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This is the second in a series of four papers in which a new, 6eld-theoretic approach to the problem of
the infrared divergences of quantum electrodynamics is presented. The primary aim of the present paper is
the study of the mass-shell singularities of the Green s functions, which are branch points rather than
simple poles. This is an essential preliminary to the discussion of asymptotic states and scattering matrix
elements in subsequent papers. A conventional separation is introduced between hard- and soft-photon
regions of momentum space. It is shown that the soft-photon contribution to an arbitrary Green's function
may be isolated in a single function of the external momenta, independent of the spins of the particles
involved. An explicit expression for this function is obtained and its mass-shell singularities are studied in
detail. In particular, it is shown that, in contrast to the case where there are no massless particles, the mass-
shell singularities in difFerent momenta are not independent, but depend on the order in which the various
momenta are allowed to approach their mass shells.

1. INTRODUCTION terms of states with definite numbers of photons, and
summing the relevant Feynman diagrams to an ex-
ponential form which can be given a meaning even when
the expansion in question is invalid, that is, when the
expectation value of the total photon number is infinite.

Our approach will be rather diGerent, and more
strictly 6eld-theoretical. That is to say, the basic
quantities in our work are not the S-matrix elements but
the held operators. We do not regard the structure of
the space of asymptotic states as given a priori.
Rather, their properties are to be determined from an
examination of the singularity structure of the Wight-
man functions or Green's functions, which contain
complete information about the theory. The present
paper is devoted to a study of this singularity structure.
In subsequent papers, we shall use the information so
obtained to define asymptotic states and extract the
scattering matrix elements of the theory.

We begin in Sec. 2 by introducing a conventional
separation of the four-dimensional momentum space
into hard- and soft-photon regions. In this section, we
also investigate the asymptotic behavior of a function
which will play an important role later. Then in Sec. 3 we
show that the soft-photon contribution to an arbitrary
Green's function for values of the momenta close to their
mass shells may be isolated in a single function of these
momenta, independent of the spins of the particles
involved. Section 4 is devoted to an examination of the
mass-shell singularities of these functions. These singu-
larities are now branch points rather than simple poles.
Moreover, in contrast to the situation in a theory
without massless particles, the singularities in diferent
momenta are no longer independent, but depend on the
order in which the various momentum variables are
allowed to approach their mass shells. The conclusions

are briefly summarized in Sec. 5.

' 'N a preceding paper' (here referred to as I) we dis-
~ ~ cussed the problem of scattering by a prescribed
external classical current distribution. A set of general-
ized coherent states of the radiation 6eld were de6ned,
which can contain infinitely many soft photons and
which span a nonseparable Hilbert space AIR. We
showed that it is possible to define a unitary scattering
operator on this space, all of whose matrix elements
are 6nite.

It has been known since the classic paper of Bloch and
Nordsieck' that the infrared divergences of quantum
electrodynamics appear because an accelerated charged
particle can emit an infinite number of soft photons with
6nite total energy. Thus the assumption which is
implicit in the conventional perturbation calculation,
that the asymptotic states belong to the Foch space, is
invalid. It is the principal aim of this series of papers to
show that quantum electrodynamics may be treated like
any other renormalizable field theory, provided that
one drops this assumption and instead allows the theory
itself to determine the nature of the asymptotic states
between which scattering matrix elements are to be
evaluated.

Similar ideas have been presented by Chung' and
more recently by Storrow' in the context of S-matrix
theory. These authors were concerned to show that if
the asymptotic states of the radiation field are chosen
to be coherent states, then all the S-matrix elements
can be made finite. Their calculations were performed by
making a formal expansion of the coherent states in
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2. SEPARATION OF HARD AND SOFT PHOTONS

Let us begin by recalling some definitions and
notation.
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where

D„„(x)= v..(k)
(2m.)4 k' —ie

y„„(k)=g„.—k„l„*(k)—l„(k)k„. (2.2)

In an arbitrary gauge, the free photon propagator
takes the form

elk x

In a perturbation expansion, we may separate the
contributions to each internal photon line from Q~ and
0', and regard them as contributions to distinct Feyn-
man diagrams, in which the internal photon lines are
labeled as "hard" or "soft." This corresponds to the
separation of the photon propagator

In this paper, we shall consider only gauges in which
l„(k) is a real, odd function of k, so that 7„„(k) is real,
symmetric, and even in k:

yu. *(k)=7"(k)=7;(—k) =78.(k) (2 3)

with
D„„(x)=D"„„(x)+D'„„(x),

eik z

D" '„,(x) = y„,(k)
a' (2s.)4 k' —ie

(2.7)

