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Invariant AmylitutIes for Photon Processes
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A method for constructing independent invariant amplitudes for photon processes which satisfy gauge
invariance and are free from both kinematic singularities and zeros (constraints) is proposed. The method
is based on the use of a simple projection operator which automatically ensures gauge invariance at every
stage. The invariant amplitudes for pion photoproduction, pion Compton scattering, and nucleon Compton
scattering are found. Previously known results in the first two cases are reproduced and their interpretation
is clarified. For nucleon Compton scattering the result is new. Comparisons are made between these in-
variant amplitudes, the Hearn and Leader amplitudes, and the regularized helicity amplitudes. The Mandel-
stam representation may be applied to these kinematic-singularity-free and zero-free amplitudes without
any ad hoc substractions. All known low-energy theorems on photon processes can be derived most directly
from these invariant amplitudes.

I. INTRODUCTION

ECENTLY, much attention has been directed
toward the understanding of kinematic singular-

ities and zeros of scattering amplitudes. Aside from the
usual reason of isolating dynamics from pure kinematic
effects, it is recognized that in many cases, a detailed
understanding of the kinematic structure of the scatter-
ing amplitude imposes constraints on the dynamics.
These constraints often are of considerable physical
interest.

The kinematic-singularity structure of the two-body
helicity amplitude has been extensively studied in the
past two years. ' ' It is shown that regularized helicity
amplitudes can be defined which are free of kinematic
singularities in both of the invariant variables. How-
ever, these amplitudes are not always independent; they
must satisfy certain "constraint equations'"' at values
of their variables corresponding to the thresholds and
pseudothresholds and possibly also at zero center-of-
mass energy. These constraints (or kinematic zeros, as
we shall refer to them henceforth) are consequences of
Lorentz invariance, analyticity, and crossing and. must
be respected by any dynamical theory. This fact makes
the use of these regularized helicity amplitudes in dy-
namical theories rather cumbersome.

It is well known, however, for scattering of particles
with spin and nonzero mass, invariant amplitudes can
be defined which are free of kinematic singularities and
zeros. 4 These invariant amplitudes are completely inde-
pendent from each other as far as Lorentz transformation
and crossing are concerned. (They are related by unitar-
ity. ) They have the same analytic properties as those of
spinless-particle scattering. The most familiar examples
are the 3 and B amplitudes for xX scattering. When

* Present address: The Institute for Advanced Study,
Princeton, N. J. 08540.' Y. Hara, Phys. Rev. 136, 3507 (1964); L. L. C. Wang, ibid.
142, 1187 (1966).' G. Cohen-Tannoudji, A. Morel, and H. Wavelet, Ann. Phys.
(N. Y.) 46, 111 (1968);J. P. Ader, M. Capdeville, and H. Xavelet
(unpublished).' H. Stapp, Phys. Rev. 160, 1251 (1967);H. Stapp (unpublished).' A. C. Hearn, Nuovo Cimento 21, 333 (1961).

some of the particles participating in the scattering
process are massless, the existence of these kinematic-
singularity-free and zero-free invariant amplitudes has
not been clearly demonstrated. The reason for this is
that the additional constraints imposed by gauge in-

variance render the usual techniques for finding these
amplitudes inadequate. ' Thus even for the physically
interesting case of nucleon Compton scattering, such
amplitudes have not been found. The need for ending
these kinematic-singularity- and zero-free amplitudes
(if they exist) is made more urgent by recent develop-
ments in the understanding of the pure kinematic nature
of the old and new low-energy theorems of photon
processes. All. these results should follow most directly
from the kinematic-singularity-free and zero-free in-

variant amplitudes which are also the most suitable
ones to write down Mandelstam representations without
ad hoc subtractions.

It is the purpose of this paper to propose a general
method to construct such kinematic-singularity-free and
zero-free amplitudes for photon processes. The prin-
ciples on which our method is based are the same as
the usual ones. However, with the help of an extremely
simple projection operator we can automatically take
care of all the requirements of gauge invariance. This
not only enables us to find these simple invariant ampli-
tudes for various photon processes but also allows us
to see how the close connection between gauge invari-
ance and I.orentz-transformation properties of massless
particles plays an essential role in determining the
analytic structure of the scattering amplitudes.

In Sec. II, we formulate the problem in more detail
than described above. In Sec. III, we introduce the
projection operator mentioned before and outline the
general procedure to obtain kinematic-singularity-free
and zero-free amplitudes for any photon process. In

'A. C. Hearn (Ref. 4). To remedy this situation Hearn pro-
posed an alternative method of obtaining invariant amplitudes
for massless particles. His method yields amplitudes which are
free of kinematic singularities but must satisfy complicated con-
straint equations on the boundary of the physical region. Another
drawback of his method is that it can only be applied to processes
with an even number of photons.
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Secs. IV and V we work out. two illustrative examples
(yN~ zN, yn. —+yir) where the results can be com-
pared with previous work. The interpretation of these
previous results are clarified. In Sec. VI we treat the
interesting case of nucleon Compton scattering. A set
of invariant amplitudes are found which are completely
free from kinematic singularities and zeros (constraints).
The relation between these amplitudes and those of
Hearn and Leader and also the regularized helicity
amplitudes are displayed. The crossing property and
asymptotic behavior of these invariant amplitudes are
studied. Double spectral representations for these
amplitudes are written down. An interesting feature
which emerges as a consequence of gauge invariance
(or charge conservation) is that the Born terms
contribute to the double spectral functions (as prod-
ucts of 8 functions) as well as to the single spectral
functions. This point is illustrated in all three examples.
Low-energy theorems for nucleon Compton scattering
to second order in the photon energy are derived by
mere inspection.

II. FORMULATION OF PROBLEM

To help in formulating the problem, let us briefly
review the basic principles involved. The physical scat-
tering matrix is written as

&f I
~ I~) = &fl') —i(2~)'&'(Zp' —Zpf)&f I

I'I~) (I)

&flTI')=ll (p)M(p p')ll *(p') (2)

where guf(pf) Liiu;(p, )j represents the product of
wave functions for the final (initial) particles with
momenta pr (p,). The spinor-tensor amplitude M de-
fined above shall be called the M function throughout
this paper. The M function transforms under Lorentz
transformation as simple tensors or spinors and is as-
sumed to have only dynamical singularities' ' when
considered as a function of the four-momentum com-
ponents. (The mass-shell conditions are always satisfied. )
The invariant functions A, are obtained by expanding
M in terms of a spinor-tensor basis {I,},

M(pr p') = Ql'(pr p')3'. (3)

ITnder Lorentz transformations {I,} transforms as M
does; the invariant functions {2,} are therefore scalar
functions of the scalar invariants of the problem.

