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This is the second in a series of four papers in which a new, field-theoretic approach to the problem of
the infrared divergences of quantum electrodynamics is presented. The primary aim of the present paper is
the study of the mass-shell singularities of the Green’s functions, which are branch points rather than
simple poles. This is an essential preliminary to the discussion of asymptotic states and scattering matrix
elements in subsequent papers. A conventional separation is introduced between hard- and soft-photon
regions of momentum space. It is shown that the soft-photon contribution to an arbitrary Green’s function
may be isolated in a single function of the external momenta, independent of the spins of the particles
involved. An explicit expression for this function is obtained and its mass-shell singularities are studied in
detail. In particular, it is shown that, in contrast to the case where there are no massless particles, the mass-
shell singularities in different momenta are not independent, but depend on the order in which the various

momenta are allowed to approach their mass shells.

1. INTRODUCTION

N a preceding paper?! (here referred to as I) we dis-
cussed the problem of scattering by a prescribed
external classical current distribution. A set of general-
ized coherent states of the radiation field were defined,
which can contain infinitely many soft photons and
which span a nonseparable Hilbert space JCiz. We
showed that it is possible to define a unitary scattering
operator on this space, all of whose matrix elements
are finite.

It has been known since the classic paper of Bloch and
Nordsieck? that the infrared divergences of quantum
electrodynamics appear because an accelerated charged
particle can emit an infinite number of soft photons with
finite total energy. Thus the assumption which is
implicit in the conventional perturbation calculation,
that the asymptotic states belong to the Foch space, is
invalid. It is the principal aim of this series of papers to
show that quantum electrodynamics may be treated like
any other renormalizable field theory, provided that
one drops this assumption and instead allows the theory
itself to determine the nature of the asymptotic states
between which scattering matrix elements are to be
evaluated.

Similar ideas have been presented by Chung?® and
more recently by Storrow* in the context of S-matrix
theory. These authors were concerned to show that if
the asymptotic states of the radiation field are chosen
to be coherent states, then all the S-matrix elements
can be made finite. Their calculations were performed by
making a formal expansion of the coherent states in
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terms of states with definite numbers of photons, and
summing the relevant Feynman diagrams to an ex-
ponential form which can be given a meaning even when
the expansion in question is invalid, that is, when the
expectation value of the total photon number is infinite.

Our approach will be rather different, and more
strictly field-theoretical. That is to say, the basic
quantities in our work are not the S-matrix elements but
the field operators. We do not regard the structure of
the space of asymptotic states as given @ priori.
Rather, their properties are to be determined from an
examination of the singularity structure of the Wight-
man functions or Green’s functions, which contain
complete information about the theory. The present
paper is devoted to a study of this singularity structure.
In subsequent papers, we shall use the information so
obtained to define asymptotic states and extract the
scattering matrix elements of the theory.

We begin in Sec. 2 by introducing a conventional
separation of the four-dimensional momentum space
into hard- and soft-photon regions. In this section, we
also investigate the asymptotic behavior of a function
which will play an important role later. Then in Sec. 3 we
show that the soft-photon contribution to an arbitrary
Green’s function for values of the momenta close to their
mass shells may be isolated in a single function of these
momenta, independent of the spins of the particles
involved. Section 4 is devoted to an examination of the
mass-shell singularities of these functions. These singu-
larities are now branch points rather than simple poles.
Moreover, in contrast to the situation in a theory
without massless particles, the singularities in different
momenta are no longer independent, but depend on' the
order in which the various momentum variables are
allowed to approach their mass shells. The conclusions
are briefly summarized in Sec. 5.

2. SEPARATION OF HARD AND SOFT PHOTONS

Let us begin by recalling some definitions and
notation.
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In an arbitrary gauge, the free photon propagator
takes the form

o wk 2.1
Do) = f—;r;ﬂ)kz__% 1
where

Vulk) = gu— kel (k) — 1, (R)E, . (2.2)

In this paper, we shall consider only gauges in which
1,(k) is a real, odd function of %, so that y,,(k) is real,
symmetric, and even in %:

'an*(k) = 'Ywu(k) = 'YMV("‘ k) = 'va(k) . (2-3)

We shall compute the Green’s functions in an arbi-
trary gauge, but when we consider their physical inter-
pretation, we shall restrict our discussion to physical
gauges which are characterized by the fact that for
k?*=0, I,(k) satisfies the relations /2=0 and k-I=1, so
that ,,(k) becomes the projector on the two-dimen-
sional subspace orthogonal to % and I. In particular, we
shall consider the radiation gauge, characterized by the
matrix function

(kuny+nuk)k-n+kuk,

¥ k) = guv— )
k*-(k-m)?

