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These may be recast in the form
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where only terms which do not vanish when « and X go
to zero are kept. We find
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With these results F, and o; can be evaluated as before.
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Unitarity corrections to pole dominance in Weinberg’s spectral-function sum rules and the corresponding
sum rules for asymptotic SU; and SU;X.SU; are evaluated in a model in which we use the field-current
identities for the vector and axial-vector currents, and in which the propagators of the vector, axial-vector,
and pseudoscalar mesons are evaluated in a chain approximation. This gives sum rules relating the various
coupling constants and masses. It is pointed out that although the unitarity corrections to the coefficients of
N2 A4.% etc., in the spectral-function sum rules are within 20 to 309, they can give rise to significant
deviations from the pole-dominance predictions for decay rates and mass ratios.

I. INTRODUCTION

EVERAL interesting results have been obtained re-
cently, starting with a broken chiral symmetry or
a chiral symmetry that is manifested only in some limit,
such as the asymptotic limit of a two-point function. In
particular, sum rules were obtained by Weinberg for the
spectral functions of the isotopic vector and axial-vector
currents!; these were later extended to the correspond-
ing octet currents.? In most of this work the spectral
functions have been approximated by the pole contribu-
tions, and this pole-dominance assumption has been
found to give some remarkably good results. An exten-
sion of these methods to n-point functions, using phe-
nomenological Lagrangians, has been carried out in the
same spirit; one starts with a chiral Lagrangian and
computes all the “tree” diagrams for an amplitude with
given external lines.?
An important question arises in this connection. The
pole-dominance assumption or the tree approximation
does not preserve unitarity, and one is therefore led to

* Work supported in part by the U. S. Atomic Energy Commis-
sion (Report No. NY0-2262TA-176).
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look for simple approximation schemes in which uni-
tarity is guaranteed.

In this paper we consider this question for the two-
point functions.? We first remark that although the pole-
dominance assumption has given some good results, in
order to examine the validity of Weinberg’s sum rules
it is necessary to evaluate the spectral functions in a
better approximation and examine how corrections to
the pole-dominance approximation affect the results
obtained from the sum rules.® In particular, the validity
of Weinberg’s second sum rule has been questioned.®
However, this criticism was based on results obtained
using pole dominance. As the second Weinberg sum rule
is not expected, a priori, to be well saturated with low-
lying states (in contrast to the first sum rule, which has
an integrand that is damped faster at infinity), it is of
interest to examine whether (nonpole) unitarity cor-
rections to the second sum rule improve the results fol-
lowing from it.

4 A brief summary of part of the results of this work has been
given by W. S. Lam and K. Raman, Nuovo Cimento (to be
published).

8 K. Dietz and H. Pietschmann [Universitit Bonn Report,
1967 (unpublished)] have taken into account two-particle states
in obtaining a sum rule for w-¢ mixing.

6 See, for instance, T. Das, V. S. Mathur, and S. Okubo,

?1%%5") Rev. Letters 19, 470 (1967); J. J. Sakurai, ibid. 19, 803
/).
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In order to go beyond pole dominance and obtain a
unitary approximation, one needs to consider specific
models.

The simplest approximation would seem to be to in-
clude the contributions of two-particle states (in addi-
tion to that of the pole) in the unitarity relations for the
spectral functions. When the pole corresponds to a
bound state, this would be a valid approximation. How-
ever, the single-particle states occurring in the spectral
functions of the vector and axial-vector currents are un-
stable particles. If these are regarded as elementary
particles (which exist independently of the interaction
in the two-particle scattering channels), then it would
still be valid to add the two-particle contributions to
the pole terms.® On the other hand, if these 1~ and 1*
mesons are regarded as dynamical resonances (generated
in part by the two-particle interaction), then adding
two-particle scattering states to the resonant states
would imply double counting. We would then be led to
consider more elaborate approximations in which the
resonant ‘“pole” contributions are themselves generated
by the model; the spectral function in such a model
would include corrections to the pole-dominance ap-
proximation, without double counting.

In this paper we consider a simple soluble model of
this type. In this model, we first approximate the vector
current by a linear combination of renormalized vector-
meson field operators, as suggested by the theory of
Kroll, Lee, and Zumino’; a similar approximation is
considered for the axial-vector current. To evaluate
Weinberg’s sum rules, one then has to obtain the com-
plete renormalized propagators of the vector, axial-
vector, and pseudoscalar mesons. In our model we
evaluate these in a chain approximation (or Zachariasen-
Thirring type of model),8 in which 1-, 1+, 0—, and 0%
mesons are kept in the intermediate states in the kernel
of the chain integral equation. This gives a unitary ap-
proximation for the spectral functions which are then
substituted into Weinberg’s sum rules, resulting in sum
rules for the masses and coupling constants.

