;nc(K), and thence I, and I,, from eight
different wave functions. ' " The computational
method has already been described in connection
with our earlier work on the helium atom. ""
The resulting Mtot', I» and I, are shown in
Table I, together with additional information for
comparison. (See Sec. III for the "Ohmura"
model. ") The uncertainty in the value of Mtot' as
calculated by Pekeris" is, for our purpose, inap-
preciable. As noted in the case of He, ' an im-
provement in terms of total energy does not nec-
essarily imply an improvement in other quantities
such as Mtot'. Actually, the values of Mtot' in
the present case converge toward the best Pekeris
value much more slowly than for He (see Table I
of Paper I). This tendency is basically due to the
fact that H is dynamically more complicated be-
cause of its loose structure, and that currently
available Hylleraas wave functions with moderate
numbers of terms are still not sufficiently ac-
curate for this purpose. Indeed, the 20-term
Hylleraas wave function'4 seems hardly more ad-
vantageous than the 11-term Hylleraas wave func-
tion, "presumably because the choice of terms
in the former was biased for the best result in
He.

The trend of I, and I, as the wave function is im-
proved is similar to the trend with He. ' The con-
vergence of I, is again slower than that of I„owing
to the circumstance that I, depends most strongly
on Sine(K) for small Za„which in turn reflects
the elusive behavior of the wave function at large

Conclusive evaluation of I,-I, would require
a highly refined wave function such as the Pekeris

(444-term) wave function. " The use of such an
accurate wave function, however, is deferred until
a correspondingly accurate evaluation of L(-I)
(discussed below) becomes feasible. Instead, we
can estimate an "accurate" value of I,-I, by extrap-
olating the data from superior wave functions in
Table I. As illustrated in Fig. 1, the plot of
I1 I2 v Mtot is smooth, and yields I, -I,
= —10.5+0. 5 for M«&'= 7.484.

Although the Hartree-Fock wave function' fails
to give a positive electron affinity for the hydrogen
atom, its ~tot Il and I2 values are comparable
to those of the six-term Hylleraas wave function.
The Eckart (or open-shell) wave function" yields
unrealistic values of Mtot' and I2, presumably be-
cause of its inaccurate behavior at large x.

As was noted in Paper I, L( I) ca-n be determined
by two different methods —directly from df/dE, or
by differentiating the moment

S(g) = JE (df/dE)(E/R) dE

at p, = -1. [Notice that S(-1) is equal to Mtot2,
given in alternative form by Eq. (2). ] In the case
of He, the oscillator-strength distribution is well
known, and the two methods yield closely agreeing
values of I.(-1).' For H, however, the situation
is different. Presently available data, experimen-
tal and theoretical, 2 are bmited in many
respects. First, experimental data are confined
to the visible spectral region. Second, most theo-
retical data, except for those of Macek, "are
restricted to excitation energies below 2R. Third,
most calculations do not include transitions re-
sulting in an excited or ionized hydrogen atom. ""

TABLE I. Values of M, I~, and I2 of Htot '

%ave
function

Total Energy
(rydbergs)

2

tot

Exponential

Hartree-Pock

2-term Hylleraas ~

Ecka~"

3-term Hylleraas'

6-term Hylleraas ~

11-term Hylleraas

20-term Hylleraas~4

. bPekeris

c
The Ohmura model

-0.94531

-0.975 859

-1,017 56

-1.026 60

-1.0506

-1,052 92

-1,055 118

-1.055 289 34

-1,055 502 03

4.231

6.274

3, 655

11.34

5.451

5.9580

7, 2001

7.1139

7, 484 26

7.958

1.865

1.877

1.790

1,811

1~789

l. 7868

1.7873

1.7877

3 ~ 754

S.005

3.090

23, 01

6.718

7.9833

11,420

11,153

ll. 68

a
g -exp[- f (r~+r2)], f=g ao

b
See Ref. 17; "Extrapolated values" are quoted here.

C
See Sec. III.
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derived from the distribution and compares them
with other information. (See Sec. III for the
"Ohmura model. ") The uncertainty in the result-
ing value, L(-1)=-12.7, is believed to be less
tha. n 5%.