Where 7, 1s the unit timelike vector ##= (1,0), satisfying

2= —1.

We now introduce a conventional separation of the
four-dimensional % space into complementary hard- and
soft-photon regions ©* and Q¢. The soft-photon region
Q¢ is defined by the inequalities

(2.4)

|k| <K, |F°|<KDO, (2.5)
where K and K9 are constants chosen so that
KKLK<Lm , (2.6)

where m is the smallest mass in the theory.

Within ©¢, we may treat the components of k*/m
as small quantities, and thus obtain expressions for the
soft-photon contributions by neglecting all but the
leading terms. If f(p) is any slowly varying function of
the four-vector p (that is, one which changes little in a
region small compared to ), then we may often neglect
the difference between f(p) and f(p+%) so long as %
lies in Q¢. We shall make frequent use of this freedom
to make small changes in the arguments of slowly
varying functions.

The purpose of the first inequality in (2.6) is to allow
us to extend certain integrals over k° to the entire real
axis, and so evaluate them by contour integration.

It should be remarked that the constants K and K°
are not to be identified with the physical cutoff AE
imposed by the experimental design, which may well
not satisfy the inequaltiy AE<m. Apart from the
requirement that they satisfy (2.6), these constants are
arbitrary. The condition that all physical quantities be
independent of the choice of K and K° will provide an
important consistency check on the theory.

T. W. B.
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In a perturbation expansion, we may separate the
contributions to each internal photon line from Q* and
¢, and regard them as contributions to distinct Feyn-
man diagrams, in which the internal photon lines are
labeled as “hard” or ‘“‘soft.” This corresponds to the
separation of the photon propagator

D M(x) = D", (x)+D ",‘,(x) ’
with
eik~ z

7;"( ) (27)

Dh,a Sx
wle)= gt (2m)* R—ie

We note that the soft-photon propagator D@, (x),
being the Fourier transform of a distribution with
compact support, is an entire analytic function of #, and
in particular that it has no singularity on the light cone.
For example, in the Lorentz gauge it is of the form
Dsy=g,,D°F, and, taking the limit K°-—co justified
(except near 2°=0) by the first inequality in (2.6), we
find explicitly

Dep(x)=
i 42x?

x[l— “iKl"°l(cosK|x|+ilT§ll sinK[x])]. (2.8)

It will be convenient at this point to investigate the
asymptotic behavior of a function which will play an
important role in our later discussion. If p; and p;
denote the momenta of particles with charges e; and
¢;, then we shall write

I gk z_l)’

(2.9)

dk b ’Yuv(k)PJ
Lij(x)=eie; f

0+ (200260 (p- k) (pjoF)
where k%= | k| in the integrand, and consider the asymp-

totic behavior of this function for large values of «.
Let us define, for any two vectors p¥, p’4, the function

dk Pt

o+ (2m)°2k° (p-k)(p"- )
Then in the Lorentz gauge we obviously have

L,-jL(x) = 6,‘61'L(p,',Pj; x) . (211)
On the other hand, using (2.4), we find that in the radi-
ation gauge
Li®(x)=eie;[L(ps,ps; %) — L(psyn; )
Thus it is sufficient to examine the asymptotic behavior
of the function (2.10). This is easily found to be of the
form

L(p,p'; %)~ (1/87%)®(u) In(K*2*)+ f(x/2°), (2.13)

where f as indicated depends only on the direction of

(e=—1). (2.10)

L(p,p'; )=
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¥, not on its magnitude, and where ®(«) is a function of
the relative velocity

2572 —1/2
u=[1_pp ] , (2.14)
(@-p)d
given by
14+u
®(u) =— In—-. (2.15)
20 1—u

It follows that the asymptotic behavior of L;; is

Lij(x) =3&;; In(K2%%)+ fii(x/«%),  (2.16)
where the parameters £;; are given by
Eijt=(eie;/4m?) P(us;) , (2.17)
or
£ii7= (eie;/Am?) [ ®(ui;) — B(u;) — P(u;)+1]. (2.18)

Here u,; is the relative velocity of particles ¢ and 7,

mizm]ﬁ 1/2
uﬁ=[1—- ] y (219)
(ps- £3)°
and #, is the velocity of particle 7,
ui=|pi/p| . (2.20)

We note, in particular, that for ¢= j the Lorentz-gauge
parameter

Lil=e/dn? (2.21)

is positive, while in the radiation gauge (the case of
physical interest)

it = e/ 2n?)[1—®(us) ]

is always negative, except for zero velocity.

