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The first two orders of the low-frequency limit of a bremsstrahlung amplitude are determined by the
general principles of quantum field theory. The leading order is in obvious correspondence with the classical
limit. We present a conceptual experiment which shows that the next-order term is also determined by
the classical limit. In addition, a generating functional is constructed that provides the two leading terms
of the bremsstrahlung amplitude for the emission and absorption of an arbritary number of soft photons.
This generating functional is used to indicate a classical correspondence to all powers of the electrical charge.

1. INTRODUCTION

HE leading term in the bremsstrahlung amplitude
for the emission of a soft photon depends in-
versely on the photon frequency; it is of order w™*. This
term is easily computed either classically or by the
methods of quantum field theory. In the classical calcu-
lation, the electromagnetic energy radiated by the
over-all motion of a charged particle that undergoes an
essentially instantaneous collision is computed. In the
quantum-field-theory calculation, the amplitude for the
emission of a soft photon in the propagation of a
charged particle external to the major scattering event
is computed; in this order, the emission vertex of the
soft photon depends only upon the electrical charge.!
Low? has shown that the basic postulates of quantum
field theory, particularly Lorentz covariance, gauge
invariance, and simple analytic properties, enable one
to compute not only the leading contribution to the
soft-photon emission amplitude, but also the next-order
term. This term, of order %«’, involves only the intrinsic
properties of the charged particle, its electric charge and
magnetic moment, and the mass-shell value of the
elastic scattering amplitude. It is our purpose to
demonstrate the connection between Low’s theorem
and the classical limit, and thereby relate it to the
correspondence principle.?®
There is an apparent difficulty with this program:
The leading term already gives the classical cross section
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1S, Weinberg [Phys. Rev. 135, B1049 (1964)] has shown that
Lorentz covariance requires that the bremsstrahlung amplitude
be gauge-invariant, and that gauge invariance determines the
soft-photon emission vertex uniquely as well as implying the
conservation of electrical charge. (Weinberg also makes the
important observation that Lorentz covariance similarly deter-
mines the structure of the zero-frequency gravitational coupling
and requires the equivalence of gravitational and inertial mass.)
A lucid discussion of these ideas is contained in the lecture by
T. W. B. Kibble, in High-Energy Physics and Elementary Particles
(International Atomic Energy Agency, Vienna, 1965).

2 F. E. Low, Phys. Rev. 110, 974 (1958).

2a The relationship between the low-frequency theorem and the
classical limit in Compton scattering has been discussed by
M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433 (1954).
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for low-frequency radiation. The next term is of order %
and would not be expected to be related to a classical
limit. The resolution of this difficulty is to consider a
different classical experiment, one in which the leading
terms cancel and the next-order terms correspond to
the classical result. Such a conceptual experiment is
provided by the scattering of a charged particle on a
neutral target in the presence of an external, classical
radiation field.* If, for example, the average energy
supplied to the particles is computed, then, since in
lowest order stimulated emission* is as likely as absorp-
tion, the leading terms cancel and the next-order terms
give precisely the classical power gain.

Since we are concerned primarily with the physical
basis of Low’s theorem, we shall restrict the discussion
to the radiation emitted in the otherwise elastic scatter-
ing of two spinless particles only one of which is charged.
We review Low’s theorem in Sec. 2, using an on-mass-
shell technique and a variable choice that are suggested
by the classical correspondence. This method simplifies
the proof of the theorem and is easily extended to the
case of the two-photon amplitude. The low-frequency
behavior of this amplitude of orders (ww’)™, w™?, and
«'~! can, as in the single-photon case, be expressed in
terms of the mass-shell value of the elastic-scattering
amplitude. Furthermore, those terms of order unity
can also be computed in terms of the mass-shell
elastic amplitude and the structure-dependent single-
photon amplitude. We shall find that these terms of
order unity cancel, in the classical limit, the structure-
dependent terms in the single-photon-emission cross
section.b

We begin our illustration of the classical limit by
briefly reviewing, in Sec. 3, the well-known low-
frequency limit of the ordinary bremsstrahlung cross

3 This thought experiment is not entirely unrelated to the
heating of a plasma by a radiation field. See, e.g., the review by
S. C. Brown, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. 22.

*We may, of course, neglect the spontaneous emission and
attendant radiative reaction (virtual-photon corrections), for
}:ihfse processes are independent of the strength of the radiation

eld.

5 A similar cancellation of structure-dependent terms between
the real-photon-emission cross section and the virtual-photon
radiative correction to the elastic-scattering cross section occurs
in the infrared corrections to scattering processes. Thus these
corrections can be computed to a higher order in the photon
frequency than has been previously realized.
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section. The quantum-mechanical description, to
second order in the electric charge, of a scattering
process occurring in the presence of a radiation field is
presented in Sec. 4..In the low-frequency limit, all terms
in the cross section of order (%w)~2 and (%w)~! cancel,
and the sum of the remaining terms does not depend
upon the phase of the elastic-scattering amplitude. We
show in Sec. 5 that the classical limit of the cross section
may be computed in the approximation that the
collision occurs instantaneously and at a point in space.
The agreement between the two calculations shows the
role that low-frequency theorems of quantum field
theory play in the classical limit. The correspondence
of the classical and quantum-mechanical expressions for
the rate at which energy is transferred from the radia-
tion field to the motion of the particles is a simple
byproduct of the general discussion.

A generating functional is constructed for the
collision amplitude involving the emission and absorp-
tion of an arbitrary number of soft photons in Sec. 6.
It describes correctly the first two leading orders of the
multiple soft-photon amplitudes. This generating func-
tional is used in Sec. 7 to obtain heuristically the

classical limit of the scattering cross section in the
radiation field to all powers of the electrical charge.

Fic. 1. Pictorial representation of
the elastic-scattering process.