We discuss the details of our model in Sec. II. In
Secs. ITT and IV we discuss the relations following in our

0] 7(ar(x) @ ()| 0)=14%0] T(pa*(x)p4’(1)) |0)
)
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model from the spectral-function sum rules for SU,
XSU, and SU;, respectively. In Sec. V we give the
SU3XSU; sum rules, and in Sec. VI we summarize our
conclusions.

II. MODEL

We define the spectral functions of the vector and
axial-vector currents in the usual manner by assuming
the following (unsubtracted) representation (for the
axial-vector current):

Aaw(p)=(2m)~ | d*x e'>=(0| T(@*(x) @(y))|0)

ds’ prp
:ifT“‘—.H:g"”" ; ]pu)"(s’)-l-ﬁ"?”p(o)“(s’)}
§s'—s5s—10 s

Al
+igMOgVO/ds’[M+p(O)A(S’):' , (2.1)

sl

with s= p?, and a similar representation for the vector
current. For the conserved components of the octet
vector current, one has, of course, p)7(s)=0.

We make the following approximation for the octet
vector current V* (as suggested by the theory of Kroll,
Lee, and Zumino”) and the axial-vector current @* 9:

V() =Avpyh(x), @4(x)=Naa*(%)+Fpoupr(x). (2.2)

Here, ¢v*, ¢4*, and ¢p are the renormalized 17, 1%, and
0~ meson field operators. Ay is defined by

0[V#(0) [V (9))=[2¢0]"Avet,

where V is a vector meson. A4 is defined by a similar
equation. Fp is defined by

9,G#(x) =F pup’p(x).
We now obtain
(0] T(OH(x)0 (%)) | 0)=Av* 0] T(pv*(®)pv* ()| 0) (2.3)

and

d
P {5— —0] T(tp(x)62(») |0)+Z 5 tigg 08 (v—y)

x* y”

17} 0
+Fp{—<01T<¢P<x>¢Av<y»lo>+—<01T<¢Au<x>¢P<y»lo> . (24
Oxk a9y’

7N. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376 (1967).

8 F. Zachariasen, Phys. Rev. 121, 1851 (1961); W. Thirring, in Theoretical Physics (International Atomic Energy Agency, Vienna,
1963). Mass relations for 0~ and 1~ mesons were obtained from such a model by H. Pietschmann, Phys. Rev. 139, B447 (1965).
We remark that here we regard the Zachariasen-Thirring model as an approximation to the propagator in a complete theory, and not
as a field theory by itself of the type considered by W. Thirring, Phys. Rev. 126, 1209 (1962). We recall that in such an approxi-
mation the scatfering amplitude is not crossing-symmetric; however, unitarity is preserved.

9 Assumptions of this nature were probably first used by M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 (1961). In
connection with the assumption about the axial-vector current, see J. J.ESakurai, Report No. EFINS 67-64, University of Chicago,

1967 (unpublished); and Phys. Letters 24B, 619 (1967).
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In obtaining these we have assumed the commutation
relations [¢p(%),6p(y)]=iZp'A(x—y) and [¢r(x),
b44(9)16(xo—90)=0. We define the wave-function re-
normalization constants Zy, Z4, and Zp by'®

ovH(x)=Zy 2y O (), (2.5)
etc., where ¢y 4*® and ¢p® are the unrenormalized
field operators. The last pair of terms in (2.4) gives rise
to a mixing between 1 and 0~ mesons.

To proceed further, we define a covariant two-point
amplitude A*(p) by the following representation:

" ds’
() =i f

§'—s—1i0

prp”
x{ligw_ }P<1)A(S’)+P“P”p<o>"‘(5’) , (2.6)

sl

and a similar covariant amplitude Ay#(p). We have de-
fined these covariant two-point amplitudes in such a
way that they have the same analytic structure as the
time-ordered amplitudes A#*(p) for finite s and differ
only in their asymptotic behavior.!! Further, their
asymptotic behavior is defined to be such that!?

Ar,VA(s)—0 as s— o, (2.7)
where Ar 7 4(s) are defined by
~ PPN PP
Ay, a#(p)= <g‘“’~ )ATV’A(SH- ALV 4(s). (2.8)
p? p?
The functions A(;4(s), =0, 1, defined by
- piA(s’)
KoA(s)=i / Py (2.9)
§'—s—10
are related to Az ;4 (s) by
BwyA(s)=B4(s), Biy*(s)=(1/5)[ALA(s)
—AA0)]. (2.10)

10 For both stable and unstable particles, we assume a conven-
tion for Z that corresponds to choosing Z=Z; in the notation of
Ref. 7. This would give the usual definitions (0]03#(0)]p0(g))
= (2g0) 7%, etc.

1! The covariant two-point amplitude defined here may be ob-
tained by starting with the Fourier transform of a covariant cur-
rent-correlation function [defined in a manner analogous to L. S.
Brown, Phys. Rev. 150, 1338 (1966)] and subtracting from it the
parts that do not vanish as s— «. (The current-correlation func-
tion would in general have, in addition to the terms in (2.6), terms
of the form g f'ds [s™%p1)4(s)+p 04 (s)].)