III. RESULT AND DISCUSSION

The calculation described above leads to Mtot'
xln~tot = 14.9+1.5, and thence to

I I I I I I I I I . I I

-5 —IO

FIG. l. Extrapolation of I&-I2. The ordinate at the
extrapolated value of I&-I2 is the Pekeris value Mtot =
7.484. An n-term Hylleraas wave function is denoted by
n-HY.

Furthermore, the moment S(p, ) varies so rapidly
near p. =-1 that the slope there cannot be deter-
mined solely from a few values of S(p, ) for integral
p, to an accuracy better than 20%. To obtain a
reliable value of L(-1), we have therefore per-
formed a detailed analysis of theoretical and experi-
mental data and obtained a complete oscillator-
strength distribution. This is primarily based on
the calculations of Geltman" and of Doughty,
Fraser, and McEachran, "but it is adjusted so as
to reproduce all of the accurately known values of
S(p). Details of this analysis are given else-
where. "" Table II summarizes the quantities

TABLE II. Values of S(p)

o = 4map'z'(R/T) [7.484 In(T/R)

+25. 3 + 1.5].
This result applies asymptotically for any charged
particle, as long as the particle may be regarded
as structureless. But the velocity at which the
asymptotic behavior is attained, to a definite pre-
cision, can depend substantially on the kind of the
particle, inasmuch as breakdown of the basic
theoretical framework can stem from a variety of
causes.

The best way to depict Eq. (8) is to plot (T/R)
x otot/(4na0'z') against In(T/R), as shown in
Fig, 2. For comparison, experimental data for
electron impact obtained by Tisone and
Branscomb6 and by Dance, Harrison, and Rundel'
are also shown in Fig. 2. Two qualifications
should be borne in mind in judging this comparison.
In the first place, neither experiment was designed
to detect double detachment resulting in H+,
whereas the theoretical result includes it. Second,
no allowance for the Coulomb distortion was made
in the calculation. Although a definite estimate of

a,nd I (p) of e

a
Accurate " Doughty

et aE.

S(IM)

Bell and
Kingston

Ohmura
modeld

From adopted
df/dE

Ohmura
modeld

From adopted
df /dE

5.514 157 5.839 14, 69

1 1.495 015

0 2

1.500

1.977

0. 6045

-1.742

V. 484 26

51.48

500+ 40

V. 10

50. 5

465

7, 35

51.3

7. 96

53.8

484

5. 09x 10

5. 90x 10

7.30x 10~

V. 486

51.21

467. 0

4969

13 ~ 3

-112

-1.1lx 10

-1.23x 10

-1,47x 10

-l. 86x 10

-12.70

-107.5

-1075

—1.202x 10

The accurate values of S(2), . S(1), and S(-1) were calculated by C. L. Pekeris (Ref. 17), S(-2) from the dipole
polarizability [K. T, Chung and R. P. Hurst, Phys. Rev. 152, 35 (1966)], and S(-3) by C. Schwartz (unpublished,
quoted in Refs. 22 and 23). Also, see Ref. 30.

The "velocity" results of Ref. 23. Double excitations not included.
The "length" results of Ref. 24. Double excitations not included.
Equations (11) and (12).
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the effect of the Coulomb distortion is difficult at
present, it is plausible that this effect will vanish
asymptotically at high velocities. The data of
Dance, Harrison, and Rundel are consistent with
our result, and interestingly exhibit that familiar
trend in approaching the asymptote which is
usually found in cross sections for excitation and
ionization of neutral atoms and molecules. "
Further, this apparent agreement implies relative
insignificance of double detachment in this in-
stance. In contrast, the data of Tisone and
Branscomb are incompatible with our result. We
cannot, however, entirely exclude a remote pos-
sibility that the incident electron velocity cor-
responding to some 500 eV should still fall short
of the Bethe asymptotic limit. Further experi-
mental work, in particular covering a wider range
of incident energies, is desirable to clarify the
current inconsistency of measurements in the
asymptotic region.