2. LOW-FREQUENCY THEOREMS

We consider now the structure of the amplitudes
describing the one- and two-photon radiation that
accompanies an otherwise elastic collision of two spin-
less particles. The scattering process in the absence of
radiation is depicted in Fig. 1: A spinless charged
particle with initial four-momentum p and mass m
scatters elastically on a neutral spinless target with
initial four-momentum P and mass M. The final
momenta of these particles are p” and P’ respectively,
with

p'+P'=p+P. 1)

We denote the scattering amplitude for this elastic
process by T'(v,f), where we have chosen a particular set
of variables that will later prove convenient, namely,
the variable » which is proportional to the laboratory

energy,®
V= PP ’ (2)

and ¢, the square of the four-momentum transfer,
t=—(P'—P)2. 3)
6 We use a metric such that pP=p+P,=p-P— p?P? and employ,

for the most part, natural units, #=c¢=1. We shall display Planck’s
constant 7 explicitly in later sections when we make contact with

the classical limit.
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Fic. 2. Pictorial representation
P P of the scattering process in which
one photon is emitted or absorbed.
P TS p

The process in which one photon is emitted or
absorbed during the scattering is shown in Fig. 2, where
the particle momenta are labeled as before, and the
photon carries off four-momentum %, with

k'+p'+P'=p4-P. (4)

We consider the general case in which the photon may
be virtual (k2>0), for such photons can be provided by
external fields and, furthermore, virtual-photon ampli-
tudes enter in the calculation of radiative corrections to
scattering processes. The leading low-frequency terms
in the amplitude 7* for this process are those associated
with graphs in which the photon is attached to an
external particle line; these pole terms, displayed in
Fig. 3, are of order w™!, where w=F£° is the photon
frequency. We define these pole terms in the dispersion-
theory sense, which is to say that the residue of the pole,
the elastic-scattering amplitude, is always kept at its
physical, mass-shell value. This is a natural definition,
since the low-frequency behavior is related to the
classical limit in which no off-mass-shell processes
occur. Indeed, if the pole terms were evaluated using
the unphysical, off-mass-shell scattering amplitude,
additional, nonsingular terms would appear in the low-
frequency theorem that precisely cancel the off-mass-
shell extrapolation.” Thus we define the pole terms as

(20 b)
(P”=F(k’2)<————-T(v,t)
2P’k,+k,2
2p— )
IR ARG i ) )
kR

where T'(v,#) is on the mass shell, F(%’?) is the mass-shell

20 =0

Fic. 3. Graphs representing the pole terms in scattering
with one photon emitted or absorbed.

7 The freedom in the definition of the pole term and the utility
of its dispersion-theory definition were apparently not recognized
by Low (Ref. 2) nor by subsequent authors: S. L. Adler and
Y. Dothan, Phys. Rev. 151, 1267 (1966); J. Pestieau, sbid. 160,
1555 (1967); T. H. Burnett and N. M. Kroll, Phys. Rev. Letters
20, 86 (1968). Burnett and Kroll have shown that the first two
terms in the soft-photon bremsstrahlung cross section for the
scattering of an unpolarized spin-} charged particle are inde-
pendent of its magnetic moment and depend only upon the un-
polarized elastic cross section. This result, that the soft-photon-
emission cross section does not involve phase information on the
elastic amplitude but depends only upon the cross section, appears
natural in view of the connection of the soft-photon theorem with
the classical limit.
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Fic. 4. Pictorial representation
of the scattering process in which
two - photons are emitted or
absorbed.

P P
P’ P
form factor of the charged particle, » is the laboratory
energy of the initial charged particle, Eq. (2), and ¢ is
the square of the four-momentum transfer of the neutral
target particle, Eq. (3). We have used the momentum
transfer of the neutral target, which is independent of
the photon momentum, as a variable, rather than that
of the charged particle which depends upon the photon
momentum and differs for the two terms of Eq. (5).
Furthermore, we have employed the laboratory-energy
variable y= — pP rather than the center-of-mass energy
s=—(p+P)2 for the former depends linearly upon the
charged-particle momentum, while the latter involves
$2%, which can go off the mass shell. Such off-mass-shell
terms are essentially spurious, since they do not occur
in the classical limit, where all particles remain on the
mass shell.? Any set of invariant variables could be
used, of course; however, the set that we employ is a
natural one in view of the classical limit and enables
the photon-emission amplitude to be written in a
particularly simple form.

Gauge invariance requires that the single-photon
amplitude be divergence-free, or

k,/Te=0. (6)
The pole contribution alone is not gauge-invariant, for
kSOr=F(E)[T,t)—Tw+kPt)]. Q)

However, we can easily construct a nonsingular
quantity 8* which compensates for this lack of gauge
invariance,

8#=Pe(k'P)'F(K")[T(v+kPl)—T (5], (8)
for
k (®*+8%)=0. )

Thus we may write the entire one-photon amplitude as
Tr=@*+8++R*, (10)

with the remainder ®* nonsingular and gauge-invariant,
kJ/®*=0. (11)

If we differentiate this equation with respect to %2’ and
then set 2’=0, we learn that

®#(E'=0)=0. (12)

8'To be more explicit, we note that the emission or absorption
of a photon by a particle, p — p—F%/, corresponds roughly to the
classical oscillatory motion in an external field where the initial
constant momentum is replaced with a proper-time-dependent
function p— p(r)=p—f(r). Now under these replacements
»— »+E'P or y— v+ f(r)P. On the other hand, since p(r)%=p?
= —m?always remains on the mass shell, s— s+2'P+k' 2p—F’),
while, classically, s— s+2f(7)P. The correspondence between
the two replacements p— p—F~’ and p— p— f(r) is exhibited
in Secs. 4 and 5.

SOFT PHOTONS AND CLASSICAL LIMIT
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F1c. 5. Graphs representing the double-pole and “seagull” terms
in scattering with the emission or absorption of two photons.