If one or more /, in a given basis {l,}contain kinems tic
singularities, then the corresponding invariant ampli-
tudes 2; must develop kinematic zeros at the same
points to cancel these singularities since M is assumed
not to have kinematic singularities. In order to avoid
these singularities, one ahvays chooses a tensor basis

H. Abarbanel and M. Goldberger, Phys. R.ev. 165, 1594 (1968);
K. Bardakci and H. Pagels, ibid. 166, 1783 (1968); S. R.. Choud-
hury and D. Z. Freedman, ibid. 168, 1739 (1968).

7 H. P. Stapp, Phys. Rev. I.25, 2139 (1962). In field theory the
M function is closely related to the Fourier transform of the
Green's function for the scattering process under consideration.

m

M~(k, p, ,p, , ) = p t,'(k,p, ,p, , )8,.
s=l

(4)

The 8,'s are free of kinematic singularities by the usuaI
argument. However, gauge invariance now imposes the

'The usual argument in support of this statement is based on
Feynman graphs (Ref. 4). However, one does not have to rely on
perturbation expansion. One can show, for instance, that if the
ri; have k.inematic singularities, then the tensor basis fl;j cannot
be minimal in the sense defined here. The conclusion therefore
follows.

9 K. Hepp, Helv. Phys. Acta 36, 355 (1963)."D.N. Williams (unpublished).

which consists of polynomials in the four-momentum.
components. Let us consider two such polynomial bases,
{l,} and {f }.They are related by a transformation
matrix 0.,

f'i(pfqpa) Pj oiij(pfypi)~j (pfypi) ~

If detn(prp, ) =0 for some values of its variables, then
{t;}are not linearly independent at these points. In
other words, {f;}have kinematic zeros at these points,
implying that the associated invariant amplitudes have
kinematic singularities. Now, we define a polynomial
tensor basis {f;}to be "minimaV' if the deteiTninant of
the transformation matrix n from any other such basis
{l,'} does not vanish anywhere for (on-mass-shell) com-
plex values of the momentum components. Two tensor
bases are said to be equivalent, or related by simple re-
labelling, if neither detn nor det(n ') have zeros. It is
clear that, by definition, the minimal-polynomial tensor
basis is unique up to equivalence if it exists. The
invariant amplitudes associated with a minimal-poly-
nomial tensor basis are. expected to be free of kinematic
singularities and zeros. s

The existence of such spinor-tensor basis leading to
kinematic-singularity-free and zero-free invariant ampli-
tudes has been proved by Hepp' and %Williams. "The
latter also gave the explicit form of the particular basis
used in the proof. However, his construction did not
incorporate the discrete transformations. Space and
time-reversal invariance impose complicated relations

among his invariant amplitudes and make them un-
suitable for practical use in physical problems. However,
it is well known that for processes involving particles
of nonzero mass, such a minimal tensor-basis can
always be found either by inspection or by tedious,
albeit straightforward, elimination. 4 Invariant ampli-
tudes obtained this way are used extensively in the
literature.

When some of the particles involved are massless,
gauge invariance gives rise to nontrivial complications. '
Let us consider a process involving only one external
photon. The scattering is described by an M function
M'(k, pi, p2, . ), where k is the four-momentum of the
photon. We first ignore gauge invariance and expand
the M function in terms of a minimal polynomial-vector
basis {l,} in the usual mannei".
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following condition on the amplitudes: invariant because of Eq. (10).We observe that because
of one additional property of I&", namely,

k„M»= Q (k»l,»)8;=0.
i=1

(5) I»"p =0 (12)

M»(k, p, ,p, , )= P z,'A;
i=1

is automatically gauge-invariant. If this set (2,) can
also be easily adjusted to be minimal in the sense de-
scribed earlier, the corresponding invariant amplitudes
A; are free from kinematic singularities and zeros. A
systematic method of accomplishing this is presented in
Sec. III.

III. SOLUTION OF PROBLEM

Our basic observation is that the gauge-invariance
condition can be handled automatically by the use of a
simple projection operator I,

I»"=g»" [p»k"/(k p)j-, (g)

where p is any four-vector not identical to k, the photon
momentum. In practice, p is always chosen to be one
of the p, 's contained in M»(k, pi, p2, ). I"" has the
following basic properties:

I~"M„=M~

if M» satisfies the gauge condition (5); and

(9)

(10)

Equation (9) states that when we contract I with a
gauge-invariant quantity, the latter is left unchanged.
Equation (10) implies that when we contract I»" with
an arbitrary vector, we get a gauge-invariant vector.
These properties establish I as a projection operator
for gauge invariance.

Now, if we start from a minimal polynomial expansion
without gauge invariance, say, Eq. (4), and contract
with I&", we obtain

M»= P(I»"lf „)8

the right-hand side of this equation is explicitly gauge-

This means tha. t the 8,'s are not all independent; certain
linear combinations of them vanish. In our terminology,
they have kinematic zeros. In principle one can solve
Eq. (5) and obtain, say, n (n(m), independent ampli-
tudes. However, this turns out to be too complicated to
handle for all but the simplest cases. Besides, even if
one succeeds in doing this, he is still left with the
problem of coping with kinematic zeros in the remaining
8,'s which is equally difficult to solve. What one needs
is a way to find, directly, a tensor basis fZ;»),
i= 1, , n, which is individually gauge-invariant, i.e.,

k»z, »(k,pi, p2, ) =0, i=1, 2, , n (6)

so that the corresponding expansion of the M functions

the terms in Eq. (4) proportional to p" are immediately
eliminated and the sum in Eq. (11) involves fewer terms
than in Eq. (4). In fact, as we shall see later, in most
practical cases this step already (or almost already)
eliminates all the linearly dependent amplitudes and
simplifies the subsequent algebraic manipulations con-
siderably. What this operation accomplishes is equiv-
alent to solving all the equations implicit in Eq. (5)
and substituting into Eq. (4) as one would do in the
conventional method. Since the 8,'s in Eq. (11) are
just a subset of those in Eq. (4), they are still free from
kinematic singularities. The fact that they have kine-
matic zeros now emerges from the fact that Il; may be
singular. "More explicitly,

I»"l,,=l,'—L(k l;)/(k p)]p». (13)

are free of both kinematic singularities and zeros. It
may seem that the above procedure depends on which
vector p one chooses in the definition for I»", Eq. (8).
This is, however, not so. Diferent choices of p lead
to minimal tensor bases which are equivalent in the

"Since M& is free of kinematic singularities, Kq. (11) demands
kinematic zeros in 8; to cancel any kinematic singularities in Il;.