12 The reason for requiring this is that the covariant two-point
amplitudes Az,zV4(s) in our model vanish as s— .
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We note that Weinberg’s sum rules may be written in
the form

Ay7(0)—A1)4(0)
= —lim sS[A7()—Am4(s)], (2.11a)

lim 5[5(1)V(S)—5(1)A(S):]=0. (211b)

To evaluate the quantities entering into these sum
rules, we need to evaluate the covariant parts of the
Fourier transforms of the two-point functions occurring
on the right-hand sides of (2.3) and (2.4). [These co-
variant parts are the covariant (renormalized) vector,
axial-vector, and pseudoscalar-meson propagators.] We
denote the corresponding unrenormalized covariant
propagators by A’y#(p), A’4#(p), and A’p(p?); in our
model these are evaluated in a chain approximation. As
an approximation we shall here neglect the mixing
terms between the 1+ and 0~ mesons given by the last
pair of terms in (2.4). We hope to consider consequences
of such a mixing elsewhere.

We define the chain approximation to a spin-1 propa-
gator as the solution to the following equation (in mo-
mentum space):

A" (p) = Ar(p)+ ANp)ZM(p) AT (p);

a similar equation is written for a spin-0 propagator.
In (2.12), A#(p) is given by

(2.12)

Ar(p)=—i(gw—prp*/me) (p*—me®)™, (2.13)
and A’* is the complete unrenormalized propagator.
In (2.13), m, is the bare mass of the spin-1 field. Z*?(p)
and the corresponding function Z(p?) for a spin-0 propa-
gator are given by sums over a class of proper self-
energy diagrams with (P+P), (S+.5), (P+S), (P+V),
and (P+A4) intermediate states (when these are not
forbidden); here P, V, and 4 are 0—, 1, and 1+ mesons,
and S is a possible scalar meson.

We define the transverse and longitudinal projections
2r,1.(s) of Z# (p) and similar projections of A’y and
A’4* by equations analogous to (2.8). Equation (2.12)
may be solved to give

A'r(s)=(=9)[s—mo*+iZr(s) I

A,L(S) = i[md"— iEL(S)]-—l .

(2.14a)
(2.14b)

The equation analogous to (2.12) for the spin-0 propa-
gator gives in a similar manner
A’ p(s)=1i[s— (moF)2—iZp(s) T2, (2.14¢)
where m,? is the bare mass of the 0~ meson.
Using the condition that the real parts of [A’7"(s) ],
[A’74(s)]1, and [A’p(s)]* have zeros at the physical
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meson masses s=my? s=m,4?% and s=m p? respectively,
we may eliminate the bare masses from Egs. (2.14) and
obtain

A rA(s) = (— ) {s—ma>+i274(s)
—Re[iZr4(ma?) ]},

A A(s)=1{ma?—i2A(s)+Re[iZr4(ma?) ]}, (2.15b)
Ap(s)=1{s—mp?—iZp(s)+Re[iZp(mp?) ]}, (2.15¢)

and analogous expressions for A’r,1.7(s). Writing (once-
subtracted) dispersion representations for 2z ."+4(s)
and 2 p(s), we finally obtain the following expressions!®:

(2.152)

[i4"74(s) 1= Da(s)
X[(s—=m4®)+3iDa7 ()X BA(s)0(s—s,)], (2.162)

[—iA'14(s) ] = {ma?D4(0) —iZ4(s)

+Re[i274(0)]}, (2.16b)
and analogous expressions for A’y 17(s) and A’p(s). In
(2.16), we have defined

1 00
Dy(s)= 1-{———-(?2:/ ds'B;A(s")
2w § Js

X(s'—=s) W s'—ma®)™t; (2.17)
and BA(s)0(s~—s;) is the discontinuity of Z¢4(s) arising
from the jth two-particle state (with threshold s;). The
wave-function renormalization constant Z4 is obtained
from (2.16a) as Z =D, (m4%).10

For a conserved vector current, the equations analog-
ous to (2.10), together with the condition A7 (s)=0,
give A V(s)=2A7"(0). As 2.7(s)=0 for a conserved
vector current, (2.14) then gives 27V (0)=0.1* As the
absorptive part of 77 (s) must be positive definite, this
condition requires that a dispersion representation for
Zr"(s) must have a subtraction. We ensure that our re-
sults are consistent with the condition Z7¥(0)=0 by
writing a subtracted dispersion relation for Z77(s)
[and requiring that Zr7(0)=0]. For the axial-vector
current, (2.10) leads to the relation Z;4(0)=2Zs4(0).

Using (2.3) and (2.4) and the above relations, we now
obtain

iRy A(s)=Aa2D a(ma®)[(s—ma2) D als)
+3i 2 BiA(s)0(s—s) T, (2.18)

13 Representations like (2.15) and (2.16) may be obtained using
the analytic properties and unitarity for the inverse propagator.
Results derived from this will be discussed in a separate paper.