This is the content of Low’s theorem: The single-photon
amplitude T* is determined completely by the corre-
sponding physical elastic amplitude 7'(v,f) up to terms
of order w in the soft-photon limit. We note that, with
our choice of invariants, the contact term 8¢ is propor-
tional to the initial momentum of the target particle P*.
Thus if the bremsstrahlung amplitude is evaluated in
the laboratory-frame radiation gauge, the photon-
polarization vector e* is orthogonal to P*, ¢,P*=0, and
the contact term §* does not contribute. In this gauge,
the soft-photon limit is given entirely by the dispersion-
theory pole term, Eq. (5).

The method that we have used is easily extended to
the case of the two-photon amplitude 7% shown in
Fig. 4. We have chosen the photon with polarization »
and momentum £ to be incoming and the photon with
polarization u and momentum %’ to be outgoing, so that
the energy-momentum balance reads

E+p'+P'=k+p+P. (13)

We decompose the two-photon amplitude 7# into a
part that contains its double poles ®*, a part §# that
combines with the double-pole term to make a gauge-
invariant quantity, and the gauge-invariant remainder
®*,

Tw=0r4-8+@m. (14)

The double-pole terms which give the leading contribu-
tion in the low-frequency limit of order (ww’)~! are
described by the graphs of Fig. 5. We have included
with the double-pole graphs single-pole, ‘“seagull”
graphs so that the sum would be gauge-invariant if the
elastic amplitude had no energy dependence. Thus we
write the double-pole terms as

o =APT (v )+ T v+ P—EP,{)Bw
+CoT(v— kP )+ CPT (v EP,), (15)

where the A#*, B* terms correspond to the graphs in
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Figs. 5(a) and 5(b), respectively, and the C*, C* terms correspond to the graph in Fig. 5(c). They are given by

Q'+ )2 2 —R)* (29— 2k+F)u(2p — k) 1
AW=F(k’2)F(kZ)( | G - g“”> ,  (16a)
2k AR —2p k2 2 (b — )+ (& — k)?
Qp+2k—k)2p+ k) (2p—K)*2p+k—2k") 1
Bw=F<k'2>F(k2>( | 2 .6
2pk+ B2 — 2Pk ) 2p(k— )+ (B—E')?
(2p"+k)* 2p+k)”
Cw=F(k?)F (k) , (16¢)
2K 2phA k2
and
(p—k)*  (2p'—k) .
(16¢”)

Cw=F(k")F (k) .
— 2Pk —2p kAR

As in the single-photon case, the pole terms are not separately gauge-invariant if the elastic amplitude is energy-
dependent. It is not difficult to construct a contact term $* that compensates for this lack of gauge invariance. In

the two-photon case, this part contains singe-pole terms, and one finds

Qp'—k)

«S“":F(k’Z)F(kZ)[ m

P
—_— v+EPH—T@
(Cre P~ 160]

+ [T+ # P—kP )= T(r— kP f) ]

(2P+k)”>
2pk+ k2

(2p'+E) (2p—FK)*
+<—-——-—-———[T(v,l)——T(u——kP,t)]“}‘W[T(V-Fk'P,l)-—T(V-f-k'P———kP,[)])P”/kP

2P1k1+k12

+ (PrP? /K PEP)[T (kP )+ T (v— kP ) — T(v,f) — T(v—l—k'P—kP,t)]] . an

That this contact term can be written in a relatively
simple closed form is due to our choice of » and ¢ as the
invariant variables of the elastic amplitude. The sum
of the double-pole term and this contact term are

divergence-free,

k(@ 8#) = 0= (O*+ 8"k, ,
and the gauge invariance of the complete two-photon
amplitude,

(19)

(18)

k)/Tw=0=Tr}k,,
requires that the remainder ®* be divergence-free,

k) ®w=0= Rk, (20)

Note that $# always involves either a factor of * or P,
so that it does not contribute to the double-photon
bremsstrahlung cross section if the latter is calculated
in the laboratory-frame radiation gauge.

Thus far, we have accounted for the double-pole
terms that occur in the two-photon amplitude in a
gauge-invariant manner. However, the two-photon
amplitude has single-pole terms as well as double poles.
For example, there is a single pole when 2pk-+£%2=0

with
Tw — Te(2p+k)/(2pk+k2). (21a)

If we use the structure of the single-photon amplitude
exhibited in Eq. (10) and the decomposition of the
two-photon amplitude given in Eq. (14), we find that

as 2pk+k2— 0,
G — QH(k')(2p+k)"/2ph+k?). (21b)

Here ®*(k’) is the gauge-invariant remainder of the
physical single-photon amplitude and is on the mass
shell, but with the initial momentum p replaced with
p+k. There is another kind of single pole which appears
when, for example, 2p(k—k')+(k—F%')2— 0. In this
limit,

Tw — T2p(k—k)+(k—F)2T1C (R k), (22a)

where C*(k',k) is the Compton scattering amplitude
for the charged particle whose invariant amplitudes are
evaluated on the mass shell. We may decompose this
amplitude into pole terms, a ‘“seagull” term, and a
nonsingular remainder,

(2p+2k—E)*(2p+k)
2pk+-k?

Cr(k' k)= F(k'z)F(k2)<

Cp—Dr@pt-2) ) )
; w 4Dk ).
Ry g Dok ). (22b)

Using this decomposition and that given in Eq. (14),
we find that as 2p(k— &)+ (k— k)2 — 0,

@ — T(2p(k—k')+(k— k)T D# (R k).

For a physical Compton scattering process in which

(22¢)
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both the initial and final charged particles are on the
mass shell, C* must be gauge-invariant, and in the
decomposition (22b) this requires that

k,/Dwr=0=Dw,. (22d)

Since D# is nonsingular, these two divergence condi-
tions imply® that D# is of order w'w even when one of
the charged-particle four-momenta is unphysical and
this amplitude is no longer transverse.