We now discuss previous theoretical studies in
relation to our work. The calculation of McDowell
and Williamson' also utilizes oscillator strengths,
but differs from our work in attempting to obtain
the cross section below the asymptotic region by
a modification of the Bethe theory. Their cross
section includes contributions from single detach-
ment only; at higher velocities, it falls slightly

FIG. 2. Cross sections for electron detachment of H

by charged-particle impact. Theory gives the universal
straight line for any charged particle of charge ze. The
uncertainty of the line is independent of incident velocities.
The dots (e) represent electron-impact data of Dance,
Harrison, and Rundel (Ref. 7), the squares ( ) those of
Tisone and Branscomb (Ref. 6a) and the triangles (4)
those recently obtained also by Tisone and Branscomb
(Ref. 6b). All experimental data exclude double detach-
ment. Error bars are attached only to representative
experimental points. {None of the experimental points
plotted here, in contrast to Fig. 9 of Ref. 7, is corrected
for the "Coulomb effect. ") The (nonlinear) scale of inci-
dent energies for electrons and positrons is shown at the
top.

below the experimental data of Dance, Harrison,
and Rundel, and thus is consistent with our result.

Smirnov and Chibisov' formulated a semi-
classical impact-parameter treatment, and for
the description of H used a one-electron model,
originally due to Ohmura and Ohmura, 32 and
further explored by Armstrong' and by Demkov
and Drukarev. ~ The Ohmura model is based on
recognition that the loose structure of H must
give rise to the oscillator-strength distribution
predominantly concentrated at low E, where it is
essentially determined by electronic structure at
large x. The detachment cross section obtained
by Smirnov and Chibisov includes contributions of
double excitation resulting in an excited or ionized
hydrogen atom, and asymptotically has the same
mathematical form as ours. In their Eq. (31),
however, the constant in front of the logarithm
seems to contain an erroneous factor of 2. The
constant inside the logarithm was evaluated by
choosing, as is customary in such a treatment,
a cutoff impact parameter, which unavoidably
contains some ambiguity.

The simplicity of the Ohmura model permits an-
alytical evaluation of stot by use of our theory.
The model one- electron wave function~-'4

1

u =(y/2ma )'~ e.0 0

with y' = 0. 055502 (the electron affinity in rydbergs
of atomic hydrogen") and with a normalization fac-
tor (for two electrons) A = (2. 65)'~, gives

2$. (K) =A'[1- (2y/Ka0)' arctan'(Ka0/2y)], (10)

and thence I, and I, in the last row of Table I. The
fact that the value of I, is comparable to our most
accurate result, while the value of I, differs con-
siderably, stems from the emphasis of the model
on the correct description of electronic structure
at large x. The moments S(p.) of the oscillator-
strength distribution for negative p, can also be
calculated analytically, as shown in Appendix II.
The result is

S(p) = [2 (-2p.)!/(-p)!!2-p, )!](Ay ) . (11)

Assuming the analyticity of S(p, ) with respect to
p, , one replaces factorials by I' functions and dif-
ferentiates Eq. (11) to obtain

L(u) =
d

= [-20(I-2u)+0(I-u)+((3-V)dS(V )

+ 21n(2y)]S(y, ), (12)

where ( denotes the logarithmic derivative of the I"
function. Some numerical values of S(g) and L(g)
from Eqs. (11) and (12) are given in Table II; they
are in reasonable agreement with the data from
our adopted df/dE. Inserting the values of I„ I„
and L(-I) in Eq. (3), one obtains Mtot' lnctot
= 1V. 15. Thus, the Ohmura model leads, together
with M tot' =S(-1)= V. 96 (Table II), to
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a = 4va 'z'(R/T) [7.96 1n(T/R) + 28. 2], (18)

in excellent agreement with our earlier result
[Eq. (8)]. Such an agreement illustrates wide ap-
plicability of this highly simplified model.
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APPENDIX I. ATOMIC FOR FACTOR AND
INCOHERENT-SCATTERING FUNCTION OF H

The functions F(K) and Sine(K) are defined by

(A1)

substantial improvement over earlier data from
an Eckart wave function" and a three-term
Hylleraas wave function. " The incoherent-
scattering function does not seem to have been
tabulated yet. The data in Table III should be use-
ful for x-ray analyses of alkali and other strongly
ionic hydrides. "