14 Alternatively, this follows from (2.14a) on noting that with a
conserved vector current one must have A1)V (0) =:/ds s 5"
>}<1.(s) =img2. We are grateful to Professor T. Akiba for pointing
this out.
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a similar expression for iAa)"(s), and
isKyA(s)=Na2D a(m4?)[iZ14(0)—iZ4(s) ]
X[ma?+iZr4(ma?)—iZ4(s) I
X [ma?+iZr4(ma®) —iZ274(0) T+ sF p2D p(mp?)
X[(s—mp*)Dp(s)+%i ; B (s)0(s—s) Tt (2.19)

Here Dy(s) and Dp(s) are given by expressions similar
to (2.17).

To proceed further, we must know the functions
2,17 (s), Z27..4(s), and Zp(s). To obtain these, we find
the contributions to the absorptive parts of these func-
tions from (P+P), (S+S), (P+S), (P+V), and
(P+A) intermediate states (when these are allowed by
the conservation laws).!s For Zp(s), we also include the
(V4V) and (4+4) states. We approximate these func-
tions by taking self-energy diagrams and including cor-
rections to the internal lines and vertices so that the
internal masses are the physical masses and the vertices
are normalized approximately to the physical coupling
constants on the mass shell. We assume that the vertex
corrections!® damp the absorptive parts of 274(s), etc.,
at large s; we take this into account by introducing
a form factor.

By analogy with the dipole (electromagnetic) form
factors of the nucleon, we take as a model for each meson
vertex a form factor (1—s/M?)~! for small and moder-
ately large s, where  is the mean mass of the 17, 1+, or
0~ meson nonet (or octet).’” (For the 1=, 1+, and 0~
propagators, we take M ?=~36u.% 73p.% and 8u.? re-
spectively.) We assume that at very large s, the form
factors are damped more rapidly, so that the dipole form
factor is effectively cut off at s of the order of 200m2,2
In our model, we retain only those contributions which
are not sensitive to the value of this effective cutoff.!®

For the 1=, 17, and 0~ meson propagators, we find the
discontinuity functions B;(s) to be given by the follow-

15 As Weinberg’s sum rules for SU:XSU; (and for SUsXSUs)
express a residual chiral symmetry, we take this into account in
our model by choosing the intermediate states appropriately; e.g.,
corresponding to (P+P) states, we also include (§-+S) states, etc.

16 We assume that the vertex corrections which can be included
in the proper self-energy part give rise to a form factor of the type
assumed, normalized approximately to the physical coupling con-
stant when all the particles are on the mass shell.

17 Assuming a dipole form factor for the nucleon, together with
vector-meson dominance, corresponds to assuming for the vector-
meson vertex a form factor I'(s) ~ (1—s/M?*)~1L. Our choice and
interpretation of the form factors is very similar to that in Ref. 5.

18 Tn evaluating the contribution of (4 4-P) intermediate states
to the 1~ propagator, or of (V-P) states to the 1+ propagator,
writing the AVP vertex in terms of transverse and longitudinal
couplings [as defined, for instance by F. Gilman and H. Harari,
Phys. Rev. 165, 1803 (1968)] gives contributions which make
(2.17) sensitive to the effective cutoff. Instead, when the AV P
vertex is written in terms of S-wave and D-wave couplings, the
S-wave coupling is found to give a very small contribution, while
the D-wave contribution is sensitive to the cutoff. We therefore
omit the contributions of these intermediate states (as well as
intermediate states involving particles with higher spin) in our
model.
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ing [where B,V(s)=B;"(s)| T'(s)|? etc., and I'(s) is the
form factor arising from the vertex corrections]:

(i) 1~ propagator: BY(PP)=4¢s~1/2;
BY(VP)=3¢%"", (2.20a)

(i) 1+ propagator: BA(PS)=%¢%~1/2;
BA(AP)=3¢%s"2, (2.20b)

(iii) O~ propagator: BP(PP)=gs—1/%;
BP(VP)=4¢%"my=2;, BP(VV)=2¢%12, (2.20c)

Here, BY(PP) is the contribution to the discontinuity
in the 1~ propagator arising from a (P4 P) intermediate
state, etc., and ¢ is the c.m. momentum in the two-
particle intermediate state with a total energy s!/2,

In using the first equation in (2.2), we have neglected
the coupling of possible scalar mesons to the noncon-
served (strangeness-changing) components of the vector
current U#. [To take these into account, we would add
a scalar-meson term Fg¢y to the first equation in (2.2).]

Substituting the expressions for the absorptive parts
given by (2.20) into (2.16)—(2.19), we obtain the quanti-
ties occurring in the sum rules (2.11) in terms of coupling
constants, masses, and dispersion integrals like those in
(2.17). In the following sections we discuss the relations
that are thus obtained.