We may take account of all the single-pole terms in
the remainder @®* if we write

R = (UG{W.}. (2R , (23)

with
CptEy by
2h+kE —2p kR
(2p"+k")- (2p—Fk")*
2Rk —2pk+ R
+ TL2p(k— ')+ (k— k)2 1D (k' )
+De(k k)T 29" (k' —k)+ (K —R)* ],

W Rw = (R#(k') (Ru(k’)

®(—k)+®(—k)

(24)

where we have suppressed the momentum variables
that occur in ®#, D*, and T other than the photon
momentum. The quantity P ®* is entirely free of poles
and its leading terms, of order w, ', are determined by
the gauge invariance (20) of ®*. The two-photon
amplitude T* is therefore, in principle, determined to
order w, ' in terms of the elastic, single-photon, and
Compton amplitudes. We shall not, however, explicitly
write this down, for we shall need the two-photon
amplitude accurate only to constant terms in the soft-
photon limit, and this is provided by ®**, 8, and V&,
To this accuracy, the terms containing D* do not
contribute, the change of particle momenta resulting
from photon emission or absorption may be neglected,
and the initial and final particle momenta appearing in
the ®* factors of ®* may be taken to be p and p’. We
note that the sum ®*--8* alone gives the first two
leading orders, and that these are determined entirely
by the physical elastic scattering amplitude.

3. BREMSSTRAHLUNG AND THE
CLASSICAL LIMIT

For the sake of completeness, we shall review briefly
the well-known connection between the low-frequency
behavior of the quantum-bremsstrahlung cross section
and the classical limit. The correspondence arises, of
course, because quantum mechanically the photon fre-
quency appears in leading order as an energy 7w, and
taking the limit 7w — 0 is tantamount to taking the
limit %#— 0. The exact single-photon bremsstrahlung
cross section is given by the absolute square of the

?F. E. Low, Phys. Rev. 96, 1428 (1954); M. Gell-Mann and
M. L. Goldberger, bid. 96, 1433 (1954).
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emission amplitude multiplied by the volume of the
final-particle phase space and divided by the initial-
particle flux:

k) 1 @) 1 @P) 1
(2m)8 24K (27)° 250 (21)° 2P70
X (2m)16(hk'+ p'+P'— p—P)
X(e?/ )| e, TH |2 /4 —m2M2)12, (25)

In the low-frequency limit, the photon energy momen-
tum 7%k’ can be neglected in the energy-momentum-
conserving & function, and the emission amplitude can
be approximated by its poles ®#, with »+-%%’P replaced
with ». Thus in the low-frequency limit the brems-
strahlung cross section appears as a photon-emission
factor multiplying the elastic-scattering cross section,

do (1) =

2 (dk’) 1 ! k|2
dg(‘r)_—__f.. ¢ )-—- e,‘(ﬁ———i) da®©)  (26)
ko (2w)% 2k/00 \p'R' PR’
with
doteD (ap) 1 @P) Q2m)4s(p’+P P
o el = —_— [
(2ny 29 (myr 2po L P=b
X|T 0|2 /402 ~mM2) 2. (27)

The low-frequency limit of the analogous classical
process is obtained by approximating the true motion
of the charged particle by that appropriate to an
instantaneous collision, for the detailed nature of the
collision, which is confined in space and time, has no
influence on the long-wavelength low-frequency part of
the radiation spectrum. In this approximation, the
collision may be considered to take place at the coordi-
nate origin, and the velocity v#(7) and position z#(r) of
the charged particle as a function of its proper time =
are given by

(r)=p¢/m, T<0
=p/m, >0 (28)
and
g (r)=(p*/m)r, +<0
=(p'*/m)r, >0. (29)

The energy dE radiated into a small wave-number
interval (dk’) is related to the Fourier transform of the
associated current

j"(k’)=/(dx) e"'"'“’e/ dr v4(r)o[x—2(r)]

= —ie(p'/p'k' — p/pk')* (30)
by

dE=[(dk')/(2r)* ] | eug*(K")| 2. (1)
If this radiated energy is partitioned into parcels of
size 2k'® and these parcels are associated with individual
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photons, the number of photons emitted within some
wave-number interval becomes

e (dk') 1 <?' P)“
€x plk, pkl

N=— _—
f (2m)3 2k
Now the classical probability that a photon be radiated
is the product of dV and the probability that a collision
resulting in the final momentum " occurs. Hence the
classical bremsstrahlung cross section is given by

do Mgy =dNdo® |

2

(32)

(33)

which agreeé precisely with the low-frequency limit of
the quantum-mechanical cross section, Eq. (26).

4. QUANTUM-MECHANICAL SCATTERING
IN A RADIATION FIELD

We have just seen that the low-frequency limit of the
quantum-bremsstrahlung cross section, which is given
entirely by the leading pole terms, corresponds to the
classical limit. The terms of order #w° vanish in the
classical limit of this cross section. They can be exhibited
only in processes in which the leading terms cancel.
Such a cancellation should be expected to occur in the
scattering of a charged particle on a neutral particle in
the presence of an external, classical radiation field.
Here the leading terms in the cross section are of order
(fiw)~2, and a cancellation must occur if the low-
frequency limit is to be finite. We shall find that such a
cancellation does indeed happen, and that this process
provides a correspondence between Low’s theorem and
the classical limit.

We begin our discussion of this correspondence by
computing the scattering cross section in the presence
of an external radiation field

Ar(x)=aretr4-ar¥ehe | |2=0, (34)
including terms up to second order in the electric charge.
We shall impose the general gauge condition

kyat=0 (35)
in order to simplify the structure of the pole terms and
require, furthermore, that a* be in the laboratory-frame
radiation gauge,

Puar=0, (36)
so that the contact terms $* and 8§ may be omitted.
Before proceeding further, we must consider the struc-
ture of the two-photon double-pole terms A# and B».
For the case of real, collinear photon momenta,
E2=0=Fk2, Ek'k=0, these pole terms may be written
in the form (with the omission of the gauge terms &'+, &)

e P g
A= — e

— (37a)
P/k, plk P’(k/—k)

BROWN AND R. L. GOBLE
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and
PP g”
vk’ pk p(k—F')

The “seagull” contributions involving g are singular in
the limit %’ — k. This singularity disappears when we
consider the monochromatic field (34) to be the limit of
a wave train of finite length. The resultl®! of this
limiting procedure is that the seagull contributions
cause a change in the charged-particle momenta from
their values outside the field (p/,p) to new values
within the field (7’,p), with?