The second term is obviously singular when k p=0.
Our ta,sk is then to remove these kinematic singularities
in I/; in a minimal way. This can be achieved by ob-
serving that all the singular terms are proportional to
p»/(k p) with coeKcients (k l,). If some of these co-
eKcients (k l,) are linearly dependent, modulus terms
proportional to (k p), i.e.,

P;n, (k l;)=(k p)g, (14)

where n; and g are constants or low-order polynomials
in the momentum components, then clearly Pn;(Il, ) is
a gauge-invariant basis vector free of singularities; in
fact,

Pn, (11,)»= P~;1,» gp»— (15)

A particular case of (14) occurs when the left-hand side
consists of only one term a,nd the coe%cient n is simply
(k p). Among the set of gauge-invariant singularity-free
kinematic tensors constructed this way it is ea,sy to
select the ones which form a minimal set in the sense
that a,ll the others can be expressed in terms of these
without introducing singularities. In practice, it sufFices

just to take those which are of lowest order in the mo-
mentum components. I.et us denote such a minimal set
by (Z,), i=1, 2, , n; then by the usual argument
the invariant amplitudes (A;), i= 1, 2, , ii, defined

by
n

M»(k, p, ,p, , )= g z,»(k,p„p, , )A, ,
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sense defined before. This is indicated by the fact that
I&"(p)Iq"(P') =II'"(p'). We shall illustrate this point in

the examples that follow.
The same procedure applies to processes involving

two or more photons. A projection operator can be in-
troduced for each photon and the above treatment
carried out either one at a time or simultaneously. For
instance, two-photon processes are described by an M
function M""(k,k', p~,p~, ) where k and k' are the
photon momenta. M&" satisfies the gauge condition

k 'M~"=M~"k =0 (17)

and
I»3f&"——M»I&"——I~"M&.I "=M~"

k„'I ~=I~"k„=0.

(19)

(20)

In the following sections we shall treat several examples
in detail and demonstrate how this procedure actually
works.

IV. PHOTOPRODUCTION OF PIONS

As the first example, we shall consider the familiar
case of photoproduction of pions off nucleons where the
results can be easily compared with previous works. ""
We shall denote the four-momenta of the photon, the
pion, and the two nucleons by k, g, p, and p', respectively.
We also use P= ,'(p+p'). The Man-delstam invariants
are defined as usual:

s= (k+p)',
t= (k-g)',
I= (k- p')'.

(21)

The M function, before the gauge-invariance con-
dition is imposed, can be written

M(k, q,P) = Pl;B,=iq'q~PB, + (yk) B,]+iy'P»
X)B +(yk)B ]+i7'g $B +(yk)B ]. (22)

Now we introduce the projection operator

I""=a""—LV'k"i(a k)]

Clearly, if we contract I&" with M, the last two terms
on the right-hand side of Kq. (22) do not contribute
and we are left with four independent amplitudes
(which are just of the right number for pion photopro-
duction). '4 According to the method described in the
previous section, we now proceed to eliminate the

"G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957)."J.Ball, Phys. Rev. 124, 2014 (1961).

".The correct number of independent amplitudes for any
process can be found most easily by counting helicity amplitudes,

In this case it is most convenient to introduce a single
projection operator

I~"=g~" Pk~k'"/(k—.k')]

which can be used for both photons. Thus

singularities in I/;. To this end we examine the quan-
tities k l, :

k h=iy'(yk),
k /2=0,
k /3 ip'——(k P),.
k /4 i7'(——k P)(yk).

(23)

We see that l2 is already gauge-invariant. Since k l4 is a
simple multiple of k l&, the singularity in It4 can be
eliminated by taking the linear combination
Ir /4 —(k P)h]. The remaining singularities in I/~ and
I/3 can only be removed by multiplying by (k.g). A
gauge-invariant minimal polynomial tensor basis there-
fore consists of

I/, =——/, =iy'q~(qk),

& =(k a)I/ =~&'L(k V)P"—(k P)a"]
~,=(k V)», =i& t(k V)v b k)e—], .

I/, +(k—P)I/& iy'[(k ——P)q~ (y k)P—~]

(24)

2,= 2B /(t p') =4B,/(s n) . — —(26)

A2 cannot have a kinematic singularity at t=p, ' be-

~5 Ball has eight 8 amplitudes as compared to our six defined in
Eq. (22). The reason for this difference is that he has not used the
condition e„k&=0 to eliminate his 84 and 87, which are physically
irrelevant.

It is not hard to see that had we used I' instead of q'

in the definition of II"", we wouM have arrived at the
same set (2,) except that the roles of 23 and Z4 would
be interchanged.

The set (Z;) are equivalent to the ba, sis vectors
written down by Chew, Goldberger, Low, and Nambu. "
The properties of the invariant amplitudes {A,) as-
sociated with these are discussed by Ball in some detail. "
His results are often given the interpretation that the
amplitude A 2 has a kinematic pole at t= p,'. This would
seem to contradict our assertion that these A s are
f'ree from kinematic singularities and zeros. We shall
show in the following that this is not the case. Our re-
suIt is perfectly consistent with Ball's analysis, and we
shall try to explain why the usual interpretation of his
result is in fact a misinterpretation. The problem in-
volved is a very interesting one and is a distinctive
feature of gauge-invariant amplitudes, as we shall see
again in the following sections where we treat the Com-
ton scattering of pions and nucleons.