%e shall compute the Green's functions in an arbi-
trary gauge, but when we consider their physical inter-
pretation, we shall restrict our discussion to physical
gauges which are characterized by the fact that for
k'=0, l„(k) satisfies the relations P=0 and k l= 1, so
that y„„(k) becomes the projector on the two-dimen-
sional subspace orthogonal to 0 and /. In particular, we
shall consider the radiation gauge, characterized by the
matrix function

We note that the soft-photon propagator D'„„(x),
being the Fourier transform of a distribution with
compact support, is an entire analytic function of x, and
in particular that it has no singularity on the light cone.
For example, in the Lorentz gauge it is of the form
D'„„=g„„D'p, and, taking the limit Eo —+ justi6ed
(except near x'=0) by the first inequality in (2.6), we
6nd explicitly

v..(k) =g"—
(k„n„+n„k„)k n+k„k„

k'+(k n)'
(2.4)

D'i (x) =
4m-'x'

E&&EO(&m ) (2 6)

where m is the smallest mass in the theory.
Within Q; we may treat the components of k"/n4

as small quantities, and thus obtain expressions for the
soft-photon contributions by neglecting all but the
leading terms. If f(p) is any slowly varying function of
the four-vector p (that is, one which changes little in a
region small compared to 4n), then we may often neglect
the difference between f(p) and f(p+k) so long as k
lies in O'. We shall make frequent use of this freedom
to make small changes in the arguments of slowly
varying functions.

The purpose of the first inequality in (2.6) is to allow
us to extend certain integrals over k' to the entire real
axis, and so evaluate them by contour integration.

It should be remarked that the constants E and E
are not to be identi6ed with the physical cutoff ~E
imposed by the experimental design, which may well
not satisfy the inequaltiy AE&(ns. Apart from the
requirement that they satisfy (2.6), these constants are
arbitrary. The condition that all physical quantities be
independent of the choice of E and E' will provide an
important consistency check on the theory.

where n„ is the unit timelike vector n&= (1,0), satisfying
S2= —I.

Ke now introduce a conventional separation of the
four-dimensional k space into complementary hard- and
soft-photon regions 0" and O'. The soft-photon region
0' is defined by the inequalities

(2.5)

where E and Eo are constants chosen so that

1—e 'x&~'&j c soEj xj +i sin&jxj j
. (2.&)

jxj

L(p,p'; x)=
dk p.p'

(e"*—1). (2.10)
a (2')'2k' (p k)(p' k)

Then in the Lorentz gauge we obviously have

L;P(x) =e;e,L(p;,p, ; x) . (2.11)

On the other hand, using (2.4), we find that in the radi-
ation gauge

L;4s(x)= e,e,PL(P;,P, ; x) L(P;,n; x)—
L(n,p;; x)+L(n,n—; x)j. (2.12)

Thus it is sufhcient to examine the asymptotic behavior
of the function (2.10). This is easily found to be of the
form

L,(p p'; x) =(1/Sx')C(N) in(E'x')+ f(x/xo) (2.13)

where f as indicated depends only on the direction of

It will be convenient at this point to investigate the
asymptotic behavior of a function which will play an
important role in our later discussion. If p; and p;
denote the momenta of particles with charges e; and
e;, then we shall write

d$ p,~y„,(k)p;"
L„;(x)=e,e;

" ' (e".-1), (2.9)
a ~ (2m)'2k' (p,"k) (p ' k)

where k'=
j lr j in the integrand, and consider the asymp-

totic behavior of this function for large values of x.
Let us define, for any two vectors pl', p'I', the function
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given by

p2pi2 —i/2

Q=
(p p')'-

1 1+u
C(u) =—ln

2Q 1—Q

(2.14)

(2.15)

It follows that the asymptotic behavior of I;; is

L;,(x)=-,'$;, 1n(Z'x')+ f;;(x/x'), (2.16)

x, not on its magnitude, and where C (u) is a function of
the relative velocity

half, there are additional terms due to the explicit
dependence of certain field components on the external
sources.