P*=pr— e2a*ak*/ pk

(37b)

(38)

and
(38")

This effect persists to all orders in e. Thus the mono-
chromatic limit is achieved by omitting the singular
seagull contributions and replacing the charged-particle
momenta with their values inside the field. The validity
of this procedure is verified in Sec. 7, where the low-
frequency cross section is computed to all orders in the
electric charge.

The cross section for the scattering into a small region
of final-particle phase space, including the effect of this
momentum shift, is given by a sum of incoherent partial
cross sections corresponding to the absorption or
stimulated emission of an arbitrary number of photons
into the external field

@) 1 [@P) 1
@n)s 2p) (27) 2P

p'H= p'r— e2a*akr/p'k.

do=

X S 8(F'+P'—p—P—niik)

X | T™(B,P'35,P) |2/ 4(—m2 M2, (39)

Here T'™ is the amplitude for scattering with the
absorption of » photons if # is positive, or with the
stimulated emission of |%| photons if # is negative. The
integration region in the final-particle phase space may
be small, but it must not vanish in the limit %% — 0, for
if the resolution becomes arbitrarily precise, the classical

(1910611{) S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705

1T, W. B. Kibble, Phys. Rev. 138, B740 (1965).

2 This momentum shift has a simple classical origin. The
radiation field is assumed to be adiabatically switched on and off
over a long time interval A~2 Rea¢™ 7¢I, 5 — 0, and, to first
approximation, the velocity of the charged particle follows the
vector potential v~— (e/m)A. There is a force evXB along the
direction of propagation of the radiation field, and during the
switching time this force produces an impulse

4e? [0 .
Ap~—k]|a| 2; dt e coswt sinwt, v— 0
—~o0
~k(e*|al*/m),
which is the nonrelativistic limit of Eq. (38). A complete rela-
tivistic derivation of this effect is given in Sec. 5.
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limit is not obtained.'® If we consider only terms up to
second order in the electrical charge, then only the
amplitudes 7 and T'&Y appear in- the sum. The
low-frequency limit of these amplitudes is given in
Sec. 2, and, bearing in mind the previous discussion of
the seagull singularities of Egs. (37), we have, in the
laboratory-frame radiation gauge,

’ 2 2
T<°>=T(a,t)~e2[< LAl P ELS )T(v,t)
phk phk
’ 3
—ﬂT(u+hkP,t)£a—
p'hk phk

o
re T— hkP,t)—?—a—
P’k phk

NCEAN.
p'hk  phk
£ 3 ! %
+<3"-—1’ ‘ )w(—k)aﬂ], (40)
phk ik
pa
T<+1>=e(T(v—hkP,t)———
phik
p'a
~ 2o —he,), (1)
"hk
and
! %
T<‘1)=e<? “r ()
p'hk
pa*
——T(v-{-ﬁkP,t)—+(Rﬂ(k)a,,*>, (41b)
phik
where
p=—pP=v+e?| a|2kP/pk. (42)

To obtain the classical limit of the cross section (39),
we must expand the energy-momentum-conserving &
function in powers of n#ik and combine the various
incoherent squared amplitudes that multiply the same
derivative of the & function. Since the leading terms of

131t is a general feature of the correspondence principle that
the experimental resolution must remain finite as %#— 0 if the
classical limit is to be attained. For example, in the high-energy
scattering of a particle of momentum p on a hard sphere of
radius @, there is a diffraction peak of width %/pa superimposed
on an isotropic background. The diffraction peak contributes an
amount 7a? to the total cross section and the isotropic background
contributes a similar amount, so that the total quantum-
mechanical cross section is 2ra?. On the other hand, the classical
differential cross section is, of course, isotropic, and the total cross
section is ma?. This apparent violation of the correspondence
principle is removed when it is realized that the classical limit is
achieved only in an experiment with a finite angular resolution,
and in such experiments the diffraction peak merges with the
unscattered beam in the limit #/pa— 0, and only the classical,
isotropic scattering is observed.
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the squared amplitudes are of order (%k)~2%, we must
expand the & function to order (n#%k)2. Thus the classical
limit should be achieved by writing

1
S 8+ P —p—P—nik)| T™|?

n=-—1

Eé(ﬁ'—}-P'——ﬁ—P}( IT(O) l2+ |T(+1) [ 24 IT(—~1)12)

g
+5‘{5(§'+P’—5—P)hk*( | 76D |2 | 76D [2)
P

19 0
+-— —6(p'+P'—p— P)i*ke
2 3p* ap°
X (|76 [ | 7|2,

We may make use of Egs. (40) and (41) to compute the
low-frequency limits

( IT(O)I2+ IT(+1) I 2L [ TEY|2)

(43)

= |T(,0) |2+ e? (* )282 T2, (44
= | TG) |+ | pal (;k; —I76Al, @)
h( i THD | 2__ [T(‘U ] 2)

Pa pa kP 9
e Re[(———)pa*]—-——xr(v,t>i2, (45)
'k pk Pk Oy

and

%;ﬁ( ’ T D l 2L ! 7D l 2)

P'a Pa>
=e?|{ ———

<p’k Pk
We note that the terms of orders %2 and %! have
cancelled, as they must if we are to have a classical
limit. Furthermore, in the low-frequency limit, the
unknown structure-dependent terms ®* which are of
order ° cancel.’ This cancellation also must occur for
the validity of the classical limit, for the low-frequency
limit of the classical cross section can be computed
exactly. Finally, we note that the low-frequency forms
depend only upon the transition probability | 7'(v,)|?
and its derivatives and require no information on the
phase of the scattering amplitude which would destroy
the classical correspondence.