III. EVALUATION OF THE SU,X SU, SUM RULES

When the expressions for A¢;7(s) and A(;4(s) ob-
tained in the previous section are substituted into
Weinberg’s sum rules (2.11), they give relations between
the coupling constants and the masses. We have ob-
tained these relations for the sum rules corresponding to
asymptotic SUXSUs, SUs, and SUsXSUs.

In this section we discuss the results following from
the SU2X.SU; sum rules.

In evaluating these, we find that the first term on the
right-hand side of (2.19 )is negligibly small,’® while in
the second term (proportional to the 0~ meson propa-
gator), Dp(mp?) is found to differ negligibly from unity,
so that the limit of (2.19), as s — o, is just Fp2

Equations (2.11) now lead to the following sum rules:

(A\s*/m,*)Dy(m,*) Dy=(0)

—(\a,/ma,)Dg(ms,2)D s H(0)=F,*, (3.1a)
No*Dy(mp*) —Na,2Da(ma,*)=0, (3.1b)
where
1
Dy(0)=1-+-—(0.02ge5*+0.0068, k"
w
10.28%p0x2+-0.05%,6:2);  (3.28)

19 In evaluating the first term in (2.19), as s — o, we note that
in our model £y4(s) > 0 as s— . We write the factor [m4?
+iZr4(ma® ] as [ma’+iZr4(ma?) —iZr4(0)+i2.4(0)], making
use of the relation Z74(0) =274(0). One can then express this fac-
tor in terms of Z14(0) and a subtracted dispersion integral for
ETA%)’ both of which are insensitive to the value of the effective
cutoff.
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1
Dv(m,,z)::1—[—;—(0.027g,,,,,,2+0.01g,,xz2
7/

+0.49%,,,24+0.07k,4.2);  (3.2b)
1
DA(O)zl—}—;(agm”?-]—o,lhmp,}
T
10.03h42:7); (3.20)
1
DA(MAlz)z1+4~'(bg,1,”2+0.17h,411),r2
T
40.05k4,2:2).  (3.2d)

Here E denotes a possible axial-vector state with /=0,
G=(—), at about 1420 MeV. The terms involving
2,852 in Dy(0) and Dy(m,?) have been omitted,? as the
coefficients multiplying them are very small. The nu-
merical coefficients in Dy(0), etc., are values of com-
plicated functions of the masses. The coefficients ¢ and
b are zero if scalar mesons are not included [i.e., in
(P+S) intermediate states]; with a ¢ meson at about
765 MeV, they are —0.04 and —0.005, while for a o
meson at about 420 MeV, they are 0.1 and 0.03. We
have omitted the contributions of (p+) and (4;+7)
intermediate states to the 4; and p propagators, re-
spectively, as they are sensitive to the effective cutoff.!®

The sum rules (3.1) give relations between the con-
stants A,, A4,, the masses of the p, 41, and the various
particles occurring in the intermediate states, and the
coupling constants occurring in Dy(0), D4(0), etc.
These are the basic relations following from Wein-
berg’s sum rules when unitarity corrections to pole
dominance are taken into account in our approxima-
tion; they express the consequences of an asymptotic
chiral symmetry and unitarity in this approximation.

To examine these sum rules further, we require esti-
mates for the coupling constants occurring in (3.2). We
use the following rough estimates?!:

(-1/47")3';71”1'2z 25~ 4[(1/477)ng§2:| )
(1/47)}&,,‘.,,,2% 045~ (1/47r)h,11p,2, hp¢,2z .

We ignore the terms involving the 4,Em couplings, as
little is known about the E meson.

(3.3)

20 § denotes a I =1, JP=0% nonstrange meson; we have tenta-
tively taken its mass as 960 MeV. The data on masses and decay
widths used in this paper have been taken from A. H. Rosenfeld
et al., University of California Lawrence Radiation Laboratory
Report No. UCRL-8030, revised, September, 1967 (unpublished).

1 This value of g,x+? 1s obtained by assuming I'(p — mr)~128
MeV, m,~777 MeV, while the estimate of g,xx? is obtained as-
suming approximate SU; for the VPP couplings. (The Ademollo-
Gatto nonrenormalization theorem would suggest that this would
give a fair estimate for the vector-meson couplings.) The value of
Roux? is obtained from the decay rate I'(w — w+v)=~1.18 MeV,
assuming p dominance of the isovector electromagnetic current
[M. Gell-Mann, D. Sharp, and W. Wagner, Phys. Rev. Letters 8,
261 (1962)7]. The decay rate I'(w — 3w) ~11 MeV, with the Gell-
Mann-Sharp-Wagner model gives (1/4m)kyu-2~0.52. The esti-
mate k4, pr=hyur® was suggested by the relations obtained by F.
Gilman and H. Harari [Phys. Rev. 165, 1803 (1968)] from super-
convergence relations with saturation. The uncertainty in gor.?,
howr?, etc., caused by the uncertainty in the mass and width of the
p does not affect the results significantly.
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For the ¢ meson, we have examined the results ob-
tained with two alternatives: (i) me.=~m,, g4,0r°
~ma,%/F.? as suggested by the sum rules from super-
convergence obtained by Gilman and Harari,'8 and (ii)
md‘zsmﬂ" gAlcr‘lrzzgpww2~