We shall find it convenient to treat separately the
soft-photon part of the external electromagnetic current,
which we denote by J„(x). Thus J'„(x) is a function
whose Fourier transform vanishes outside O'. We denote
all other external sources, including the hard-photon
part of the external electromagnetic current, collect-
ively by j(x). It is convenient to make a functional
Taylor-series expansion in j(x), but to retain the de-
pendence on J„(x).Thus we consider the functions

where the parameters P;; are given by

(,,&= (e,e /4~2) C (u,,),
ol

(2.17)

G(xi x
i J)

= ( i)"— (0; out
~
0; in);,g, (3.3)

Sj(x,) Sj(x.)
$;, = (e;e~/4 ') LC (u;~) —C(u;) —4 (ug)+1]. (2.18)

Here I„is the relative velocity of particles i and j,
m'm'

or their Fourier transforms

I''—
(p' p~)'-

(2.19) dx, Cx„exp(—i P p,"x,)G(xi x„~J). (3.4)
j=l.

and I; is the velocity of particle i,
u'= Ip'/p" I

~ (2.20)

We note, in particular, that for i =j the Lorentz-gauge
parameter

$ "~=e 2/47r' (2.21)

3. STRUCTURE OF GREEN'S FUNCTIONS

The Green's functions of any field theory may be
defined as functional derivatives of the vacuum-to-
vacuum transition amplitude (0; out

~
0; in); in the

presence of external sources j(x), according to the
relation

G(xi x.)

= (—i)" (0; out
~
0; in);

Sj(x,) Sj(x„)
(3.1)

in which we have for simplicity suppressed all the
indices except the space-time label x. If there is no
explicit dependence of the field operators P(x) on the
sources j(x), then the Green's functions may also be
identified with the vacuum expectation values of time-
ordered products,

G(» *-)= (01 2'Le(xi) 4(x.)1I0) (3 2)

In general, however, for fields of spin greater than one-

is positive, while in the radiation gauge (the case of
physical interest)

&,P = (e '/2w') t 1—C'(u,)] (2.22)

is always negative, except for zero velocity.

We are interested particularly in the behavior of these
functions for values of the momenta p, close to their
mass shells p'= —m'.

The reason for considering these quantities as
functionals of J, rather than expanding also in powers
of J, is that we thereby obtain greater generality. The
operators U(f), for example, may be defined formally
as exponential functions of the soft-photon field

operators, but we wish to be able to consider cases
in which the expansion of the exponential is not
permissible.

We shall sometimes make the identification (3.2)
and write
G(xi x„i I)

= (0; out
~
TL&i(xi) P„(x„)]~ 0; in)q, (3.5)

without explicitly indicating the additional terms which
must appear for higher-spin fields, and in particular
for the hard-photon part of the electromagnetic field.
It is to be understood that (3.5) is really a formal
expression for (3.3).

In computing the Green's functions (3.3) or (3.4) we

encounter the usual problem of ultraviolet divergences,
which are not our immediate concern. Since the mass
and charge renormalization constants are not infrared-
divergent, we may assume that these renormalizations
have already been carried out. We shall denote by m;
and e; the physical mass and charge of the particles
annihilated by the field @;, and work only with these
quantities, not with the bare masses or charges. How-
ever, the wave-function renormalization constants of
charged fields are in general infrared-divergent. Indeed,
in a physical gauge they normally vanish, rejecting the
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fact that the probability of creating a real charged
particle alone, with no accompanying soft photons, is
zero. Thus the 6elds P; appearing in (3.5) must be
Nerenormalized fields. Later we will have to Gnd an
alternative to the usual formalism of wave-function
renormalization.

The wave-function renormalization constant of the
photon is of course identical with the charge renormali-
zation constant. Thus along with the charge renormali-
zation we may assume that the photon wave-function
renormalization has been carried out, so that near
k2= 0 the photon propagator is equal to the free propa-
gator y„„(k)/(k' —ie). This means in particular that no
self-energy corrections need be inserted on the internal
soft-photon lines.

Isolation of Soft-Photon Contributions

Now let us consider a calculation of (3.4) by the
standard methods of perturbation theory. In any
Feynman diagram which contributes to it, we may
identify a core diagram obtained by removing all
internal soft-photon lines, and setting J=O (which
amounts to removing also the external soft-photon
lines). We may then recover the full set of diagrams by
reinserting the internal soft-photon lines, and the
interactions with the external current J, into the core
diagrams in all possible ways.