FACHIENCD)

5. CLASSICAL SCATTERING IN
A RADIATION FIELD

We must now show that the low-frequency limit of
the quantum-mechanical scattering cross section calcu-
lated in Sec. 4 does in fact correspond to the classical
limit. The classical cross section may be computed in
the idealization that the collision of the charged particle
with the target occurs instantaneously, with no spatial
displacement; the error resulting from this approxima-
tion is of order wAf or |k|Ar, where At and Ar charac-
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terize the finite temporal and spatial extent of the
collision, and this error is negligible in the low-frequency
limit. With this approximation, the charged particle
with initial four-momentum p enters the radiation field
adiabatically, and its momentum becomes a function
#(7) of its proper time 7. The particle suffers a collision
at =17, and is scattered elastically with the momentum
p(7c) changing into p’(7.) with a probability given by
the differential elastic-scattering cross section multiplied
by the incident flux at the instant of collision. The
particle then moves out of the field adiabatically with
its momentum changing from p’(7.) to p’. The classical
cross section for the over-all process is given by the
rate at which particles with initial momentum p are
scattered into a final momentum p’ divided by the
initial flux, and averaged over the phase of the radiation
field. This phase averaging removes any reference to
the position and proper time of a particular collision.
Our first task is to compute the classical motion of
the charged particle within the radiation field. The
position z#(7) and momentum p*(7) of the particle are
related by
(47)

()= (),

with

d
;P"(T) = (¢/m)F¥[2(7) Jps(r). (48)

This equation of motion may be solved exactly for the
case of a plane-wave field: a field of arbitrary spectral
composition and polarization properties, but which is
characterized by a unique propagation direction
specified by the null vector #*:

n2=0, n>0. (49)

In this situation

d
Fy= ——[%uAv(y)*‘ﬂvAu(y)], (50)
dy

in which 4, is an arbitrary function of the variable

y=—nz (51)
constrained by the condition
A, (y)=0. (52)
Since we now have
—np(r)=0, (33)
dr
the variable y(7) is given by
y(1)=—nz(r)=—1np/m, (54)

where we have chosen the coordinate frame such that
¥(0)=0. Thus we may use y rather than = to parame-
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trize the trajectory of the particle. In terms of this
variable, the canonical momentum (p+e4) satisfies an
equation of motion

a e a4 et dA?
—(ped )= —mi—(pted)——nt—, (55)
dy np dy 2np dy
which has the immediate solution
) Fedr(3)=por+ntI,(y), (56)
where po* is an integration constant and
Ip(y)=(1/2np)[2ep iy A(y)—e*A(3)*].  (57)

We can now apply this general result. The momentum
of the initial charged particle is subject to a boundary

condition in the remote past
y—= = p(y)—p, (58a)

while, after it is elastically scattered, it must satisfy a
boundary condition in the distant future

y=Fer py) -y (58b)
These boundary conditions are obeyed by
PH(9,8) = p*— eAr(y)+n+I (y) (59a)
and
PH(y,p)=p'F—ed#(y)+ntl (y). (59b)

We have exhibited the dependence of the momenta on
the over-all phase ¢ of the radiation field which we must
average over later. Finally, in the monochromatic limit
of interest, we have

Au@):aue—i(wy~¢)+au*ei<wy~¢), (60)

with
(61)

It is clear that the final phase averaging will remove
the y dependence of the momenta, and we may now
omit this variable.

The rate at which particles are scattered from
momentum p to momentum ', at a given phase ¢, is
proportional to the differential cross section for the
elastic scattering p(¢) — p'(¢) multiplied by the
incident flux at the instant of collision:

do@O4Lv(¢)2— mM ]2

RE=wnt,

(62)

with
v(¢)=—p(¢)P. (63)

We may use the general form (27) of the elastic cross
section to write this rate in a manner that makes
explicit its kinematical structure:

do @4 v(p)2—m2M 22

_ /(dp’(qs» 1 /(dP’) o
(2m)2 2p"(¢)/ (2m)® 2P0

X (2m)'6(p" (6)+P'—p(6)— P)| T((¢),1) | .

(64)
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Here the integration region of the final-target-particle
momentum P’ is that appropriate to the given experi-
mental arrangement. On the other hand, the integration
region of the charged-particle momentum immediately
after scattering p’(¢) is that which evolves as 7— «
into the experimentally detected region of final-particle
momentum p’. This is an awkward state of affairs, for
it is a difficult geometrical problem to relate a momen-
tum region of p’(¢) to the corresponding region of p’.
However, we do not need to do this explicitly, since the
phase-space integral is Lorentz-invariant and the
motion of p'(¢) to p’ can be described by a Lorentz
transformation. Although this Lorentz transformation
depends upon p, it is not difficult to prove, using
Eq. (59b), that the Jacobian is unity;

a(;b’(qb))= det (ap/(qb))
o)  \ ap/

for the determinant may be written as unity plus a sum
of traces of ##*»” and n*a¢” which vanish. Hence

[(dp'(¢)) r /(dp’) 1

(2n) 2p"(p) J @2mp2p
and the integration region over the final charged-
particle momentum is now that which is directly given
by the experimental detection resolution. The rate
divided by the initial flux and averaged over the phase

of the radiation field is the classical cross section, and
we obtain

g r@dp) 1 @P) 1
da:/o Zr/ (2m)? 2p’(‘[ (23 2P"0
X (2m)*8(p’ (¢)+P'— p(¢p)— P)
X|T(($),0) |2/ 40 —m>M*) 2.

=1, (65)

(66)

(67)

This is the exact low-frequency limit of the classical
cross section accurate to all orders in the electrical
charge.