(2.22)

3. STRUCTURE OF GREEN’S FUNCTIONS

The Green’s functions of any field theory may be
defined as functional derivatives of the vacuum-to-
vacuum transition amplitude (0;out|0;in); in the
presence of external sources j(x), according to the
relation

G(xl. . .xn)

=(—i)"

.. sout[0;in);| , (3.1
iy oo G

in which we have for simplicity suppressed all the
indices except the space-time label x. If there is no
explicit dependence of the field operators ¢(«) on the
sources j(x), then the Green’s functions may also be
identified with the vacuum expectation values of time-
ordered products,

G-+ -20) = (0| T[p(x1) - - - p(2,)]]0).  (3.2)

In general, however, for fields of spin greater than one-
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half, there are additional terms due to the explicit
dependence of certain field components on the external
sources.

We shall find it convenient to treat separately the
soft-photon part of the external electromagnetic current,
which we denote by J,(x). Thus J,(x) is a function
whose Fourier transform vanishes outside Q°. We denote
all other external sources, including the hard-photon
part of the external electromagnetic current, collect-
ively by j(x). It is convenient to make a functional
Taylor-series expansion in j(x), but to retain the de-
pendence on J,(x). Thus we consider the functions

G(xl- . xnlf)
0
= (—=1)"—— - -——(0; out|0;in);,s| , (3.3)
87(x1)  85(wn) =0
or their Fourier transforms
Gpr-++palJ)

=fdx1- - +dx, exp(—1 f i 2)G (%1 24| T). (3.4)

We are interested particularly in the behavior of these
functions for values of the momenta p; close to their
mass shells p;2= —m;2

The reason for considering these quantities as
functionals of J, rather than expanding also in powers
of J, is that we thereby obtain greater generality. The
operators U(f), for example, may be defined formally
as exponential functions of the soft-photon field
operators, but we wish to be able to consider cases
in which the expansion of the exponential is not
permissible.

We shall sometimes make the identification (3.2)
and write

Gy« 2a]J)
=(0; out| T[pa(x1) - + *$a(%,)]]0; in)s,

without explicitly indicating the additional terms which
must appear for higher-spin fields, and in particular
for the hard-photon part of the electromagnetic field.
It is to be understood that (3.5) is really a formal
expression for (3.3).

In computing the Green’s functions (3.3) or (3.4) we
encounter the usual problem of ultraviolet divergences,
which are not our immediate concern. Since the mass
and charge renormalization constants are not infrared-
divergent, we may assume that these renormalizations
have already been carried out. We shall denote by m;
and ¢; the physical mass and charge of the particles
annihilated by the field ¢;, and work only with these
quantities, not with the bare masses or charges. How-
ever, the wave-function renormalization constants of
charged fields are in general infrared-divergent. Indeed,
in a physical gauge they normally vanish, reflecting the

(3.5)
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fact that the probability of creating a real charged
particle alone, with no accompanying soft photons, is
zero. Thus the fields ¢; appearing in (3.5) must be
unrenormalized fields. Later we will have to find an
alternative to the usual formalism of wave-function
renormalization.

The wave-function renormalization constant of the
photon is of course identical with the charge renormali-
zation constant. Thus along with the charge renormali-
zation we may assume that the photon wave-function
renormalization has been carried out, so that near
k%=0 the photon propagator is equal to the free propa-
gator v,,(k)/(k®—ie). This means in particular that no
self-energy corrections need be inserted on the internal
soft-photon lines.

Isolation of Soft-Photon Contributions

Now let us consider a calculation of (3.4) by the
standard methods of perturbation theory. In any
Feynman diagram which contributes to it, we may
identify a core diagram obtained by removing all
internal soft-photon lines, and setting J=0 (which
amounts to removing also the external soft-photon
lines). We may then recover the full set of diagrams by
reinserting the internal soft-photon lines, and the
interactions with the external current J, into the core
diagrams in all possible ways.

In fact, however, we need consider only a restricted
set of soft-photon insertions. Only those contributions
which are sufficiently singular at 2=0 to yield a non-
negligible result when integrated over the small volume
¢ need be included. If we were concerned only with
values of the momenta far from their mass shells, there
would be no such contributions, other than the self-
interaction terms involving the external current J. For
the insertion of an internal soft-photon line introduces
two extra charged-particle propagators, a photon propa-
gator, and a four-dimensional integration over ©°, and
unless the charged-particle propagators can become
singular, this contribution is of the order K? and there-
fore negligible. However, we are interested in the
behavior of the Green’s functions for values of the
momenta near their mass shells. If the vertices in
question lie on the external lines of the core diagrams,
then as the momenta approach their mass shells, the
charged-particle propagators develop 1/k singularities.
Hence the only internal soft-photon lines we need con-
sider are those with both ends attached to the external
lines of the core diagrams. Similarly, in the case of inter-
actions with the external current J,, the role of one of
the charged-particle propagators is played by the
current J,(k), so that if the singularity of J,.(k) at
k=0 is no worse than 1/% (as we shall assume), then we
again need to consider only insertions in the external
lines of the core diagrams.