In fact, however, we need consider only a restricted
set of soft-photon insertions. Only those contributions
which are sufficiently singular at k=0 to yield a non-
negligible result when integrated over the small volume
0' need be included. If we were concerned only with
values of the momenta far from their mass shells, there
would be no such contributions, other than the self-
interaction terms involving the external current J. For
the insertion of an internal soft-photon line introduces
two extra charged-particle propagators, a photon propa-
gator, and a four-dimensional integration over 0', and
unless the charged-particle propagators can become
singular, this contribution is of the order E2, and there-
fore negligible. However, we are interested in the
behavior of the G-reen's functions for values of the
momenta near their mass shells. If the vertices in
question lie on the external lines of the core diagrams,
then as the momenta approach their mass shells, the
charged-particle propaga, tors develop 1/k singularities.
Hence the only internal soft-photon lines we need con-
sider are those with both ends attached to the external
lines of the core diagrams. Similarly, in the case of inter-
actions with the external current J„, the role of one of
the charged-particle propagators is played by the
current J„(k), so that if the singularity of J„(k) at
k= 0 is no worse than 1/k (as we shall assume), then we

again need to consider only insertions in the external
lines of the core diagrams.

The insertion process may conveniently be described

by the action of a functional differential operator. Let us

introduce a classical external soft-photon field A„(k),
and consider 6rst the insertion of interactions with A„
into the core diagrams. We denote by G"(Pi P~~A)
the sum of all diagrams including interactions with
this external field, but with no internal soft-photon
lines. (By an extension of our earlier notation, the super-
script h denotes the absence of internal soft-photon
lines. ) Then we may write

yexp i dx A „(x)J~(x) ~G"(pi P. ~
&) . (3.6)

r A=0

In efI'ect, the exponential factor on the right introduces
vertices at which the external current J& appears, and
the other factor then connects these, and the vertices
inserted in the core diagrams, by soft-photon lines in all
possible ways.

Formula (3.6) is exact except that it contains con-
tributions from disconnected vacuum parts which
should be removed, but which are in any case negligible.
However, as we have seen, in computing G"(pi . P„~A)
we need only consider insertions of 3 vertices in the
external lines of the core diagrams, and even for these
we need only keep the leading terms in k.

Structure of Core Diagrams

We begin by examining the core diagrams themselves,
represented by the function G (pi p„) with A=O.
Since it is no part of our present purpose to enquire
into such questions as the convergence of the pertur-
bation expansion or the finiteness or otherwise of the
renormalization constants (aside from their infrared
parts), we shall assume that the contributions of all
core diagrams can be summed, and that this sum pos-
sesses all the properties to be expected in a well-behaved
field theory. In particular, we assume the usual singu-
larity structure and the usual form of the ultraviolet
divergences. Thus all the ultraviolet divergences may
be collected in a single over-all factor of the form

where Z",(p,) is the wave-function renormalization
"constant" of the field @, with the soft-photon contri-
butions to self-energy parts removed. Note that this
"constant" is a function of P; even in a covariant gauge
because of the noncovariance of the separation between
hard and soft photons.

In order to examine the mass-shell singularity struc-
ture of the Green's functions it will be necessary to
separate the core diagrams into connected parts. Let us
consider 6rst a line which passes straight through the
diagram without interactions, other tQan self-ener0y
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parts, say, from the external line labeled p; to that
labeled p, . Such a line can of course appear only if the
quantum numbers associated with P; and P; are those
of a particle and antiparticle so that p;=p . It will
contribute a factor

~(2~)'&(p'+ pJ)G"'(p*)C'1, (3 'I)

where C;; denotes a charge-conjugation matrix in the
spin space and where G";(p~) denotes the propagator
function for the 6eld p; with all soft-photon contribu-
tions to the self-energy parts removed. This function
has a simple pole on the mass shell, and for p 2 close
to —m takes the form

G";(p;)=Z";(p;)A, (p;)/(m, '+p
2 is)—, (3.8)

where A;(p;) is an appropriate spin matrix, for example,
(m; iy—p;) Th.e subscripts i, j on C indicate that this
matrix connects the spin indices associated with 6elds
p, and p, . For consistency, it is necessary that (3.7) be
unchanged by interchanging i and j, except for a change
of sign in the case of Fermi 6elds. This is assured by
the equality Z",(—p) =Z",(p) together with the relations

CX(—p) =x(p)C,
(3.9)

C=+C,
where the & signs refer to Bose and Fermi fields, and
the tilde denotes transposition.

We also note that, for pP= —mP, »(p;) is essentially
a projection matrix. It satisfies the relation

»(p, )»(p, ) X,h.;(p,), (3.10)

where X, is some constant normalization factor (=2m,
in the case of a Dirac field).