We can find an indication of the accuracy of our
data by comparing them with those calculated from
less accurate wave functions. The values of F(K)
and Sine(K) calculated from the 11-term wave func-
tion are in very close agreement with those given
in Table III, supporting our earlier statement that
the 11-term wave function is practically as good
as the 20-term wave function. We estimate that
our F(K) is accurate to 8% or better, F(K) for
small Ka, being likely to be less accurate. The
values of Sine(K) are sensitive to the wave func-
tion, and may be in error by 5 to 10%%uo for Kao
SO. 5. For Kao~ 0. 5, however, Sine(K) is less
sensitive to the wave function, and the expected
accura, cy is 5% or better.

TABLE DI. The values of F(E) and S . (E) computed
from the 20-term Hylleraas wave function'4 for H

(sin& s)gk
(A )

0. 0
0, 025
0, 050
0, 075
0, 100
0, 125
0, 150
0, 175
0.200
0.250
0.300
0.350
0, 400
0.450
0.500
0, 550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950
1,000
l. 100
l.200
l.300
1,400
1,500

Kap

0, 0
0. 166 24
0.332 48
0.498 73
0.664 97
0.83121
0.99746
l. 1637
l.3299
1.6624
1,9949
2, 3274
2, 6599
2.9924
3.3248
3.6573
3.9898
4.-3223
4. 6548
4.9873
5.3198
5.6522
5.9847
6.3172
6.6497
7, 3147
7.9796
8.6446
9, 3096
9.9746

F (E)

2. 000
1.901
l. 664
l.393
1, 147
0.9415
0.7730
0.6362
0.5252
0.3618
0.2527
0. 1791
0. 1288
0. 094 06
0.069 72
0.052 44
0, 040 00
0, 030 92
0.024 20
0.019 16
0.015 34
0.012 40
0.0.'- 0 13
0. 008 337
0, 006 921
0.004 875
0.003 525
0.002 608
0, 001968
0.001512

0.0
0. 1781
0.5525
0.9035
1.172
1.376
l.535
1,657
1.750
1.870
1.932
1,964
1,981
l.989
1.994
1.996
1.998
l.999
l.999
1.999
2. 000
2. 000
2. 000
2. 000
2, 000
2. 000
2.000
2 ~ 000
2, 000
2, 000

The variable (sin~9)/A, =E/4n, where &~ is the Bragg
angle and & the wavelength, is commonly used in x-ray
physics.

a.nd S. (K)= o[(l e '+e oI )- IF(K)l ],(A2)

respectively. The values calculated from the 20-
term Hylleraas wave function are presented in
Table Ill. The values of F(K) should represent a

APPENDIX II. DERIVATION OF EQ. (11)

F(0) (A2)

where z is a Cartesian component of r, satisfies

(s Is I 0)(W —WO) =(s I F I 0)

for every s and m. This lemma, due to Dalgarno
and others, "~' is readily established by taking
matrix elements of

ffF( ' F™H=-[~F( ),2VF( ). V).

Equation (A4) permits evaluation of S(-m)
(m ~0), the moment of the distribution of the os-
cillator strengths fs = 2(Ws- WO) I (s I s I 0) I ', in
the form

S(-m) = Z [2(W —W )]™f=2

(A5)

where ( ) denotes a ground-state ezpectation value,
and 4s gO includes summation over continua. This
method has been applied to atomic hydrogen, for
which S(-m) up to m = 10 have been evaluated. oo~"

We apply the method to the Ohmura model for
H, in which case Zs eO actually means integra-
tion over continua only, S(-m) of Eq. (A5) thus
being equivalent to that of Eq. (7). Inserting the

We shall hereafter use Hartree atomic units.
Consider a one-electron system with the Hamilto-
nian H= ——,6+ V(x). Let uO and us be the wave
functions for the ground state and the excited state
s with eigenenqrgies W0 and 5", respectively.
The solution F™(r)(m=1, 2, ~ . . ) of a set of
equations.