With these estimates, Egs. (3.1) give the following
relations:

LN, 2 —ah g ma, 2= F,2, (3.4a)

1.37,2— B\ 4,2=0, (3.4b)

where (o,8) have the values (1.03,1.08), (1.24,1.08), and
(1.08,1.16) with the assumptions of no ¢ meson, a ¢
meson at 765 MeV, and one at 420 MeV, respectively.
For comparison, we note that in the pole approximation,
all the numerical coefficients in (3.4) would be unity.
The deviations of these from the pole-dominance values
are thus within about 30%; they are, on the whole,
larger for the second sum rule than for the first.

Weinberg’s sum rules for SU;X.SU; were originally?
compared with experiment by combining them with the
pole-dominance approximation and using the KSFR
relation?? &= (2m,2F.?/\,%)=1 to obtain (m4,/m,). As
the KSFR relation appears to require more assumptions
than was thought originally,?® it seems to be more ap-
propriate to take the ratio m4,/m, from experiment,
eliminate A4, from (3.4), and obtain the value of X. If
F, is assumed to be known, this gives the value of A,
which would lead to predictions for the rates for the
leptonic decays p— F--I~. With the values m4,~1058
MeV, m,~777 MeV used here and with the three as-
sumptions about the ¢ meson [occurring in the (P+.S)
intermediate state], namely, (i) no ¢ meson, (ii) a o
meson at 765 MeV with ga,.-*=m4,%/F,? and (iii) a ¢
meson at 420 MeV with ga,.-2~ g,x% Egs. (3.4) give
%=0.87, 0.59, and 0.9, respectively. For comparison we
note that the KSFR relation gives ¥=1, while Wein-
berg’s sum rules with pole dominance, and m4,~ 1058
MeV, m,~T777 MeV, give X~0.92. Since the values of
m, and m 4, [used in obtaining the numerical coefficients
in (3.4), as well as in solving these equations to obtain
%] are subject to some uncertainty, the numerical re-
sults for & are correspondingly uncertain.

However, these results indicate that when corrections
to pole dominance are included, the results following
from the SU2X.SU; sum rules are fairly sensitive to the
assumptions made about the existence and the nature
of the scalar mesons (included in the P4-S intermediate
states). With the values of m4, and m, assumed here,
the results obtained with different assumptions about
the o meson differ by up to 209, among one another and
by up to 309, from the pole-dominance value.

If the value of F, is assumed to be known, one may
use the value of & to obtain predictions for the leptonic

22K, Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
%55 (§966); Fayyazuddin and Riazuddin, Phys. Rev. 147, 1071
1966).

28 For example, see D. A. Geffen, Phys. Rev. Letters 19, 770
770 (1967); S. G. Brown and G. B. West, sbid. 19, 812 (1967).
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decay rates I'(p — I*l). These predictions differ from
the pole-dominance results by up to 60-70%, [because
& occurs as &2 in these decay rates, e.g., I'(p — e*e™)
=~ (87a2/3)F 2/ (m,%2)]. Thus, unitarity corrections of
20-309, to Weinberg’s sum rules can give rise to sig-
nificant differences in the predictions for experimentally
observable quantities. As the predictions for the ratios
T'(p—> ete™)/T(p— all) have the added uncertainty
arising from the uncertainty in the p width, we cannot
at present obtain reliable numerical estimates for these
ratios. When the masses and widths of the meson re-
sonances are better known, one may examine quantita-
tively whether inclusion of the unitarity corrections im-
proves the agreement of Weinberg’s SU;XSU, sum
rules with experiment.

I1V. SU; SUM RULES
Equations (2.11) now lead to the following relations®:

(Apz/mpZ)DVp(mpfz)/DVp(O)
= (}\K*2/mK*2)DVK*(’IM,K*Z)/DVK*(O) s (41&)

No2Dye(m,?) = Ngx2DyE*(mxg+?) (4.1b)
where Dy?(0) and Dy#(m,?) are given by (3.2), and

DVK*(O) ~1+ (1/471') [—— 0.026gK*K7.-2+ 0.14% gxg*r?
+0.053hK*wK2+O.OSShK*pK2+0.012kK*¢K2], (4.2&)

DVK*(mK*z) ~ 1+ (1/47")[0-014gK*K1r2+ 0.24}[[{*1(*,,-2
—f— 0.076hK*a,K2+ O.OS/ZK*,,KZ-f- 001 6hK*¢K2] . (42b)

Equations (4.1) thus give sum rules relating A,
N+, #,, mxs and the various coupling constants in
(3.2a), (3.2b), (4.2a), and (4.2b). To compare these sum
rules with experiment, we first substitute available esti-
mates of the various coupling constants.