Ball based his analysis on the invariant amplitudes"
B; (which are not gauge-invariant). He showed tha, t
the 8; s are free of kinematic singularities. Gauge in-
variance imposes two conditions on the 8 s; one of
these is

(s—u)Bg ——2(/ p')B, . —(25)

LAs defined in Eq. (22), our B3 and Br, correspond to
Ball's B2 and B&, respectively. ] Now, A2 is related 'o
these amplitudes by
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E.'
B,(tr) ==+ +

S—5$~ 3—p~ Q—822
(27)

cause if it did, 85 would also have a kinematic singu-
larity at t= p,'. This is not possible as the 8 s are free
of kinematic singularities. (A similar argument shows
that As does not have a kinematic singularity at s= N.)
Thus either A2 is finite at t= p' or it has a dynamical
singularity at that point. This means 83 has a kine-
matic sero at 3=lr' (which, however, may be cancelled
by a dynamical singularity at the same point). To de-
termine precisely what happens one therefore has to
look at the pole terms. There are three such diagrams
corresponding to the nucleon pole in the s and I chan-
nels and the pion pole to the t channel. Ball found that
the contribution of these diagrams to the 8,'s are of
the foiTn

free and zero-free nature of the (A;) can be obtained
by comparing them with the results of Ader, Capdeville,
and Xavelet' on the kinematic singularities and zeros
of the helicity amplitudes. To this end we calculate
the t-channel helicity amplitudes in terms of the A s.
We obtain"

i (t m—') (t 4m—')"'
(f —;—,', to+f =;=', , to)stn 'lt'=

K2t'~'

X P—A t—-', tA s—mA 47,

(f';,*,to—f'=;=;,to) sin —'lt =—(t—m.') [A t7
v2

(29)
f'i ;;to =f ' ;'„io-=—(t—m ')(t—4m')tl'LAs7,
1+cosP 1—cosP K2

while the contribution to A2 is of the form

g 1

$—p~ s—ts~ I—m~
(28)

f';—,-', to f' [,to —v2(t —m s)
=Z

1+cosP 1—cosP

XLmA t—4 (t—4m')A 47

Thus the poles in the different channels appear in
h; as a sum of separate terms in the familiar manner
as in hadron dynamics. In contra, st, these pole terms
appear in A~ in the form of products which looks
suspicious. However, it is not hard to see that this is
actually very natural and, indeed, necessary. It is well
known that the pole diagrams are not separately gauge-
invariant; only the sum of all three is. These pole terms
a.re properly correlated in A& because the latter is a
gauge-invariant amplitude. On the other hand, the 8 s
are not gauge-invariant and the way the pole terms
appear there is artificial. One must resort to gauge con-
ditions like Eq. (25) to enforce the required correlation;
the end result is the same as before. In this connection
we mention the close relation between gauge invariance
and the Lorentz transformation properties of massless
particles as demonstrated by Weinberg. "We emphasize
that the individual terms in Eq. (27) which are not
gauge-invariant cannot possibly have the correct kine-
matic behavior demanded by Lorentz transformation.
Indeed, this remark also applies to the fully; amplitudes;
thus, although they are free of kinematic singularities,
they must have kinematic zeros to satisfy gauge in-
variance. Only the A, 's are free of both kinematic
singularities and zeros. The fact that the pole terms
enter A, in the correlated form (28) is a clear mani-
festation of gauge invariance (or charge conservation)
and is a new feature of scattering amplitudes for mass-
less particles. We shall go into more details on this
point in a later section when we discuss the Mandelstam
representation for these A, 's.

An independent check on the kinematic-singularity-

"S. steinberg, Phys. Rev. 134, B882 (1964); 135, B1049 (1964);
138, B988 (1964), See also I.ectlres orl, Particles and Field Theory
{Prentice-Hall, Inc. , Englewood Oiffs, N. J., 1965).

V. PION COMPTON SCATTERING

Let us denote by k, k' and g, q' the initial and final
photon and pion momenta, respectively. We define

=K,'(4+k') and -Q= ', (q+g'). -
As mentioned earlier, for Compton scattering the

most coiivenient prospection tensor to use is

I~"=g»" (7osfo'"/7o 7o'). — (30)

The M function, before imposing gauge invariance, can
be written

M~"=p/B =go"B+KsK"B+QsQB
+(KsQ"+QsK")B4 (31).

'7 The helicity amplitudes are normalized such that the c.m.
differential cross section is given by

'
I pr I

dc& 8 W
l)t J

where W is the total c.m. energy and
~ pr ( and

~
p; )

are the magni-
tudes of the 3-momentun& in the final and initial channels, respec-
tively. In calculating the helicity amplitudes we have followed
the phase convention of Ref. 2. The only difference between this
and the Jacob-Wick convention is that the factor (—1)' " associ-
ated wjth "particle 2" in each channel ig ignored.

where P is the t-channel c.m. scattering angle. The
quantities appearing in the square brackets on the
right-hand side correspond precisely to the regularized
helicity amplitudes found by the authors mentioned
above. Furthermore, one may notice when t —+ 4m', the
right-hand side of the second and the fourth line be-
come proportional; similarly, when t~ 0, the first and
the fourth lines become proportional. This implies that
the regularized helicity amplitudes must satisfy con-
straint equations at these points. In fact, these are pre-
cisely the constraint equations found by the same
authors.
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Noir we operate on both sides by I:
M"=I iM,.I-=I"B,+(IQQI) "B,.

The terms containing El' vanish because

I»E&,, E~——(k'—E/k k') k~= 'k'~-

(32)

We also have

and

E'= $—t P'= -~t+ng'

P E=,'(s -I)—,

P A=K 6=0.

(37)

and this, when contracted with the photon polarization
vector a'(k'), vanishes. Similarly, E,I'" does not con-
tribute. We are left with only two independent ampli-
tudes. This is just the correct number for pion Compton
scattering. Next, we have to remove the singularities
contained in I and (IQQI). We note

(E Q) (E Q)'
(IQQI)""=Q Q"— [k Q"+Q~k'"]+ k k'".

(k k') (k k')'

M~"=Pl,'"B;
= I~"M&,.I'"=Q(Il;I) ~"B,,

where II'" is defined by (30) and

(3g)

From the previous example we see that in writing
down the minimal polynomial expansion for 3f&', terms
containing k& or k'" are immediately eliminated by the
projection operator. We shall not bother to write them
down in this case (there are six terms of this kind). We
have

with

MI'"= Zidi+2232, (33)

It is easily seen that the most singular term in this last
expression can be removed by taking a linear combina-
tion with I&",while the remaining singularities can only
be removed by multiplication by (k k'). In this ws, y
we obtain the minimal gauge-invariant polynomial ex-
pansion

g
jap

l,=g~"(qE),
I3——P~P",
l,=p~(yE) P",

—pp+v++ppv
l6= ~ [y"p" 'r"y "], —
l =![v"bE)~ -~ bE)~"].