The insertion process may conveniently be described
by the action of a functional differential operator. Let us
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and consider first the insertion of interactions with 4,
into the core diagrams. We denote by G*(p1-- - pa|4)
the sum of all diagrams including interactions with
this external field, but with no internal soft-photon
lines. (By an extension of our earlier notation, the super-
script £ denotes the absence of internal soft-photon
lines.) Then we may write

G(pr- - palJ)

=exp<—%’i/dxdy

xexp(i [ A1) )6l )

D sw(x—y)

)
84 () 84,(y)

(3.6)

A=0

In effect, the exponential factor on the right introduces
vertices at which the external current J* appears, and
the other factor then connects these, and the vertices
inserted in the core diagrams, by soft-photon lines in all
possible ways.

Formula (3.6) is exact except that it contains con-
tributions from disconnected vacuum parts which
should be removed, but which are in any case negligible.
However, as we have seen, in computing G*(p1- « - pn| 4)
we need only consider insertions of 4 vertices in the
external lines of the core diagrams, and even for these
we need only keep the leading terms in %.

Structure of Core Diagrams

We begin by examining the core diagrams themselves,
represented by the function G*(py--:p.) with 4=0.
Since it is no part of our present purpose to enquire
into such questions as the convergence of the pertur-
bation expansion or the finiteness or otherwise of the
renormalization constants (aside from their infrared
parts), we shall assume that the contributions of all
core diagrams can be summed, and that this sum pos-
sesses all the properties to be expected in a well-behaved
field theory. In particular, we assume the usual singu-
larity structure and the usual form of the ultraviolet
divergences. Thus all the ultraviolet divergences may
be collected in a single over-all factor of the form

I [2*(p) ]2,

where Z%;(p;) is the wave-function renormalization
“constant” of the field ¢; with the soft-photon contri-
butions to self-energy parts removed. Note that this
“constant” is a function of p; even in a covariant gauge
because of the noncovariance of the separation between
hard and soft photons.

In order to examine the mass-shell singularity struc-
ture of the Green’s functions it will be necessary to
separate the core diagrams into connected parts. Let us
consider first a line which passes straight through the
diagram without interactions, other than self-energy
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parts, say, from the external line labeled p; to that
labeled p;. Such a line can of course appear only if the
quantum numbers associated with ¢; and ¢; are those
of a particle and antiparticle so that ¢;=¢.°. It will
contribute a factor

—1(2m)*(pi+ )G (p)Cj, (3.7

where C;; denotes a charge-conjugation matrix in the
spin space and where G";(p;) denotes the propagator
function for the field ¢; with all soft-photon contribu-
tions to the self-energy parts removed. This function
has a simple pole on the mass shell, and for p,® close
to —m;? takes the form

Gri(ps)=Z (pAi(ps)/ (mi2+P¢2— i€),

where A;(p;) is an appropriate spin matrix, for example,
(mi—1v-p:). The subscripts 7, j on C indicate that this
matrix connects the spin indices associated with fields
¢: and ¢;. For consistency, it is necessary that (3.7) be
unchanged by interchanging 7 and j, except for a change
of sign in the case of Fermi fields. This is assured by
the equality Z*;(— p) = Z*,(p) together with the relations

CK("’P) =A(P)Cy
C==C,

where the == signs refer to Bose and Fermi fields, and
the tilde denotes transposition.

We also note that, for p;2=—m;?, A;(p;) is essentially
a projection matrix. It satisfies the relation

Aj(p)A;(p)=NAi(p;) (3.10)

where NV; is some constant normalization factor (= 2m;
in the case of a Dirac field).

Now let us turn to the completely connected core
diagrams. Their contribution has a simple pole in each
momentum variable at its mass shell, and in that
neighborhood has the form

» (=1L Z%(i) 1*As(p5) }
II ; :
=1 mi+pi—ie

X(2m)*o(prt- - -+ pa) M (p1- - - pn).

The function M* denotes the connected part of the
scattering amplitude (or, more precisely, the “M
function”) with all soft-photon contributions removed.
It is free of ultraviolet divergences, and finite on the
mass shells, except of course at the usual physical-
region singularities.

For simplicity, to avoid having to write a sum over
various classes of diagrams with different connectivity
structures, let us assume that we are interested in a
region of momenta in which only those core diagrams of
one particular class contribute significantly. Then the
indices (1- - -%) may be partitioned into IV sets 4, such
that all the lines in one set are attached to one con-
nected piece of the core diagram. Let us suppose that

(3.8)

(3.9)

(3.11)
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7 of these sets consist of two indices only, corresponding
to straight-through lines, and choose these to be
(1,741)- - -(r,2r). The total contribution to G*(py- - - p»)
will contain 7 factors of the form (3.7) together with
(V—r) factors (3.11), one for each connected piece of the
diagrams.