(m) 2- F(m) 2F(m-1)+2Vuo uo VF
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explicit form of u, [Eq. (9)] into Eq. (A3) and
putting

&(m)( ) &(m)( )/
2m

with p = yx, we see that Q(m)(p) should satisfy

4 tf 1 d 1 (m)—,~ ——-2(1+-)(—,—) edP2 p dp p dp p

(A6)

)
(m-l)

la (l =0, 1, . . . , m-l), (A10)
(m +1)!l!2

where (n) = n(n + 1).. .(n +n-1) = I'(n+n)/I'(n) .
n

Use of Eqs. (A6), (AB), and (A10) now gives
F(m)(r), and thence S(-m) of Eq. (A5):

with P =- 1.(0

(m-1)
(A7)

( ) (2 2)-m+1( 2 g (m-1)( )k

k=0

The solution!t m (p)(m =1, 2, . . . ) can be found in
the form

m-1
g a (k+2)!/2 ' .(A11)

3 2m-1 2mk 0 k

(m)(
)

m (m) kp= ak p
k=0

(AS)
For m =1, Eq. (All) readily confirms Eq. (11).
For m ~ 2, we insert Eq. (A10) into Eq. (A11)
to obtain

where ak(m) are constants. Substitution of Eq. (AS) into
Eq. (A7) yields the recurrence relations

(m ) (m 1)/(

2 m-2 (m-1)&

2 m(m- l)y 1, = 0 3!l!
x(m +1-/)(m-l)!(m-1-l ) .

ak --[k(k + 3)ak + 2ak 1 ]/[2(k + 1)],(m) (m) (m-1) The summation in the above equation can easily be
performed by repeated use of an elementary for-
mula

(k =1, 2, . . . , m-1)

with a0
(m)

m0

(A9) n
Q (n)k/k! =(n+1) /n!,

k=0

Equations (A9) determine ak as and the result leads to Eq. (11) with p, = m. -
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The method of polarized orbitals used in calculating electron-atom scattering amplitudes
has two obvious flaws: the wave function is discontinuous, and the method is not variational-
ly based. These are corrected in a somewhat arbitrary manner, and it is found that the re-
sults then depend upon a parameter of the theory sufficiently strongly that there are serious
doubts about the predictive nature of the theory.

I. INTRODUCTION

Techniques for calculating the scattering ampli-
tude of an electron by an atom may be divided into
three categories, predictive, checkable, or phe-
nomenological. By the first we mean a no-param-
eter theory which purports to describe the situa-
tion. For example, the "optical potential" method
was such an attempt. ' It contains the static-
exchange approximation with the variational inclu-
sion of the long-range polarization effects. A pre-
scription for the continuation of the polarization po-
tential to small x was given with the expectation
that the Pauli principle mould make the results
less dependent on the details of the cutoff. This
expectation was borne out but not sufficiently to
give quantitative agreement. That is, the cutoff
parameter for the polarization potential still had
to be chosen to give a fit with experiments. This
then made the theory of the third type, the phenom-
enological, The close coupling method, ' and its
offshoots, ' are examples of our second category,
the checkable ones, as are other variationally
based calculations. ~ By this we mean that when a
basis is chosen for a variational calculation, the
reliability of the results can usually be assessed
by a comparison with an expanded basis. '

Theories of the first kind are the most ambitious
and the most valuable. The method of polarized
orbitaiss (p.o.) has been interpreted as such a the-
ory and is becoming more widely relied upon as
such. ' It is the object of this note to investigate
the reliability of this method by correcting its ob-
vious flaws and assessing its accuracy. In order
to do this, we have presented (in the next section)
a new ansatz for the trial form of the wave function.
%e emphasize here that this is not presented as a
new and desirable way to calculate electron scat-
tering but merely as a generalization of the p.o.
method designed to assess its accuracy. Also in
the next section, we discuss the simple case of s-
wave electron-hydrogen singlet scattering. The
singlet is chosen in that it is a more stringent test
of the theory than is the triplet ~

II. FORMAL DEVELOPMENT AND RESULTS

The p.o. method is designed to give an approxi-
mate solution for the scattering described by the
Schrodinger equation

(E H)$ =0-
The method is based on an assumed form for a
scattering wave function, which for singlet s -wave