Now let us turn to the completely connected core
diagrams. Their contribution has a simple pole in each
momentum variable at its mass shell, and in that
neighborhood has the form

—~HZ"~(p )7'"~ (p )

mP+ p ' ie—
X(2 )'S(p+" +p.)N "(p " p.). (3.11)

The function M" denotes the connected part of the
scattering amplitude (or, more precisely, the "3E
function") with all soft-photon contributions removed.
It is free of ultraviolet divergences, and 6nite on the
mass shells, except of course at the usual physical-
region singularities.

For simplicity, to avoid having to write a sum over
various classes of diagrams with different connectivity
structures, let us assume that we are interested in a
region of momenta in which only those core diagrams of
one particular class contribute significantly. Then the
indices (1. .n) may be partitioned into S sets A such
that all the lines in one set are attached to one con-
nected piece of the core diagram. Let us suppose that

r of these sets consist of two indices only, corresponding
to straight-through lines, and choose these to be
(1,.r+1) . (r,2r). The total contribution to G"(pq . p )
will contain r factors of the form (3.7) together with
(N r) f—actors (3.11),one for each connected piece of the
dhagrams.

To express this contribution in a convenient form, we
define the function

~'(pr p. ; gl I-)= rI ~' (p 8J), (3 12)
j=l

where ~'; is the free-particle propagator for a scalar
particle of mass m;, namely,

LV, (p, ,q,) = i(2—s)'h(p, g—)/(m '+p ' ie)— (3. .13)

Then near the mass shells we may write

"p-)= rr &Z" (p;)»(p;)C;. + )
j=1

e dg2&+y dg~
x g (Lz;(p, )7 I'~, (p,))

~=2 +~ (2s)4 (2~)'

X+ (pl' ' prp2r+1' ' pai pr+1' ' ' p2rg2ry1' ' 'ge)

&& II (2 )'&( E V)~"-({VIDEA-)) (3.14)
a r+I ig~a

The purpose of writing 6" in this form is that its
mass-shell singularities are now contained entirely in
the function 6 . We shall be able to show that the effect
of introducing soft-photon contributions is simply to
modify this function.

Insertion of Soft-Photon Parts

We now turn to the function G~(pq p„~ A) obtained
by inserting interactions with the external soft-photon
6eld A„(x) into the core diagrams.

Let us consider the effect of inserting a vertex at
which the external field appears, with small momen-
tum transfer k, into a charged-particle line of momen-
tum p and charge e. As has been shown in detail by
Weinberg, s the leading contribution in powers of k
(which is all we need consider) is independent of the
spin of the charged particle. The effect is to replace the
denominator of the propagation function (m'+ p' —ie) '
by

(m'+p' i~) '2ep A(k—)(m'+p' 2p k ie) ',— (3.1—S)

together with additional spin-dependent terms which
are less singular at k=0 in the limit as p2 approaches
—m'. The term k' in the second denominator is negli-
gible, and has been omitted.

Because of this spin independence, the entire effect
of introducing all such insertions into the external lines

of the core diagrams may be expressed as a modi6-

' S. Weinberg, Phys. Rev. 140, 8516 (1965).
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d' e'" '~o(p, gl»=
a (P~

A) (3.16)lA)=iI 6'(P g'go(p~ ~ pmi A'
Xexp &

'tten in the f™314. Thus be written
Ga(p, . p. lA) ragr '"

) „pl,ced hy. . . „;qg.

P

wit

0

9)i0 {m +&o- e

(3.18)p A (y+ 2P(7

~(n+a) w

es — =o 2w ' (2~)'
4'(,g l A) = i dy-

2e A (k,) exp(ik„y)

dk„

p

2p —k„—ie
n

r it we introducevenien ev t ression for i wTo n6 damoreconv
the representation

a ator for a scalar particle
of

obtained from 3.
3.15). Explicitly,
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s the linebe inte'p"t'
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+r50.„=r,+r,+r

'""'
(k) l (»9)I~(k)* I"

* (2m. k' —ie

(, .
Xexpl —,'i

where

u~) y~ i Z ~—~(~~ +—P~')jXexpL —i g (p,—g; y, i-
j'=I

we obtain

d e-'&~—~~ ~ P i"~'(P,glA)— 1 ~ ~

(2n.)' (2m)'

exp( —ik y;)I~(k) =J~(k)+i P
k

"k —1]. (3.20)XLexp( —2io;p,"k—

X «0
lJP urn-1

f the integral inin theWe note that the t ee reel part o t e
f (3.19) comes from t eexponent of