To express this contribution in a convenient form, we
define the function

ANp1 -+ pas Qi+ +qn)= I_Il A%(pig), (3.12)

where A% is the free-particle propagator for a scalar
particle of mass m;, namely,

A%(pig5) = —1(2m)*8(pj— q;)/ (mP+ p;2—ie) .

Then near the mass shells we may write

(3.13)

GH(pr-- .1,,.>=p__*_1 (Z(P)A)Cisir}

d(l2r+1' - agn

¢ (20

XA p1e - prp2rr1 +* Pu; —Priaa = — ParQars1® * *qn)

T (L2270} /

7=2r+1

x I @oa( T ainglicd. 61

a=r+1

The purpose of writing G* in this form is that its
mass-shell singularities are now contained entirely in
the function A°. We shall be able to show that the effect
of introducing soft-photon contributions is simply to
modify this function.

Insertion of Soft-Photon Parts

We now turn to the function G*(p;- - - pn| 4) obtained
by inserting interactions with the external soft-photon
field 4,(x) into the core diagrams.

Let us consider the effect of inserting a vertex at
which the external field appears, with small momen-
tum transfer &, into a charged-particle line of momen-
tum p and charge e. As has been shown in detail by
Weinberg,5 the leading contribution in powers of %
(which is all we need consider) is independent of the
spin of the charged particle. The effect is to replace the
denominator of the propagation function (#m2-+ p2—ie)—!
by
(m24p2—ie)~12ep - A(R)(m2+p2—2p-k—ie)~!, (3.15)

together with additional spin-dependent terms which
are less singular at £=0 in the limit as p? approaches
—m?. The term %2 in the second denominator is negli-
gible, and has been omitted.

Because of this spin independence, the entire effect
of introducing all such insertions into the external lines
of the core diagrams may be expressed as a modifi-

§ S. Weinberg, Phys. Rev. 140, B516 (1965).
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fication of the function A° appearing in (3.14). Thus
G*(p1- - - pn| A) is given by this same formula (3.14) but
with A%p1- - pn; q1- - - qs) replaced by

A%p1- - pn; q1v+ gl A)= I:I1 A%(pj,q514), (3.16)

where A%(p,q| 4) is the propagator for a scalar particle
of mass m; in a soft-photon external field 4,(x). This
function is obtained from (3.13) by adding the contri-
butions of all insertions of the form (3.15). Explicitly,
it is given by
e—ilpta)y dk;y dk,
Y.
mP-pt—ien=0J (2m)* (2m)*
n 2ep- A(k,) exp(ik.-y)
L I pT—2p By - —2p-B—ie

A"(P,qlA)=—i/dy

To find a more convenient expression for it we introduce
the representation

1 0
_________=i/ dr e—ir(m¥p?)
m?+p2—ie 0

for each propagator. Then, introducing the new vari-
ables

0= T1"+Tr+1+ e +7'n ,
we obtain
dky dk,
@2m)¢  (2m)¢

0 a0 on~—1
X/ do'o/ dal- . / dO'n
0 0 0

><I:11 [2ep-A(E,) exp(it, )]

n==0

AO(P;Q,A)=/dy ey i in

XexpL—ioo(mi+p)+2i 3 p-lo].

r=1

Symmetrizing in the # variables o;- - - o, we can sum the
series to an exponential form, and perform the inte-
gration over ¢ in the exponent. Hence, writing o for
a0, we obtain finally

A(pg|lA)= | dy it / do e—iotms)
0

dk ep-Ak)
iky(g2ion-k—1) | (3.17
XCXP[/ (2’".)4 Pk € ((3 )J ( )

It is interesting to note that this expression can also
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be written in the form

A%p,q|4)= / dy e=itm0-y / do e=iotmt+s)
0

Xexp[i / da’Zep-A(y—i—Zpa’)], (3.18)
0

in which the exponent may be interpreted as the line
integral of 4, along the trajectory of the particle from
proper time zero to 2meo.

