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Hyperfine Contact Interactions in Oxygen Calculated by Many-Body Theory
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Many-body perturbation theory, which has been used in previous atomic calculations, is
applied to the calculation of the hyperfine contact interaction in the oxygen atom. Large

cancellations have been found to occur between different types of diagrams.

Both core

polarization diagrams and also diagrams representing electron correlations have been
found to contribute significantly. The final value for | ¥ (0)] % s in good agreement with

that measured by Harvey.
I. INTRODUCTION AND REVIEW

Many-body perturbation theory, as developed by
Brueckner?! and Goldstone,? has been applied to the
calculation of many atomic properties such as corre-
lation energies, polarizabilities, and shielding fac-
tors.3—¢ The same methods developed to calculate
these properties are used in a straightforward man-
ner in this work to calculate the hyperfine contact
interaction in the oxygen atom. These methods
have also been used recently to calculate the hy-
perfine contact interaction of the lithium atom. 7

The contribution of the Fermi contact hyperfine
term to the Hamiltonian is given by?®

N
8T </ T

where u is the nuclear magnetic moment, L, is
the Bohr magneton eli/2mc, and Tis the nuclear

spin. The first-order contribution of Eq, (1) to
the energy may be obtained by evaluating

N
(ol 22 s, 6(F,) 1doy/ (ol ¥y @)
i=1

for the ground-state wave function [y, which is an
eigenstate of L%, S% L, and S, with eigenvalues My,
=+L and Mg=+S. Introducing the normalized state
ILS, Mg =S) = I/ by 14y )2, we can relate Eq. (2)
to the reduced matrix element®

(LSNZ, 8(F,)8; 11LS)
=(LS, Mg=SIZ, 6(F,)s ,, ILS,M =)
xV3/(SSS -51SS10),  (3a)

where (SSS —S8510) is a Clebsch-Gordan coefficient.®
For oxygen, which has a 3P ground state (L =1,S=1),
this coefficient is 2-%/2,
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We may also relate Eq. (2) and Eq. (3a) to the
quantity

N
Iz/)(O)lz=<leli§16('fi)siHL%/(LSI@HLS}, (3b)

which has been obtained in the experiment of
Harvey.° For oxygen (S=1), 19(0)I2 equals Eq. (2).

The state |y,) is the exact solution of the Schr-
dinger equation.

Hy,=Ep,, 4)
N vz Zz N
with H= 20 (—Lz——>+ 2 v, Tt (5)
i=1 %) i<j=1Y

(Atomic units are used throughoui this paper. )

A first approximation to ¢, may be obtained? by
replacing the many-electron termZ2; j”ij “1 by
205=1V(r;). Then ly,)is approximated by |,)
and E by E,, where |®,)is a determinant contain-
ing the N single-particle states ¢, which are the
lowest energy solutions of

v Z
[_ 27" V(’r)] 0= n%n ()
These are called unexcited states. The unperturbed

energy E,=2.; —1N¢;. From the linked-cluster
perturbation theory of Brueckner® and Goldstone,?

d)o=ZL{[1/(Eo—Ho)] H’}nq’o: (7)

where 2J; means that only “linked” terms are to
be included. The perturbation

N N
H'= 2 7. 1= 2Vr). (8)
i<j=1Y =1 "

The energy correction

AE=E_EO=Z)L,<¢O|H'(EOEHO H')”léo) , (9)

where L’ restricts the sum to those terms which
are “linked” when the leftmost H’ interaction is
removed for »>1, Perturbation calculations are
carried out with a complete set of single-particle
states obtained from Eq. (6).

The Brueckner-Goldstone (BG) expansion was
previously applied to oxygen to obtain the corre-
lation energy among all pairs of electrons.’ In
Ref. 5 it was pointed out that the state [y,) will
be an eigenstate of L?,S?,L, and S, if 1®,)_is an
eigenstate of these operators, and if L and § com-
mute with Zs; V('rz-). Use of perturbation theory
then avoids the difficulties associated with a method
such as the unrestricted Hartree-Fock approxima-

tion'' in obtaining eigenstates of angular momentum,

In Ref. 5 it was observed that &, for the ground
state of many open-shell atoms may be represented
by a single determinant provided My =+ L and Mg
=+ S, It was also shown that the BG expansion could
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be extended to the case where &, is a linear combina-
tion of determinants., More general discussions of
the linked-cluster expansion for degenerate states
are given by Brandow!? and by Sandars.' Sandars'®
has also given an extensive discussion of the use of
perturbation theory to calculate hyperfine structure,
In order to calculate Eq. (2) we could calculate ¥,
by Eq. (7) and then evaluate Eq. (2) directly. In
this approach, we remember that (®,/,) =1 and
that (¢, 14,) #1; so there is a normalization contri-
bution from the denominator of Eq. (2). This is
essentially the approach used in a previous calcu-
lation of the dipole polarizability of beryllium,
where a diagrammatic expression for Eq. (2) was
discussed.* In this case there is some cancella-
tion of disconnected diagrams for the numerator
with normalization terms in the denominator. An-
other approach,'* which is probably preferable,
is to note that Eq. (2) is equivalent to the sum of
all energy diagrams as given by Eq. (9) in which
there is one and only one interaction with 22; _ 1V
X §,; 6(F;) and any number of interactions with H’
given by Eq. (8). This is the method used in this
paper, and all values for diagrams listed in this
paper refer to this method of calculation of Eq. (2).
In other words, one considers a multiple perturba-
tion calculation®® where H’ in Eq. (9) is given by
Eq. (8) plus Zi - 1N Sz 6(F;). In calculating polariz-
abilities one may also use a multiple perturbation
expansion in which all energy diagrams with two
interactions with the external field are calculated.®

II. CALCULATIONS
A. Second-Order Contributions

In evaluating the diagrams contributing to Eq.