X ii L2ep A(k, ) exp(ik„y

ex — ' ')+2~ Q p k,o,j.Xexpl imp(m'+—p
'

o, .
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e—i{n-a) fILV(p, g l A) = dy e- —i' {m2+pm)o- e— ~ ~ ~
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q2r+i

~ ~ 1
JE

dk ep A(k) e" &e'
k(2m) p
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r (p, p)=

where

X;;(a;,a.,)=ie;e,

00 n

do i da„exp[ —i p a;(mp+ p,'))
j=l

n n

Xexp{—', 2 P X;,(a;,o.;)), (4.3)
s=l j l

dk P*'v"(k)p~"

(2m)' k' —ze

/exp(2ia;p, k) 1 ye"xp(—2io ,p, k—) 1. "—
X1

1

. (4.4)
p,"kp;k

4. MASS-SHELL SINGULARITIES

We now wish to examine the nature of the mass-shell
singularities implied by the structure obtained above
for the special case in which the soft-photon external
current J is set equal to zero. (A similar analysis has
been given by Hagene for the special case of the propa-
gator function. ) For simplicity, we shall assume that
we are interested in a region of momenta in which only
completely connected core diagrams can contribute
significantly, so that we may set r=0and %=1in (3.14).

The function 5' given by (3.19) has a singularity
when p, =q, , which is a modified form of the 5-function
singularity in (3.12). The nature of this singularity is
governed by the asymptotic behavior of the integrand
for large yj, The function falls off rapidly with increasing
values of p;—q;, corresponding physically to the fact
that the soft photons cannot transfer large amounts of
momentum. Thus p, —q, may be treated as small. Now
itisreasonabletosupposethatthefunctionM"(qi. q)
is a slowly varying function of the momenta. Therefore,
it is legitimate to replace it by M"(pi p ) and bring
it outside the integral. Moreover, for J= 0, the function
6' contains an over-all energy-momentum-conserving
8 function b(gp, —Pq, ), so that we may replace
8(gq;) by b(gp, ), and obtain

n

G(Pi' P )= II {1-~"J(pl))'"~2(P2))(2~)'
j=l

X8(Pi+. +P.)M"(Pi P )r'(Pi P„), (4.1)

where

r'(pi" p)
dgl dg„

~'(Pi ''Poiqi'''qo10) (42)
(2m)' (2~)4

Integrating over q, in (3.19) has the e8ect of setting
each yj=0. Thus we obtain

integrand for large 0;. It is the nature of these singu-
larities which we wish to investigate in this section,
since the remaining factors in (4.1) are nonsingular.

It is useful to note 6rst certain symmetry properties
of X,j By making the substitution k —&—k and using
(2.3) we see that X,,=X,;, and also that it is unaltered
by simultaneously changing the signs of both p; and p, .

In the familiar case of a theory without massless
particles, the mass-shell singularities of diferent ex-
ternal lines are essentially unrelated, and it makes no
difference whether we consider them sequentially or
simultaneously. This is far from being the case in the
present theory, however, and we have to decide on the
order in which to take the various limits involved. It will
be most convenient to consider the limits sequentially,
first allowing pi' to approach —mi', then pz' to approach
—ns&', and so on. Consequently, we need to study the
asymptotic behavior of X;j as 6rst one and then the
other of the variables 0.; and o; is allowed to approach
in6nity.

It is not hard to see that, for large values
of 0; and o;, X;j behaves qualitatively like the function
lnfEa;o;/(o~+o;)7. T.hat is to say, if we let either
variable become infinite, O.j say, the function remains
6nite in the limit. Then as 0-; —+~ it behaves logarith-
mically. (On the other hand, if we allow both variables
to approach infinity together, keeping their ratio fixed,
it also behaves logarithmically. )

Let us suppose that j(i, and consider 6rst the limit
o; —+".(We treat the special casei=j separately later. )
In this limit X;j remains finite, and takes the form

dk p,&y„„(k)p;"
X,;(o-;,~)= ie;e;—

a (2m)4 k' —ie

(exp(2ia, p; k) —1
X1 — . (4.3)

p,"k p,"k—ze

Since X;j is unchanged by the simultaneous change of
sign of both p, and p;, there is no essential loss of
generality in supposing that p )0. Then using the
fact that the limit Iz of the k integration is large
compared to E, we may complete the contour of the
k' integral in the lower half k' plane, and evaluate it by
contour integration.