(39)

VI. NUCLEON COMPTON SCATTERING

Since we shall go into more details in this physically
more interesting case of nucleon Compton scattering,
it is desirable to spell out the kinematics more explicitly.
The photon momenta are denoted by k, k' and the
nucleon mornenta by p, p'. We consider the s-channel
reaction

and the t-channel reaction

We de6ne three independent vectors by the s-channel
relations

6= k —k'= p' —p,
E=-', (k+k'),
P= l(p+p').

(35)

When going to the t channel, the signs of k' and p are
reversed. The Mandelstam invariants are de6ned as
usua1. .

s-(k+ p)2-~~y2P E—,'~2,
t= (k—k')&= a~,

u=(k —p')'=m' —2P E

2 =(k k')I~"=(k k')g~" —k~k'"

Z, =I "[(k k')Q, Q.+(E.Q)2g,.]1- (34)
= (k k')Q"Q"+(E.Q)'g""—(E Q)(k"Q"+Q"k'") .

This expansion has been written down before by various
authors using conventional methods.

Since there should be only six independent amplitudes
for nucleon Compton scattering, the seven terms listed
above are not completely independent. It is not easy
to see which six among these comprise the minimal set
before the singularities associated with them are re-
moved. The appropriate thing to do is, therefore, first
eliminate the singularities in a minimal way for all
seven tensors and then remove the redundant one at
the end, We see that

(Il;I) "=1;~" (1/k k')[k~(k—' l;)"+(l; k)~k'"]

+[1/(k k')'](k' l,"k)k k'" (40)

where (k'. l;)"=k, ' l,"", (l,"k) &= l ""k and (k' l"k)
=k„'t,&"k,. For li and l~ the last term in (40) can be
combined with the previous one. For the rest this last
term can be easily removed by taking the following
combination:

I[l;+((k' l,'k)/(k k'))li]I=/;&" [1/(k k')]—
X [k~(k' l;)"+(l,"k)~k'" —(k' l,"k)g""]. (41)

The problem is therefore reduced to a form similar to
the photoproduction case. To remove the remaining
singularity, we tabulate the relevant quantities (k' l,)",
(l„"k)&, and (k' l,"k), which appear in the singular term
(Table I). By inspection of the table we see that there
can only be one singularity-free combination among the
last five lines (since there are four independent vectors,
namely, P, (yE)p, y, [(yE),y] in each of the first
two columns). This combination is I[l4 ,'(P E)l6-—
+$(p E)l7]I. For the rest, the only way to remove the
singularity is to multiply by the factor (k k'). We then
obtain six more singularity-free tensors, namely, (k k') I,
(k k')(pE)I, and I[(k k')l;+(k' l,"k)li]I, i=3, 5, 6, 7.
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As the last step we must remove the redundant tensor
contained in this set and obtain the minimal gauge-
invariant tensor basis. To do this it is necessary to
remember that M&" is to be dotted into the polarization
vectors, e'(k') and e(k). The space in which the tensors
satisfy e' M e/0, k' M=M. A=O is spanned by a
basis which consists of direct products of the following
two orthonormal vectors:

6

M~"=P ZA. (43)

P"=[K'P~ (K P—)K~] [E'((P K)' P'K')—j '",
Np —1 &pvxaQ E P [E2((P.E)2 P2K2)$—1/2 (42)

In fact, an independent basis set in terms of these
vectors ss known to be" PI'P" Nl'N" (Pl'N " N~P"''zy—q,
P&P"(yK), Nl'N"(yK), and (P&N"+¹P")iver(yE). If we
dot the vectors I' and N into the tensor basis set ob-
tained in the last paragraph and express them in terms
of this orthonormal set, we see immediately which ones
are linearly dependent. Removing the one which can
be expressed in terms of the others with polynomial co-
effj.cients, we obtain the following minimal gauge-in-
variant expansion of the 3f function:

TAaLz I. Quantities appearing in the singular term in Eq. (40},

k'lg l; k k'l;k
l1 k' k (k'k )
12 (VE)k' k(&E) (k k')(yE)
l, (P E)P P(P.E) (P.E)2

(P E)(yE)P P(yE)(P E) (P E)'( E)
4 (P E)~+(~E)P &(P E)+P(7E) 2(p E)(&E),(~E),;q-~.&+P gP„(&E)g-~,+P 2P(P. E)-~(,E)g
l, (P E)&—(&E)P &(P E)—P(&I') 0

parison with previous work as simple as possible. The
invariant amplitudes 3; so de6ned are expected to be
free of both kinematic singularities and zeros.

Prange" and Hearn and Leader' had written down
invariant amplitudes using the orthonormal basis set
mentioned above (Prange did not normalize the two
orthogonal vectors). The amplitudes of Prange have
kinematic singularities as the basis tensors are not a
mineral polynomial set while Hearn and Leader' s
amplitudes have kinematic zeros (constraints) as their
basis tensors contain denominators that may vanish.
Let us compare our amplitudes with those of Hearn
and Leader. In order to distinguish the two sets we
denote their amplitudes by ~i . We have the relations

—',(A,'+A, ') = —K2A,+ (P E)A„
Aa' ——(P K)Ag+mE'Ag,

—,'(A 4'+A g') =mA 3,.

where

(45)

2(A &' —A2') = mK'A4+ ', [(—P E)' E'-P'jAg-
+ ',m(P K)A6,-

46
,'(A, ' A, ') =—(P—E)A4+ '—P2A, -

A g'= E'A 4 '(P E)A 6, —-
and conversely

1 (P E)
A y= ———',(A r'+A 2')+ —,'(A 4'+A g')

E' tyt

1 (P E)
As' — ~(A4'+Ay')

mE m'(44) (47)

A 8= ( 4A'+ gA');

2m

A,= [(P E),'(A4' —Ag')+P'A-6'],
[P'E'—(P E)']

(48)Ag=- [—mAS' ——,'(Ag —Ag )g,[P'K' —(P E)'j

A6= — [K'g'(A4' —A5')+(P K)Ae'1
[P2E'—(P E)']

In writing down the above expressions we have also
made some inessential relabelling to make the com- It is known that Hearn and Leader's amplitudes must

"A. C. Hearn and E. Leader, Phys. Rev. 126, 789 (1962)."R.Prange, Phys. Rev. 110, 240 (1958}.