Since the field 4,(k) appears only in the exponent of
(3.17) or (3.18), we can immediately perform the func-
tional differentiations in (3.6). Thus we see that
G(p1- - - pa|J) again has the structure (3.14) but with
APy - - pa; g1+ - ¢n) replaced by a function A®(py- « - pa;
¢1*++gn|J) which includes soft-photon internal lines.
This function may be written in the form

A*(pr- - pa; q1v* *qalJ)

=/dy1---dy,./ doy- - +don
0

Xexp[ —1 f:‘l (pi—q5)-yi—1 .g,l oi(mi+p2)]

dk 'le(k)
Xexp(%i / ——Tr(k)* I’(k)) , (3.19)
a* (2m)* k?—1e
where
n eip* .
I(R)=Jm(k)+1 > exp(—1k-y;)
=1 pj

X[exp(—2ia;p;-k)—17]. (3.20)

We note that the real part of the integral in the
exponent of (3.19) comes from the §(%2) term,

2 o T(k)*y (k) I (k)
2 /(2’(271_)32180 Yy ’

which is always negative in a physical gauge.
The structure of the Green’s function is illustrated
in Fig. 1.

\ \ } |
P, N N, } } P,
AS
-
Qor a1 8
er 1 er1
M mh

F16. 1. Structure of the n-point Green’s function: M*, are the
connected pieces of the nonsoft-photon (core) diagrams, and A*
represents the soft-photon corrections to the external lines.
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4. MASS-SHELL SINGULARITIES

We now wish to examine the nature of the mass-shell
singularities implied by the structure obtained above
for the special case in which the soft-photon external
current J is set equal to zero. (A similar analysis has
been given by Hagen® for the special case of the propa-
gator function.) For simplicity, we shall assume that
we are interested in a region of momenta in which only
completely connected core diagrams can contribute
significantly, so that we may set7=0and N=11in (3.14).

The function A¢ given by (3.19) has a singularity
when p,=g¢;, which is a modified form of the é-function
singularity in (3.12). The nature of this singularity is
governed by the asymptotic behavior of the integrand
for large y;. The function falls off rapidly with increasing
values of p;—g;, corresponding physically to the fact
that the soft photons cannot transfer large amounts of
momentum. Thus p,—¢; may be treated as small. Now
it is reasonable to suppose that the function M*(gy- * - ¢a)
is a slowly varying function of the momenta. Therefore,
it is legitimate to replace it by M*(p;- « + p,) and bring
it outside the integral. Moreover, for J =0, the function
A® contains an over-all energy-momentum-conserving
8 function 83 p;,—>.¢;), so that we may replace
3(2_g;) by 8(2p;), and obtain

G@mmhgwmmmwmmm%

Xo(prt- -+ )M (pr- - p)T*(p1- - - pn), (4.1)

where

I“’(Pl‘ . P")
dq:
@n)  (2n)"

dqn

A(p1-+pa; qr--+gal0). (4.2)

Integrating over ¢; in (3.19) has the effect of setting
each y;=0. Thus we obtain

I(p:- ‘Pn)=/ doy: - +dog exp[—1i 2 oj(m+p;?) ]
0 =1

Xexplt 3 5 Xisoor)}, (43)

=1 j=1

where

dk Y v k)b
Xiloao) =i, / Al

o (2m)t  R2—ie
2i0pi k)—1 —2ioipi-k)—1
X(eXP( ioipit k) >(3XP( ioipi- k) > (4.4)
pik pik

The function I'* given by (4.3) has a singularity in
each momentum variable on the mass shell p;2= —m,?
which is governed by the asymptotic behavior of the

¢ C. R. Hagen, Phys. Rev. 130, 813 (1963).
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integrand for large o;. It is the nature of these singu-
larities which we wish to investigate in this section,
since the remaining factors in (4.1) are nonsingular.

It is useful to note first certain symmetry properties
of X,;. By making the substitution #——#% and using
(2.3) we see that X;;=X};, and also that it is unaltered
by simultaneously changing the signs of both p; and p;.

In the familiar case of a theory without massless
particles, the mass-shell singularities of different ex-
ternal lines are essentially unrelated, and it makes no
difference whether we consider them sequentially or
simultaneously. This is far from being the case in the
present theory, however, and we have to decide on the
order in which to take the various limits involved. It will
be most convenient to consider the limits sequentially,
first allowing ;2 to approach —m,?, then p,? to approach
—ms?, and so on. Consequently, we need to study the
asymptotic behavior of X;; as first one and then the
other of the variables o; and o; is allowed to approach
infinity.

It is not hard to see that, for large wvalues
of ¢; and 7;, X;; behaves qualitatively like the function
In[Ko,0,/(0;40;)]. That is to say, if we let either
variable become infinite, o; say, the function remains
finite in the limit. Then as o;— it behaves logarith-
mically. (On the other hand, if we allow both variables
to approach infinity together, keeping their ratio fixed,
it also behaves logarithmically.)