In general, this process yields two terms, one from
the pole at k'= 1%1 and the other from p,"k=0. The
latter contribution appears only when pp)0, since
otherwise this pole lies above the real axis and is ex-
cluded from the contour. Thus we can write

X;,(a;,-)=X;,&'&(o;, ~)+0(p'op/)X;, &'&(o;, m), (4.6)

where
The function I" given by (4.3) has a singularity in

each momentum variable on the mass shell piz= —mP,
which is governed by the asymptotic behavior of the

' C. R. Hagen, Phys. Rev. 130, 813 (1963).

X;;i'&(o;,~)= e,e,
dk ppq„, (k)p, "

~ (2m)'2k'(p, 'k)(p, 'k)

XLexp(2io;p; k) —1] (4.7)



X;;&0)(o;,o))=e;e;
dk ppy„„(k)p;"

, (2~)4 k0

exp(2i(r;p, k)"1—)
X I2~s(p; k). (4.8)

(We may drop the small imaginary part in the denomi-
nator k', since k is always spacelike in the region where
the argument of the 8 function vanishes. )

Let us examine first the function X;,('~. It is easily
seen to be precisely the function L;;(x) defined in (2.9)
with x)'= 2p;0o;. Hence, its asymptotic behavior is given
by (2.16), or

X;p &') ((r&, 00) = p&p In(1&.m;0.~)+constant, (4.9)

));;=e;ep/4n I;;. (4.11)

Note that, unlike $;;, this coefficient diverges in the
limit of zero relative velocity. This suggests that the
asymptotic behavior of the imaginary part for i=j will

be diferent, and we shall see later that this is indeed
the case. The term X;;("is in fact closely related to the
formally dlvcl gent Coulomb phase which Rppcars
in the nonrelativistic Coulomb scattering amplitude,
and which describes the asymptotic distortion of the
Coulomb wave functions.

COIIlblI11Ilg botll terms 111 (4.6) we obtain 'tile asyIIlp-
totic behavior

X;;((I;,m) =f;; ln(Xppi;e;)+constant,

where the complex coefficient f&4 is given by

(4.12)

where $;, is the parameter defined in (2.17) or (2.18) as
a function of the velocities.

Next we consider the function X;;('&. Sy making the
transformation k p —k in (4.8), we see that it is purely
imaginary. Xt is also easy to verify that, like I;;('),
it behaves logarithmieally as 0;~~.Moreover, unlike

$;,, the coefficient of 1no; in X;p&') is independent of the
choice of gauge, because the dominant contribution
comes from the region near p; k=0, so that the gauge-
dependent terms proportional to p; k or p,"k can be
dropped. (Such terms are finite in the limit (I;—+~.)
Explicit calculation shows that

X;;"'(o';,00) = ir&p ln(E—PII;0;)+constant, (4.10)

where q;; is given in terms of the relative velocity u;; by

while in the radiation gauge we have the extra terms

given by (2.18).
It is interesting to note that (4.14) can be written in

R foln1 ln which thc leal Rnd lnlaglnRry parts RppcRr

naturally together. Let us dedne

X;;=P; P;/PN;PP0; (4.15)

together with the stipulation that the principal branch
of the logarithm is to be chosen for X& i. Then it is

easy to verify that (4.14) may be written in the form

f;P= (e;e;/4~&) e(x,, i.)— (4.17)

Now let us return to the special case i= j that was

excluded from the above discussion. This ease must be
treated separately because we cannot any longer take
the limits r; —+~ and o;~ sequentially. If we distort
the ko contour to pass above or below the points where

p; k=0, then we can separate the various terms in

(4.4). Changing the sign of k in two of the four terms, to
obtain a form similar to (4.5), we find

X;;(e;)= —ie 0
dk ppq„„(k)p,"

Lexp(2ia;p "k) —1$
o (20r)4 k' —ie

~~ ~~
~~X + I. (4.»)

(p; k+ie)' (p; k ie)'~—

%e can now again complete the k' contour in the lower

half k' plane and obtain two terms. The term which

arises from the pole at O'= IkI is similar to (4.7) but
with an extra factor of 2, whose origin may be traced
to the fact that there are now two nonoscillatory terms
in (4.4) instead of just one. The second term, which

arises from the pole at p;.k= 0, is similar to (4.8), but
instead of being logarithmic in 0;, it is actually linear.

It is given correctly by letting p; approach p; in (4.8),
and ls

X;;&')(0;)=2ie,0o;
dk p; y„.(k)p;"

2 S(p; k)
k's (20r)4

e'e-'EfT;
i —C(04;).