2j.=E'I/gI
=E'g "—2E/'E"

z,=E~Zr,Z

=-:K['( K)'- (.E» i-(P E)«~+'E)
+(~E)(KIpvypl'K")

~,=I[m/, (P E)l,——E /,]I
=m(~K)g" (P K)g" ,'E (—~ ~ q"~ )———

+K —,'[hK) v ]+-',-5', (&K)jK —m(K'&"+v E')
+ (E~P"+P~E")

24 I[K'/5 mE'/——i+ (P K—)l,]I
=E'(q~P"+P~q") (P K)(K~7"+—q~E")

(qK) (E~P"+P~K")+—(P K)g~"(qK)
—mE'g~"+ 2m.E~E"

25= I[K'/g ——,'(P'E' —(P K)')41I
=K'P~P" (P E)(E~P"+P~K—")

~(P'E' (P K)')g~"+P'K—~K",

26-I[/4+~~(P K)m/i ,'P'/, ,'(P—-E)/5+—,'-mE'/6-
+,'(P E)/7]I-

=P~P"(yK) '(P E)(y~P"+ P/—"-)y '(P K)-
&&kv"(vE)v"—v"(vE)v "3+.'mE'(v "v" v"v")-—
+,'m(P K)g~" ,'P'g-~"(qE)+K~—K-"(yK)

+ 'm'(K"y"+y "K") ,'m(-KI'P"+Pl'K")—-
—-'mE'~[(qE) q"7 '$q~, (qE)]E"—-
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(A i'—A2')+A 6'= 0, at su= m'.
2m

(50)

Upon noting that P E= ,'(s m') at -3=—0, and that K'
= (1/4s)(s —m')', P'= (1/4s)(s+m')' and P E= (1/4s)
X(s'—m') at sm=m', we can easily see the right-hand
side of all the equations in (47) and (48) remain finite
even when the denominators vanish. The reciprocal
relations (45)—(48) then clearly indicate that our in-
variant amplitudes are free of both kinematic singulari-
ties and zeros.

It is also useful to establish the relation between our
amplitudes A; and the s- and t-channel helicity ampli-
tudes which are more directly related to physically
measureable quantities. The comparison between the
two also furnish us with an independent check on our
results since the kinematic-singularity structure of the
helicity amplitudes have recently been fully analyzed. '
For the s-channel helicity amplitudes we obtain'

f' i;,i;= Sin-,'8 {—.t(s+m')Ai+m/(s —m')A2
4 s

satisfy constraint equations at E'=0 (t=0) and P'E'
—(P E)'=0 (su —m'=0). This is most easily seen by
observing the relation between 3 and the s-channel he-
licity amplitudes as given by Hearn and Leader" [their
Eq. (2.21)].The right-hand side of their equations for
C 3 and C q fail to reproduce the factor sin'( 20,) demanded

by conservation of angular momentum for forward scat-
tering, and similarly those for C 4 and C» fail to reproduce
the factor cos'(-,'8,) for backward scattering. The con-
straint equations can thus be read o6 from their equa-
tions and after some simplification we obtain'

m(Ai'+A2') —2i(s—m')(A4'+A5') =0,
s—m'

(A4'+A i') —2Ag'=0, at I=0 (49)
2m

and
—,'(s—m') (A 4'—A 5')+ (s+m')A g' ——0,

1

.where 0 is the c.ln. scattering angle, cos&=1+2s&/
(s—m')'. On the right-hand side of each equation we
have factored out the characteristic angular factor for
the helicity amplitudes and an additional momentum
factor such that inside the curly brackets the coefIicients
of 2; are polynomials in s and t. These quantities inside
the curly brackets are free of kinematic singularities
in both variables s and t. It can be easily checked that
these are precisely the regularized helicity amplitudes
found by Ader et at. ' In addition, the kinematic-con-
straint equations on the helicity amplitudes found by
these authors are automatically satis6ed if Eqs. (51) and

(52) are used.
For the t-channel reaction, we find the comparison

can be made simpler by writing down the "parity-con-
serving" helicity amplitudes f{a} in terms of our A;.
Ke obtain

f+;;i=f",, ;,ii+f';;,ll= ,'t'"[ -mtA2+—(s u)A37—,

~~ ll ~-' ll ——,
'——,', ll

2(t-4m')'l'

X[—(t—4m')A i—(s—u)A 37,

fa a ii ——(Sln2$ COS2tp) f a=~, ii=h[mA3]&

fax i i= (sln2$ cos&lp) f aa, i i=3($ 4m )

X[1(~—4m )A,+mA47,

f+I a, i i= (Sln2lp COS ~lp) f ,''„i i+(Sin-—gf—
(54)

Xcos~g) 'f'=;;, i i= —I(t—4m~)[~A6],

f-;=;,i i= (»n-,'P cos'24) 'f'-;--;, i—i—(»n'24 COSZV)

Xf' .;, i Pl'(t —4m'——)"'[A47,

where f is the c.rn. scattering angle,

cosf= [t(f—4m')] 'l'(s —u) .

+2[(.—m')' —(su —m')]A, },
m(s —m')'

f' i;, la= sin'(-', 8) cos-,'8 (2A i+2A i},
4

(s—m')'
f' ia„i a ——sin'(i20) ((s+m')A i

s3/

+m(s —m')A2+2m'A i};
f'i;, i;= cos-,'OX ~{2[(s—m')' —m't]A4 —m

X(su —m4)A i—[(s—m'. )'+m't]A ~},
(s—m')'

f i, ,i1=Slll20 Cos (20)
4 s

(52)

Now, the angular factors appear on the left-hand side
as part of the definition of f(a~. On the right-hand side
we again factor out a kinematic term such that the
quantities inside the square brackets are free of kine-
matic singularities. These again are just the regularized
t-channel helicity amplitudes found by Ader et a3.' It
is easy to verify that in terms of our 2;, the kinematic-
constraint equations on the helicity amplitudes found

by these authors are automatically satisfied. As a last
comment on this comparison with helicity amplitudes,
we notice that the amplitudes 3 l, A~, A3 and A4, 2 5,

A6 are naturally separated into two groups in all the
Eqs. (45)—(54). The first group is related to photon
helicity (X,X')=(1, —1) in the s channel and (li, ll')