Let us suppose that 7<%, and consider first the limit
o; —o. (We treat the special case 7= j separately later.)
In this limit X,; remains finite, and takes the form

dk  pyvu(k)ps

o' (2m)*  k2—1e
" )
sz }p,"k—ié

Xij(os,0 )= —iew;

(4.5)

Since X;; is unchanged by the simultaneous change of
sign of both p; and p;, there is no essential loss of
generality in supposing that p,°>0. Then using the
fact that the limit K° of the %° integration is large
compared to K, we may complete the contour of the
k® integral in the lower half £° plane, and evaluate it by
contour integration.

In general, this process yields two terms, one from
the pole at k%= |k| and the other from p;-k=0. The
latter contribution appears only when $,°>0, since
otherwise this pole lies above the real axis and is ex-
cluded from the contour. Thus we can write

Xij(o5,90) =X ;D (04,%0)+0(p:°p;) X 5P (03,%0) , (4.6)
where
dk MY uy k rd
Xz'i“’(%w)—"-eiejf pemlBlp
o+ (2m)32k° (pi-k)(ps k)
X I:CXP(Z'iO'@‘pi‘ k) - 1] (4'7)
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and

dk  pivu(k)ps”
Xij‘”(ﬁ,w)=e,~e,~/ p*vw(k)p;
2

« (27)4 k?

exp(2ioipi-k)—1
X (—T)Z‘Ira(pj' k). (4.8)

(We may drop the small imaginary part in the denomi-
nator k2, since % is always spacelike in the region where
the argument of the & function vanishes.)

Let us examine first the function X ;. It is easily
seen to be precisely the function L;;(x) defined in (2.9)
with x#=2p,#s;. Hence, its asymptotic behavior is given
by (2.16), or

XiD(g;,0) = & In(Kmio;)+constant,  (4.9)

where £;; is the parameter defined in (2.17) or (2.18) as
a function of the velocities.

Next we consider the function X;;®. By making the
transformation £ ——*% in (4.8), we see that it is purely
imaginary. It is also easy to verify that, like X,
it behaves logarithmically as o;— . Moreover, unlike
£45, the coefficient of Ine; in X ;@ is independent of the
choice of gauge, because the dominant contribution
comes from the region near p;-2=0, so that the gauge-
dependent terms proportional to p;-k or p;-k can be
dropped. (Such terms are finite in the limit ¢;—.)
Explicit calculation shows that

X ;P (0i,%0 ) =~ —ini; In(Kmio;)+constant, (4.10)

where 7;; is given in terms of the relative velocity #;; by
(4.11)

Note that, unlike £;;, this coefficient diverges in the
limit of zero relative velocity. This suggests that the
asymptotic behavior of the imaginary part for 7= 7 will
be different, and we shall see later that this is indeed
the case. The term X ;® is in fact closely related to the
formally divergent “Coulomb phase” which appears
in the nonrelativistic Coulomb scattering amplitude,
and which describes the asymptotic distortion of the
Coulomb wave functions.

Combining both terms in (4.6), we obtain the asymp-
totic behavior

Nij= 6,'6,'/471'%.',' .

X (04,0 ) =4 In(Kmio;)+ constant, (4.12)
where the complex coefficient {;; is given by
o= Ei—ini0(p2P,°) . (4.13)

For example, in the Lorentz gauge, using (2.15) and
(2.17), we have

$ist=EiP—ini0(p2p,°)
€i6; / . 1+ U5
41r2u,-j\ 1— Uij

iro@,-oz:ﬂ)), (8.14)

» Xii(z) (a',-) = Zieﬁa.- /
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while in the radiation gauge we have the extra terms
given by (2.18).

It is interesting to note that (4.14) can be written in
a form in which the real and imaginary parts appear
naturally together. Let us define

Xij= pi- ps/mim;

and note that $:°,°> 0 means X;;<0. We introduce the
function ¥(X) defined by

W(X)=[x/(x2—1)1/2] In[x+ (x2—1)1/2], (4.16)

together with the stipulation that the principal branch
of the logarithm is to be chosen for X>1. Then it is
easy to verify that (4.14) may be written in the form

it = (eie;/ ) W (Xi5—ie) . (4.17)

(4.15)

Now let us return to the special case 7= j that was
excluded from the above discussion. This case must be
treated separately because we cannot any longer take
the limits o; — and ¢;— sequentially. If we distort
the %9 contour to pass above or below the points where
pi-k=0, then we can separate the various terms in
(4.4). Changing the sign of & in two of the four terms, to
obtain a form similar to (4.5), we find

dk Pi"’)’,.y(k)?i"
o 2m)¢  kP—ie

Xii(os)=—1e? [exp(2ioipi-k)—1]

(4.18)

1 1
X( —-t - >
(piktie)?  (pi-k—ie)?