The observed decay width T'(K*— K+m)=~49.6
MeV gives (1/47)gx+x+*~2.5. Using the estimate (3.3)
of yur? and SU; relations for the VVP couplings, we
estimate the remaining coupling strengths, as obtained
with the three models of mixing suggested in Ref. 7. We
obtain

0.3
1
—hg*rrt=—hg*,x?= 0.28| ,
47 47
0.4
(4.3)
0.22 0.27
1 1
——hK*wK2= 0.15 , —hK*quzz 0.2
4 4
0.075. 0.24

Here the three values correspond to the current-mixing

2¢ For the strangeness-changing vector current, we again find
that the first term in 4sAp7(s), analogous to the first term in
(2.19), is negligibly small. In writing (4.1), we have neglected the
possible contribution of a x meson, so that there is no term corre-
sponding to the second term in (2.19). The effect of including a «
meson will be discussed below.
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model, the first mass-mixing model (with 6y =0y~ 32°),
and the second mass-mixing model (with fy=0y=~39°)
of Kroll, Lee, and Zumino.” Using (3.3) and (4.3), we
obtain from (4.1) the following:

1.1(2)\,,2/m,,2)=a1)\K*2/mK*2, (44&)
1.3(21,2) =Bi\g. (4.4b)

Here, (a1,81) take the values (1.15,1.16), (1.15,1.15),
and (1.15,1.17) for the three models of mixing, and are
thus insensitive to the assumptions made about w=¢
mixing in obtaining the VVP coupling constants. The
deviation of the coefficients in the K* terms in (4.4)
from the pole-dominance value of unity is now seen to
be within about 20%. Assuming mx+~893 MeV, m,
=777 MeV, the first sum rule in the form (4.4a) gives

Aics/2\,2~1.26. 4.5)

With m,~ 760 MeV, this ratio is obtained to be 1.32.

The deviation from the pole-dominance value
(Ag+2/2\ 2=~ mg+2/m,?) is then within about 109, for the
first SUs sum rule.

On the other hand, we may combine (4.4a) and (4.4b)
to eliminate \,2/Ag»? to obtain mgs?/m,*~1.16 to 1.18.
Pole dominance would give mg«?/m,?=1. Comparing
with the experimental value for this ratio, which ranges
from 1.32 to 1.38, we see that although the unitarity
corrections in Weinberg’s second sum rule make the
agreement with experiment better, they are not
sufficient.

One possible explanation would be that the strange-
ness-changing vector current is coupled to a x meson,
and that neglecting this is not a good approximation.
Equation (4.4a) should then be modified by the addition
of a term F.2 to the right-hand side (assuming, by
analogy with the 0— meson propagator, that the pole
contribution dominates the 0t propagator). Equation
(4.4b) and the sum rule replacing (4.4a), together with
the experimental value of mgx?/m,?, may now be used
for obtaining an estimate for F2:

F 2~0.008\,2. (4.6)

This would give a value for F,? of the order of 0.25.25

An alternative possibility is that Weinberg’s second
sum rule for SUj itself needs to be modified. That such
a modification was necessary in order to take into
account symmetry breaking,? at least with the pole-
dominance approximation, was suggested by Das,
Mathur, and Okubo and by Sakurai (see Ref. 6).

A phenomenological modification of the second sum
rule, suggested by Das, Mathur, and Okubo (see Ref. 6),

% For comparison, we may note the estimate F,~0.73F, of
Glashow, Schnitzer, and Weinberg (see Ref. 2), using SUsXSUs
sum rules; this gives a value of F,2 of the order of 0.5. If inde-
pendent estimates of F, indicate that its value is quite different
from (4.6), this would suggest that the inclusion of the « and a
modification of the second sum rule are both necessary.

26 We remark here that the inclusion of a scalar meson « coupled
to the divergence of the strangeness-changing vector current is
itself one way of incorporating a part of SUs-symmetry breaking.
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1503
gives

/ ds’[pa(s")+3ps(s") —4pa(s’) ]=0. 4.n

To obtain the spectral functions for the w and ¢
propagators, one must consider a two-channel problem,
including the (off-diagonal) mixed (w-¢) propagator.
We have estimated these spectral functions in a crude
model in which we have neglected the mixed w-¢ propa-
gator and have evaluated the ¢ and w propagators in a
chain approximation. The coefficients in the sum rules
that then follow from (4.7) show a large deviation from
the pole-dominance values; however, these sum rules
[together with (4.1a)] do not lead to physical solutions
for A2/N 2, Ng2/A2, etc., indicating that one must solve
the complete two-channel ¢-w problem in order to
obtain a satisfactory approximation. We hope to con-
sider this elsewhere.