X ( 2mA4 2—(s+m')A—i mA6}, —
f'i a i~= cos'(—,'8) ~(s m')'{2A4+mAi+A—6},

20The sign of A3' given below is opposite to that of Hearn

and Leader. In recalculating their formula (2.21) we obtain this
sign difference and cannot attribute it to a difference in the
defInition of A3' without also changing the sign of other A s.
Our results (47)—(50) are self-consistent.
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Similarly, if

Ai, Ay& C(s),
Aa&s—'C(s),

A4, Ag, A6&s 'C(s).
(55)

then
f'{& {(s,t) & C(t) for t +~ and —fixed s,

Ai, As, A4&t '"C(t),
A i+mA g, A g, (A 4+ ', A 6) & t--'t'C(t) (56)

Recently, Mahoux and Martin" obtained Froissart
bounds for helicity amplitudes. Their proof (using re-
sults from axiomatic quantum-field theory) does not
cover the case of massless-particle scattering. If one
conjectures that their results still apply, one should
have

C(s) = Cs(lns)'"

and similarly for C(t). We see that this is not enough to
make any of the A s superconvergent. To write down
superconvergence relations for some of these amplitudes,
it is necessary to make additional dynamical assump-
tions (like Regge asymptotic behavior).

VII. MANDELSTAM REPRESENTATION

In the preceding sections we have demonstrated how
one can construct kinematic-singularity-free and zero-
free invariant amplitudes for photon processes. These
invariant amplitudes independently have the analytic
structure of a spinless amplitude. The simplest analytic
structure would be for each amplitude to satisfy an un-
substracted Mandelstam representation of the form

p, '(s') p;(t') p„*(u')
A;(s, t,u) = ds' + dt' + du'

s —s 3'—t I —Q

p, j(s', t') pi '(t', u')
+ ds'dt' — + dt'du'

(s' —s)(t, '—t) (t' —t)(u' —u)

p„,*(u',s')
+ du'ds' . (57)

Q —Q s —s

"G. Mahoux and A. Martin (unpublished).

= (1,1) in the t channel, while the second group is re-
lated to (X,li') =(1,1) in the s channel and (1, —1) in
the t channel.

The s-I crossing symmetry properties for the A s
are easily inferred from the definition of the tensor
basis associated with them. We find that A~, A2, A4,
A5 are even while A3 and A6 are odd under s-I
crossing.

To get some idea about the asymptotic behavior of
these amplitudes, let us assume the helicity amplitudes
are bounded by some common upper bound, say,

f'{&{(s,t)&C(s) for s~~ and fixed t;
then

We have seen that the complication due to gauge in-
variance does not represent an essential obstacle in
obtaining these invariant amplitudes. However, as al-
ready discussed briefly for the case of photoproduction,
gauge invariance does have interesting implications as
exemplified in the single-particle intermediate-state
contribution (pole terms) to the scattering amplitudes.
In the case of massive-particle scattering, the single-
particle-exchange terms enter separately in the single-
spectral functions. They are independent of each
other. On the other hand, for photon processes, gauge
invariance (or charge conservation) requires that the
photon be coupled to all charged particles v ith the same
strength. The charge couplings in the various channels
are therefore correlated and cannot be treated inde-
pendently. Only when all single-particle-exchange terms
consistent with charge conservation are put together
does one obtain the correct kinematic structure for the
scattering amplitude (demanded by Lorentz invariance,
etc.). As a consequence, we found the charge-coupling
terms must contain a contribution to the double spec-
tral functions in addition to the single-spectral functions.
We shall illustrate this point by examining the contribu-
tion of the single-particle-exchange terms to the in-
variant amplitudes introduced for the three photon
processes considered in the previous sections.

A. Photoproduction of Pion

In this case there are three single-particle diagrams.
Their contribution to the M function can be written as

M„{a&(gp',kp) = (giy5~ )(yp+pk+m)
X(ey„—(p/2m)o„, k")(s—m') '+(ey„—(p/2m)o„„k")

X (yp' —yk+ m) (giy5~N) (u —m') —'+giy, [~,ej
X(2g—k)„(t—m ') ' (5g)

where n is the isotopic spin index for the pion, g are
isotopic spin matrices for the nucleons, and the charge
and magnetic moment matrices e and p are

We can obtain the contribution of these pole terms
to the A s by expanding 3f„( ' in terms of the minimal
tensor basis Z, t'. We find that these terms contribute
to the single-spectral functions in A~, A3, A4 and to
the double-spectral function in A~. The explicit results
al e

Ai a ——g~ (e+p)(m' —s)
—'+g(e+p)~ (m' —u)

—',
A 3

a ———g~ (p/2m)(m' —s)—'+g(y/2m) ~

X(m' —u) ', (59)
A, a= g~ (1{/2 i)—(mm' s) ' g(p/—2m) ~—

X(m' —u) '
"The superscript n(+, —,0) is not the same as that of Ref. 1.2;

it is defined in (58). Under s-e crossing Ag+ ~A2 .
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4 +e= 4g—e~+(m ' —t)
—'(m' —u)

—'

A 2' -—4ge(m' —s)-'(m' —u)-'

Ag ~ —4g~ e(m ' —t)
—'(m' —s)

—'

(Vn -P)
(yn 'n)

hP n'P)
60)

(yP ~ m+n).

single- and double-spectral functions by writing

A P(s, t,u) =8;+I (m' —s)
—'+ (m' —u)-']

+E;-L(m' —s)-'—(m' —u)-'j
+R'"(m' —s) '(m' —u) ', (64)

The correlation between the charges of the particles
involved and the particular combination of poles which
appear in A2 are only too apparent. This simple and
natural manifestation of charge conservation is de-
stroyed by using Ball's 8 amplitudes" which are not
gauge-invariant, resulting in the artificial interpretation
of the s- and u-channel poles as dynamical poles and the
t-channel pole as kinematic.

Aie=e'[(m' —s) '+(m' —u) ')
A e=8e'(m' s) '—(m' u) '— (62)

The contribution toA 2is again in the form of a double-
spectral function.