In order to make contact with the previous quantum-
mechanical low-frequency limit, we must expand the
classical cross section (67) in powers of the electrical
charge and retain terms to order e2. To the accuracy
required, and in the laboratory-frame radiation gauge,
we have

p"(¢)—p*(¢)
=p't—p*+n*2e Re[(p'a/p'n—pa/pn)e*] (68)
and

v(¢p) =v—2e(Pk/pk) Re(pa ). (69)

The expansion of Eq. (67) in powers of the electrical
charge to order e®> produces terms multiplying
3(p'+P'—p—P) and its first and second derivatives,
and we arrive at precisely the structure of the quantum-
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mechanical result exhibited at the end of Sec. 4. Thus
the role of the photon momentum %% as the expansion
parameter of the energy-momentum-conserving é func-
tion in the quantum case is replaced with the electric
charge ¢ in the classical case.® It is a simple matter to
verify explicitly that the coefficients of the § function
and its first two derivatives are identical with the
coefficients (44)—(46) calculated at the end of Sec. 4.
This completes the proof of the classical correspondence
of the low-frequency limit for scattering in a radiation
field.

The rate at which energy is transferred from the
radiation field to the motion of the particles within the
field may be found classically by multiplying the
integrand of the expression for the classical cross
section (67) by (p’+P'—p—P)° expanding the &
function in e, and performing the integrals. The
quantum-mechanical rate may be similarly obtained by
multiplying the integrand of Eq. (39) by #n#w, with only
the term (45) contributing in the soft-photon limit. It
is not difficult to verify that the two calculations agree
in the low-frequency limit.

6. A GENERATING FUNCTIONAL

In order to establish the connection between the
quantum-mechanical and classical scattering cross
sections to all powers of the electrical charge, we shall
employ an approximate generating functional that
yields the two leading orders of all the multiple soft-
photon amplitudes. We turn now to the construction
of this generating functional.

We alter our notation slightly by defining all photon
momenta to be incoming. The exact amplitude de-
scribing the absorption of # photons in the otherwise
elastic-scattering process,

Tﬂl"'#n(?’,P’;P’P; Ry kn) ,

is obtained by the functional differentiation of the
generating functional

70p,P';p,P;4]
w o [(dk dkx
¢ / 1)”.&.6__)‘4“(/31)"‘/1%(}3")
n=>0 'ﬂ! (277)4 (27'-)4
R R
XTwn(p,P'5 p,Pika - ).

(70)

The leading soft-photon contributions to this functional
come from the absorption of photons during the
propagation of the charged particle exterior to the major
scattering event. The totality of these contributions
form initial- and final-state wave functions ®,™ and
&, ", We shall use exact on-mass-shell vertices, so
that the wave functions satisfy a Klein-Gordon equation

[(10—eG(x))*+m*]P[x; @ ]=0, (71)
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where the effective potential

(dk)
M = I k ik 72
@)= [ (1)
is given by
QH(k)=F(k*)A*k). (73)

We note that, according to Eq. (71), a gauge variation
Qu(%) — Qu(x)+ 9\ (%) (74)

produces

B[ x; G+ ]=e*@P[x; Q. (75)

The initial- and final-state wave functions are the
solutions to the Klein-Gordon equation (71) fixed by
the boundary conditions #°— — o0 :

o, [x; @] — €77, (76a)

and x0— 40 :

q)p,out[x; @]* — e—ip/z:.
In the leading order, we may neglect the changes in the
energy variable » of the elastic amplitude that arises

from the absorption of soft photons by the charged
particle, and we have

(76b)

T[P',P',p,P,A]zT(V,t)/(dx) g“iP’;c

X®, Y x; @ J P, x; @JeP>.  (77)
It follows from Eq. (75) that this approximate form is
gauge-invariant. Although this approximation gives the
over-all momentum conservation dictated by the §
functions occurring}in Eq. (70), it does not produce
the exact residues,of the multiple poles [involving
T(v—kyP— -+ —Fk,P,1)], but rather ones [involving
T(»,t)] in which the photon momenta are neglected.

We may correct this approximation and account for
the alterations in the energy variable » produced by
photon absorption during the external propagation if
we write the elastic amplitude in terms of its Fourier
transform,

Tht)= / s Tt e s, (78)

Since that part of the incoming wave function involving
the absorption of # photons has the space-time behavior

[®,0 ]~ eitmthrt: - tka)z (79)
and since
/dg- T(g-’t)ei(p+k1+---+ku)P!'
=Tw—kiP—---—Fk,P)t), (80)
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the structure

/ P / (&) "0, x; QTT(t,1)
X® o [a-+Pt; @ eiPe

not only gives the leading soft-photon contributions to
the generating functional, but also correctly accounts
for momentum conservation. However, since the coordi-
nates of the wave functions differ, it is not gauge-
invariant, for under a gauge transformation there
appears the factor

exp{ie[A(x+P¢)—Nx)]}.

Thus we should construct a function that compensates
for this gauge change. This function must not be a
global functional of @ if we are to preserve the locality
properties of the multiphoton amplitudes. An obvious
candidate that preserves locality is

z+P¢
exp(—ie / it cws)),

in which the line integral runs along a straight path
from z to x+P¢. Accordingly,

(81)

(82)

(83)

T[p',P'; p,P; A1 / as / (dx) e—iP'=
X poutl x; QTFT(¢,1) B, [a+ Pt @JeiP=

a+P§
Xexp(——ie / dg, 6&”(5)) (84)

is a gauge-invariant momentum-conserving generating
functional that represents the leading soft-photon
contributions. It is interesting to note that the phase

a+P§
—is / dt, ax(¥)

1
=—ie / A\ ¢P,QH(x-+MNP)
0

/(dk) F(kz\PﬂA”(k)r it ik@4P)] (85)
=e e —et
eot T kP :

vanishes in the laboratory-frame radiation gauge.