Finally, we remark that the inclusion of a scalar «
meson in the first sum rule and a modification of the
second sum rule may both be necessary to take into
account in an adequate manner the effects of symmetry
breaking.

V. SU;XSU; SUM RULES

For the strangeness-changing vector and axial-vector
currents, the equations analogous to (2.11) lead to the
following sum rules:

Ag#? DyE*(mg+?)

D VK * (0)

>‘KA2 DAKA(mKAz)

D 4%4(0)

=Fg*—F2 (5.1)

Mg Mr,?

if the scalar meson « is included in the sum rules. In
(5.1), Dy%*(0) and DyE*(mgs?) are given by (4.2), and

D E4(0) =14 (1/47)(—0.027gx s r >+ 8K 4o k2

+012k gk a2+ 0110k, 4,5%); (5.2a)
D Ka(mg,?) ~1-4(1/4m) (0'033gKAWK2+BgKAVK2
+0.3hg 842"+ 0.25k,4,5%). (5.2b)

Here « denotes a possible /=%, S=1 scalar meson, the
mass of which has been taken to be about 725 MeV,
and (&,8) take the values (0,0), (0.043, —0.01), and
(—0.03,0.05) for the three assumptions about the
o meson (see Sec. ITII).

When estimates become available for the coupling
constants involved in these sum rules, we may again
examine how the inclusion of unitarity corrections
affects the results obtained with pole dominance.

VI. CONCLUSIONS

In this paper we have examined the nature of uni-
tarity corrections to the sum rules obtained from an
asymptotic symmetry (in particular, an asymptotic
chiral symmetry) for two-point functions and the pole-
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dominance approximation. We have here evaluated
a particular class of corrections, namely, that given by
assuming the field-current identities (2.2) and evaluat-
ing the 1, 1*, and 0~ meson propagators in a chain ap-
proximation, assuming that the vertex functions in-
volved are damped rapidly at large p% The main uncer-
tainty in our results arises from the uncertainty in the
nature of the form factors assumed at the vertices and
that in the input values of the masses and couplings of
the meson resonances. However, we believe that our re-
sults indicate correctly the qualitative nature of the
corrections considered here.

Our main results are the following. Weinberg’s sum
rules (and their analogs for SU; and SU3X.SU;) when
evaluated in our model give sum rules relating the vari-
ous coupling constants and masses. These are the basic
relations following from our model. To examine the
validity of these sum rules, we have rewritten them as
relations involving A% m,% A4,% and my? for the
SU:XSU2 sum rules, and similarly for the other sum
rules, using available estimates for the coupling con-
stants. (As these coupling constants enter only in the
correction terms to the pole-dominance results, the un-
certainty in the estimates of these couplings causes a
comparatively small uncertainty in the results.) The
deviations of the coefficients in these relations from
their pole-dominance values are found to be relatively
small—within 20 or 309,—but not negligible. When
these equations are solved and used for predicting ex-
perimental decay rates or mass ratios, it is found that
the deviations from the pole-dominance predictions can
be significant.

On the whole, the corrections to pole dominance are
found to be larger for the second sum rule than for the
first. For the SU2X.SU. sum rules, the results are fairly
sensitive to the assumptions made about the scalar
meson retained in the intermediate states. For the SU3
sum rules, using both the sum rules (without modifica-
tion) gives a value for mx+?/m,? that agrees better with
the experimental value than the pole-dominance pre-
diction; however, the agreement is not sufficiently im-
proved by the inclusion of the unitarity corrections.
This suggests that one should modify one or both of the
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SUs sum rules. If one assumes that including the «
meson in the first SU; sum rule is adequate, then one
obtains an estimate of F,.

To find the effect of the unitarity corrections on the
second sum rule as modified to take into account sym-
metry breaking, it is necessary to obtain the ¢ and w
propagators in a two-channel model in which mixing
effects are treated in some detail; we hope to discuss
this elsewhere.

The detailed sum rules obtained from our model,
relating the coupling constants and masses, may be
tested when reliable estimates of the various coupling
constants become available.

Finally, we stress that we have here evaluated a par-
ticular class of corrections to pole dominance, namely,
those which arise from corrections to the propagators of
the 1=, 1*, and 0~ mesons, when these are evaluated in
a chain approximation. The chain diagrams by them-
selves are not expected to be the ones that dominate the
propagators at large p2 and other corrections may be
important. We have in our model assumed that the in-
clusion of vertex corrections will damp the propagators
strongly at large p? so that corrections that may other-
wise be important at high energies are damped out. The
question of the nature of these vertex corrections at
large p? and of other possible corrections to the propa-
gator is being investigated.

We have here examined in some detail unitarity cor-
rections to the sum rules obtained with two-point func-
tions. A related question is the incorporation of uni-
tarity corrections to the generalized pole approximation
or tree approximation for n-point functions that has
been found useful in connection with work using chiral
Lagrangians. Such questions are being studied, and we
hope to discuss them elsewhere.
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