C. Nucleon Compton Scattering

The two single-nucleon-exchange diagrams give the
following contribution to the M function:

( sM""(k'f k, P)"'
~

ey"+ — "'k.')(vP'+vk'+w)
2m

(
X ey"— a""k), s—m' '+ ey"—

2tg 2m

x(yP' —yk+m)(ey + 'k, ')(m —m') '. (63)
2m

The contribution of these terms to the inva, riant ampli-
tudes can again be evaluated by expanding the above
expression in terms of the minimal tensor basis 2;, Eq.
(44). We explicitly exhibit their contributions to the

TAsLE II. The Born term residues R; in Eq. (64).

B. Pion Compton Scattering

The single-particle-exchange contribution to the M
function is given by

M&"(k' q', kg) &e& =e(2q'+k') &e(2g+k) "(s—m') '
+e(2g' —k) "e(2g—k') "(u—m') '—2e'g"" (61)

Using the tensor basis of Eq. (34), we find the following
contributions to the invariant amplitudes:

yQI. I,OW-ENERGY THEORIES

Recently, there has been renewed interest in low-

energy theorems for photon processes. ' " lt is shown'
that these theorems follow simply from detailed analysis
of the kinematic structure of the scattering amplitudes.
As such, these low-energy theorems should be most
easily derived from our invariant amplitudes because
they are free from all kinematic singularities and zeros
(in other words, all the kinematic structure are explicitly
displayed in the tensor basis 2;). We shall see that this
is indeed the case. Let us consider the physically more
interesting case of nucleon Compton scattering. The
invariant amplitudes can be separated into two parts:
the Born term as given in the previous section and the
continuum contribution:

A;=A ~+A ~ (67)

It is obvious from previou's discussions that this separa-
tion is gauge-invariant and the two parts separately are
free from kinematic singularities and. zeros. Since A;~
do not contain any dynamical singularity in the limit
of zero photon energy, the continuum contributions
must remain finite. In addition, the invariant functions
As and A 6 being odd under s-u crossing contain a factor
(s—u) which vanishes in the fixed angle, low-energy
limit. Thus we conclude

and the E s are given in Table II.
In addition to the nucleon-exchange terms required

by charge conservation, there are also pseudoscalar
meson poles in the t channel, for instance, mo and q.
These pole terms individually satisfy the gauge-in-
variance condition. The M function for these terms is
given by

M""(k'p' k p) & &=(gN its~')el'&" krak, 'I', (m ' t) '—
+ (g Nip, )e»"~k,k,'F„(m„' t) ',—(65)

where gg, gg„are the meson-nucleon coupling con-
stants and F, F, are the meson-decay constants. In
terms of the invariant amplitudes, these pole terms
only contribute to A2. We have

Ag&~&= ( 2/m) g~.~' F(m '—t)
—'+(2/m)gn F

X (m ' —t)-'. (66)

A2
Ag
A4
A6
A6

4me'
4e(e+p)

0
4ie+yle—8ye/m

0

—(2pe+y, 2)/2m
(2pe+y, ') /2m'

0
p~/2m'

0
0

R;

0
0

(2tie+g'1/2m

0—p'/m'

AP, Aee constX(s —u) -+ 0,
, (68)

AP, A2~, A4~, As~~const, a,t fixed 8 and s-+ gpss'.

'3V. Singh, Phys. Rev. Letters 19, 730 (1967); Phys. Rev.
165, 1532 (f968); A. Pais, Phys. Rev. Letters 19, 544 (1967);
Nuovo Cimento 53, 433 (1968).
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The derivation of the low-energy theorems then consists
in using Eq. (68) in Eqs. (51) and (52) to see to which
order in the photon energy do these unknown con-
tinuum terms contribute to the physical-scattering
amplitudes. All terms which are of lower order than
these are then precisely determined by the known Born
terms. For this purpose, the convenient variables to
use are the s-channel scattering angle 8, the ma.gnitude

p of the three-momenta of the particles, and the nucleon

energy F.. These are rela, ted to s a,nd t by

1
p= (s—m') E= (p'+m')'"= (sym')

2 $ 2+s

2$$
cos8= 1+

(s—m')'

(69)

In terms of these variables, the s-channel helicity ampli-
tudes are

f'44„4*,——cos-,' 8X —',p'[(4s't'p+ m'(1+ cos8) )A 4

+2ms(1+ cos8)A 4

—-'(4s'"E—m'(1+cos8))A 4],

(7o)

f'i 1,i,——sin-', 8 cos'-', 8 s'"P'[—mA 4
——',s"'EA 4

——',mA 47,

f'i;,i; cos' ,'8sp'[——A4+-,'-mA4+-,'A4].

f' i 4 i4= sin-,'8X-,'P'[—E(1—cos8)Ai+mP(1 —cos8)A2

+s' "(3+cos8)A,],
f' i;„i,, =sin'-', 8 cos-,'8 mp'[Ai+A4],

p4
f' i i=——sin'-,'8 [s'"EAi+ms"'pA +m'A ]

Qs

Using Eq. (68), it is immediately seen that to order p the
continuum contributions only enter through two con-
stants, namely, (Aio), 4, ~=0 and (A4o+~&mAso)4 ~', 4-0.
Thus for fixed cos8, all the six helicity amplitudes are
determined to order p' by the Born teims A, &~& plus
these two constants. This result has been obtained by
Choudhury and Freedman using helicity amplitudes
and crossing. '

It is quite obvious that the same method can be
applied to derive low-energy theorems in other photon
processes. However, we do not intend to do this in this
paper.

In conclusion, we have seen that inva, riant amplitudes
for photon processes which satisfy gauge invariance and
are free of all kinema. tic singularities and zeros do exist
and the techniques we proposed to find these amplitudes
a.re rather general and eEective. The invariant ampli-
tudes thus found have very distinctive a,dva. ntages over
the regularized helicity amplitudes and the various
types of invariant amplitudes previously proposed to
describe photon processes. In particular, one may write
down Mandelstam representations for these amplitudes
without ad hoc substractions. Thus, these amplitudes
should prove to be useful in the dispersion theoretical
analysis of low- and medium-energy sca, ttering data, for
photon processes.

Pote added in proof After thi.s article was submitted,
a paper on nucleon Compton scattering by Kurio
Yamamoto appeared in Phys. Rev. 169, 1353 (1968).
He obtained a minimal tensor basis by direct algebraic
reduction of the Prange basis. "His results are equiva-
lent (in the sense defined in Sec. II) to those given in
Eq. (44).

ACKNOWLEDGMENT

It is our pleasure to thank Professor B. W. Lee for
reading the manuscript and for useful comments.