An indication of the accuracy of this generating func-
tional is obtained if it is expanded in powers of the
electric charge. The first-order terms in e produced by
the wave functions are easily seen to agree with the pole
terms @* of Eq. (5). It is a simple matter to verify that
the gauge phase (85) corresponds identically to the
contact term 8* of Eq. (8). Thus, to first order in e, the
generating functional is identical with the sum ®*-8#
and accounts for the first two orders of the low-
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frequency limit. It is also not difficult to establish that
the terms of order e? correspond precisely to the double-
photon terms ®**+ 8#, and hence they also provide the
two leading orders in the soft-photon limit. In the
general case, the difference between the #-photon
amplitude given by the approximate generating func-
tional and the exact #-photon amplitude can have terms
containing the product of, at most, z—1 poles, for our
generating functional gives the correct n#th-order pole
terms. If this difference had a piece of order w= ™1,
where o stands for any of the photon frequencies, this
piece would therefore be the sum of terms of the form

le. . ‘Qn"”
KiQY+ KnaQnt

where the Q, and Q,’ are linear combinations of the
particle momenta and the K, are linear combinations
of the photon momenta. The gauge invariance of the
approximate and correct amplitudes implies that the
contraction of these terms with any k.#¢, a=1,---mn,
must vanish. This can occur only if in every term in (86)
there is a factor k,Q, in the denominator; but, since
there are # photon momenta and only »—1 factors in
the denominators, this can not happen for all of the %,
and there is a contradiction. Consequently, the two
leading orders in photon frequency to all orders in e
are correctly given by the approximate generating
functional.

(86)

7. EXACT CORRESPONDENCE

We can now make use of the generating functional to
establish heuristically the correspondence between the
quantum and classical scattering in the radiation field
to all orders of the electrical charge. It is readily
verified that the wave functions! in a plane-wave
radiation field (50)

o 20) = exp( =i | L), @

—0

and

&, oub(x)* = g7’ exp(—-i / dy'I p:(y')> (87b)
v

satisfy the Klein-Gordon equation (71) along with the
appropriate boundary conditions (76a) and (76b). In
the monochromatic limit, the combination that occurs
in the generating functional has the structure

x+ P§
‘Ppro“t(x)*q)pin(x‘l"l)g-) eXP<"“iB/ dén A”@))

= exp[ —ip'x+1p(x+P¢) ]
Xexp{i[ fp (ka-+¢)— folkx+kPS+¢)
+g(kx+¢)—glbx+EkPr+¢)]}, (88)

14 These wave functions are derived in Ref. 10. Their relation-
ship to the WKB approximation is also discussed in this reference.
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where, omitting a physically irrelevant infinite phase
factor,

£
oty e )
o ph

— (ie2/4pk) (a2e? — a*2e—2i%) | (89)
and

Pa  Po*
e""———e‘”’) . (90)

8#)= ~ie<Pk Pr

These functions are periodic in kx. Hence we may write

a+P¢

® Ut () *P i (x+ P§) exp(-—ie /

x

dt, 4 "(8)

— i 2B (e PY) i Cn(g—)ein(kz+¢)’ (91)

n=-—oo

in which

2T dd’
Ca6)= / e exp(iLy (6) = g+ APY)
0 ™

+4(¢)—g(d+kPE) ]}

The approximate generating functional (84) thus has
the form

709, P p,P; A]

(92)

n=—0o0

- / & S Qm)is(F+ P —p—P—nk)

XCa(O)T(He??, (93)

and the z-photon amplitudes that enter in the quantum
cross section (39) are given by

T = / di Col®) T (1) e%77, (%4)

If we introduce an integral representation for the
energy-momentum-conserving & function that occurs
in the quantum cross section,

(2r)5(5'+ P/~ = P—nk)

= [ @) exl—i+P'—p-P-ntre, 05)
then we encounter the sum
e L R

XT(§,1) TP 32 emkaCo(¢)*Cu(§).  (96)
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We may use the integral representation (92) of the
Fourier coefficients C, along with the completeness
relation

Saet=2rY", 8(0-+42mn) (97)
to secure
£ ey Ce)= [ e
Xexp{il [ (9) = fo (@—kx)— folp+kL§)
+ folo+EPS —kx)+g(d) —g(¢p—ka)
—g(¢+kPY)+glo+kPY—kx)]}. (98)

Having done the summation over the multiple-photon
partial probabilities, we can now take the low-frequency
limit 2 — 0. This is permissible because we are dealing
with quantities that occur within an integral over a
finite region of final-particle phase space,® and this
integral effectively limits the range of variation of the
parameter x so that kx— 0 as k— 0. We obtain,
as k— 0,

) , 27 d¢
5 emhC () HCalt) = / o
n Jo 2w

Xexp{—i[p'(¢)—D'—p(@)+P]x
+i(c=¢NPLp(e)—£},  (99)

where p’(¢) and p(¢) are the classical momenta given
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in Eqgs. (59). Accordingly, in the low-frequency limit,

2T d¢
2 (2me(p'+ ' —p—P—nk)| T™[*— / 2

X505 (8)+P'— p(é)— P) / aas
XT(¢ ) e 8 PO PTG e
27ra7¢
- / /@) P )= P)| 6@ 1, (100

which establishes a precise correspondence between the
quantum scattering cross section (39) and the classical
scattering cross section (67) to all orders in the elec-
trical charge.

The foregoing is not a complete proof of the classical
correspondence, because the final result is of order «° in
the photon frequency and, as was found in Sec. 4, there
are structure-dependent terms of this order and indeed
of lower order. The exact generating functional (70)
has, in addition to the elastic amplitude 7'(»,£), various
irreducible structure-dependent terms ®*, D®R#,---,
and irreducible Compton amplitudes D - - - multiplying
the elastic amplitude 7" sandwiched between the initial
and final wave functions. The same cancellations which
gave the final result (100) as a function of order °
multiplying the elastic amplitude | 7'(»,#)| 2 should occur
for the additional structure-dependent quantities. Since
these are at least of order w, they should not contribute
to the low-frequency limit.
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