II2p
.0

and note that p 0pp0) 0 means X;,(0.We introduce the
function 0'(x) defined by

e(x)=
I x/(x' —1)I"]lnt x+ (x'—1)'"j (4.16)

'~;,e(p p ) (4.13)

For example, in the Lorentz gauge, using (2.15) and
(2.17), we have

in ~(p'p')"-
ee; &' 1104;;—;.p(p. p, )), (4.W)

4)r'I;; k 1—I;p.

Formally, this term represents the soft-photon contri-

bution to the mass renormalization, as may be seen

from thc fRct that its cGcct would bc to shift tlM posltlon

of the singularity in P 0 away from —ppIP. However, it
is in any case of order X and therefore negligible, as

it must be since the mass renormalization constant has

no infrared-divergent part.
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Because this imaginary term is negligible, we are left
only with the term I;;&'~, so that

Hence we find that the behavior of I"(i) as p2' —p —mP
is of the form

X;;(o,)= 2e,' dk p;~q„.(k)p;"

~ (2m)'2ko (p,"k)'

X)exp(2io"p'k) —17 (4.20)

I (i)(Pi' ' 'P~) — )I (12)(PI' ' 'pa)

($22+ l 2)) ! —'lm21(

X—,(4.23)
mm +p2 ie pn +p 1e

which agrees with (4.7) except for the additional factor
of 2. Its asymptotic behavior is therefore again given
by (49):

X;;(o;)=2);; in(Xm;o;)+constant. (421)

This factor of 2 may be rather surprising, but as we
shall see in subsequent papers, it plays an essential role
ln DlaintRlnlng thc conslstcncy of the theory.

We may now return to the forinula (4.3) and de-
termine the nature of the singularities in the function
I", and therefore in the Green's functions.

Let us first consider the behavior as pi' approaches
—m&'. The nature of this singularity is governed by the
asymptotic bchavloI of thc lntcgl-Rnd as 0I~~ with
all other 0; held fixed. The only term in the exponent
which does not remain 6nitc in this limit is ~~XIj, whose
asymptotic behavior is described by (4.21). Thus, omit-
ting factors which remain finite as 0~ ~~, the integral
we have to consider is

do, exp/ —io)(mi'+pi')7(&mioi)&"

$u! Am(If )—i+&"

Hence we find that, as p)2 ~—mi', I"behaves li"e

I"(Pi" P )=—»*o)(pi" P-)

(4.22)
tn +p 4(Ill +p— i)—

where I"(i» is nonsingular at pp= —min. Note that in a
physical gauge eii is always negative Lfor example, in
the radiation gauge, it is given by (2.22)7, so that
the Green's functions are less singular than in a theory
without massless particles, as we should expect
physically.

Next let us examine the behavior of I"(i) as p2' —p

—m2'. This is governed by the asymptotic behavior of
the integrand as 02~~ with 0-3 ~ ~ ~ O„held Rnite. The
limit o.

q
—&~ has already been taken, so that we now

have two logarithmic terms in the exponent, ~X22 and
X2~. Thus the integral we have to consider is now

do2 expL io2(p22+m2')7—(&m2og) &"+r"

where again I' ()2) is nonsingular at P22= —m22,

We may continue in this way. In general, the expo-
nent which appears in the asymptotic behavior of
I'(i ~ p-» «Pp ~ mp' is 4+Op)-&+'''+Op'&

Finally, for future reference, we note one special case.
In the radiation gauge the parameter bP vanishes when
yi ——Q. Thus, when the spatial momentum yi is zero, the
Green's functions have a simple pole at p)2= —mP
that is, at pie= &mi. This pole may be identified with
the contribution of a true one-particle state. More
generally, if y;= 0, then all the parameters $;ps vanish,
as may be seen from (2.44). However, the imaginary
parts q;; do not vanish. In that case, the singularity of
the Green's functions is of the form (mpm+p ie) '+—*&-
Physically, this corresponds to the fact that although
the real soft photons disappear for p=0, the Coulomb
phases remain.

'tA'e have shown that the soft-photon contribution to
an arbitrary Green's function may be isolated in a single
function 6', given by (3.19).This function replaces the
function 6', of (3.1/), which appears in the expression
(3,14) for the Green's function G~ with soft-photon
contrlbutlons I'cDlovcd. Thc DlRss-shell singularities of
the Green's functions are governed by the behavior of
this function 6'. They were shown to be branch points
with the structure described by (4.22) and (4.23).

In the following paper, we shaB investigate the nature
of the asymptotic states implied by this slngulal'lty
structure. Instead of choosing the space of asymptotic
states a priori, we shall allow the theory itself to de-
termine them.
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