We can now again complete the &° contour in the lower
half %° plane and obtain two terms. The term which
arises from the pole at k%= |k| is similar to (4.7) but
with an extra factor of 2, whose origin may be traced
to the fact that there are now two nonoscillatory terms
in (4.4) instead of just one. The second term, which
arises from the pole at p;-k=0, is similar to (4.8), but
instead of being logarithmic in o3, it is actually linear.
It is given correctly by letting p; approach p; in (4.8),
and is

dk Pi”')’uv(k)Piv
e 2m)t R
.e{"mgzKa.'

=—1
1,.2P1.0

2w8(pi- k)

B(us). (4.19)

Formally, this term represents the soft-photon contri-
bution to the mass renormalization, as may be seen
from the fact that its effect would be to shift the position
of the singularity in p;2 away from —m,? However, it
is in any case of order K and therefore negligible, as
it must be since the mass renormalization constant has
no infrared-divergent part.
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Because this imaginary term is negligible, we are left
only with the term X ;;(V; so that

dk  piryw(k)p
ar (2m)32k°  (ps-k)?
X [exp(2ioip:-k)—1],

which agrees with (4.7) except for the additional factor

of 2. Its asymptotic behavior is therefore again given
by (4.9):

X,;,'(O‘,') = 25“ ln(mei) —{-constant. (421)

This factor of 2 may be rather surprising, but as we
shall see in subsequent papers, it plays an essential role
in maintaining the consistency of the theory.

We may now return to the formula (4.3) and de-
termine the nature of the singularities in the function
I'®, and therefore in the Green’s functions.

Let us first consider the behavior as p;* approaches
—m, 2. The nature of this singularity is governed by the
asymptotic behavior of the integrand as ¢3—o with
all other o; held fixed. The only term in the exponent
which does not remain finite in this limit is $X1;, whose
asymptotic behavior is described by (4.21). Thus, omit-
ting factors which remain finite as o3 — =, the integral
we have to consider is

X,','(o‘i) = 26i2

(4.20)

/ do1 exp[ —io1(mi?+ p1?) J(Kmyoy) i
0
éu! ( —1im K )HE“
-le\mlz—l-plL—ie )

Hence we find that, as p12 ——m,?, I'® behaves like
Te(pr- «  pu) = —il* @y (p1- - - pu)

&u!

i+ pr—ie\ma+ pr2—i

/ —im K

e)su , (4.22)

where T'*(y) is nonsingular at p,2= —m,2 Note that in a
physical gauge £1; is always negative [for example, in
the radiation gauge, it is given by (2.22)], so that
the Green’s functions are less singular than in a theory
without massless particles, as we should expect
physically.

Next let us examine the behavior of I'*1y as ps?—
—ms? This is governed by the asymptotic behavior of
the integrand as o2 —o with o3 - -0, held finite. The
limit oy —c has already been taken, so that we now
have two logarithmic terms in the exponent, $X,, and
Xo1. Thus the integral we have to consider is now

/ dos exp[[—iao( P2+ ma?) J(Kmaas)trrtia,
0

COHERENT STATES AND INFRARED DIVERGENCES

1535

Hence we find that the behavior of I'*(1y as p,? ——my?
is of the form

Py (pr -+ pn) = =il any(p1- * + pn)
(&20F$a1)! [ ~ imsK
X
ma+ pa?— ie\mgz—i— pot—ie

Saxtlo1
) , (4.23)

where again I'*(15) is nonsingular at py2= —m,2

We may continue in this way. In general, the expo-
nent which appears in the asymptotic behavior of
I (eejeyy 88 P ——m;? is &+t -+ +$n

Finally, for future reference, we note one special case.
In the radiation gauge the parameter £1;% vanishes when
p1=0. Thus, when the spatial momentum p; is zero, the
Green’s functions have a simple pole at pi2=—m;?
that is, at p1°==m;. This pole may be identified with
the contribution of a true one-particle state. More
generally, if p;=0, then all the parameters £, vanish,
as may be seen from (2.44). However, the imaginary
parts 7;; do not vanish. In that case, the singularity of
the Green’s functions is of the form (m;2+ p;2—ie)~1+in,
Physically, this corresponds to the fact that although
the real soft photons disappear for p=0, the Coulomb
phases remain.

5. CONCLUSIONS

We have shown that the soft-photon contribution to
an arbitrary Green’s function may be isolated in a single
function A¢, given by (3.19). This function replaces the
function A, of (3.17), which appears in the expression
(3.14) for the Green’s function G* with soft-photon
contributions removed. The mass-shell singularities of
the Green’s functions are governed by the behavior of
this function A®. They were shown to be branch points
with the structure described by (4.22) and (4.23).

In the following paper, we shall investigate the nature
of the asymptotic states implied by this singularity
structure. Instead of choosing the space of asymptotic
states @ priori, we shall allow the theory itself to de-
termine them.
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