(2), single-particle states from the previous corre-
lation-energy calculation for oxygen were used,

As discussed in Ref. 5, @9, and @9, are Hartree-
Fock states, and the excited I =1 excited states
correspond to 2p excitations., Since the Hartree-
Fock (HF) equation for ¢9¢ was used to calculate
all 7=0 states, ¢4 differs by a very small degree
from the 1s HF solution. For example, Ry¢(0)
=43, 1308 as compared with the HF value Ry yp(0)
=43, 1551, These differences are extremely small
and are estimated as negligible in the present cal-
culation, This is also borne out by the calculations
of Ref. 5, As discussed in Ref, 5 (see Eq. 31),
there is approximately a 5% difference between €1s
and the Hartree-Fock €1g5. However, when we con-
sider the insertions on hole lines, €;¢is shifted to
become almost exactly the Hartree-Fock value,5
The shifted value for €;¢ is used in the calculations
of this paper. Insertions on hole lines also split
€15+t and €15~ as well as €25 as explained later in
this section.

In calculating diagrams, sums over bound states
are carried out by summing over discrete excitations
up to a large value of the principal quantum number
and then estimating the remaining infinite sum by the
the »73 rule,* The sums over continuum states are
evaluated by numerical integration,®*

For oxygen with paired 1s* and 2s* electrons, the
first-order value for Eq. (2) is zero, and the lowest-
order contributions are the second-order diagrams
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as shown in Fig. 1(a), (b), (c), and (d). The sym-
bols as may be 1s*, 1s~, 2s+, or 2s~. (Generally
we use « to represent the entire state. For con-
venience we sometimes use the more explicit no-
tation as or as*.) By 1ls* we mean a 1s electron
with mg=+1/2 or —1/2, In Fig, 1(a), a 1s or 2s
electron is excited into states ks by interaction
with the term -V in the perturbation H’ of Eq. (8).
The symbol at the top represents the operator

s Zﬁ(f). The hyperfine notationis that givenby San-
dars.!3 InFig. 1(b)thereisadirect interactionwitha
passive unexcited state and Fig. 1(c) contains an
exchange interaction. When a completely unre-
stricted Hartree-Fock potential is used, diagrams
1(a), (b), and (c) cancel. However, in general,

for open-shell atoms one starts from a restricted
HF potential, or at least a potential which is inde-
pendent of g; and diagrams 1(a), (b), and (c) do
not cancel. Since @, is the 3P state of oxygen with
My =L and Mg =S, there are three 2p electrons
withmg= +3 (m=+1,0,-1) and one 2p electron with
M= =L (g =+ 16. Both ¢g¢+ aad ¢gg- and also
$1s+ and ¢1c- were calculated with exchange inter-
actions with two 2p electrons. However, ¢g9c+ and
¢1s+ have exchange interactions with three 2p elec-
trons while ¢g.- and $15- have exchange interac-
tions with one 2p electron. The net cancellation of
diagrams 1(a), (b), and (c) is given by diagram
1(c) when as =1s* or 2s* and is given by minus the
diagram of Fig. 1(c) when a=1s~ or 2s~. For 1s
states, there are extremely small corrections to
this cancellation as discussed in Ref. 5, since ¢;¢
is not exactly a HF solution. These corrections
are not significant in the calculations of this paper.
The diagrams for 2s* and 2s~ will add since the top
interaction s;5(¥ ) will also be of opposite sign for
2s* and 2s~, and similarly for 1s+ and 1s-. The
diagrams of Fig. 1(a), (b), and (c) also occur in-
verted as shown in Fig. 1(d). Diagrams 1(a), (b),
(c), and (d) are the lowest-order contributions to
“core polarization” discussed by Watson and Free-

-—-<] N <
as ks as’ ks as ks
X ___o _
(a) (b) (c)
—--X ---<
2s
as ks - ks
2s
- ---X
(d) (e)

FIG. 1. Lowest-order contributions to Eq. (2). These
diagrams represent core polarization effects. The
triangular symbol indicates the hyperfine operator

5,0(Y). Diagrams (a), (b), and (c) also occur inverted

as shown in (d). (e) insertion on the hole line. These

modify the single-particle energies.

man.it For a=2s*, the diagram of Fig. 1(c) is
given, for example, by

=2, 5095(0) b, (0)( 2p ks 1v 125 2p) /(egs —€p).
The summation is over both bound and continuun(xlo)
excited states. Note that in the diagrams & refers
to all excited states, both bound and continuum.

The contribution of diagrams 1(a) to (d) are sum-
marized in Table I. In Table I, % refers to continu-
um states and n refers to bound excited states.

The results 2s -k, n are obtained by multiplying Eq.
(10) by 4 which includes a factor two for the two 2s
electrons and a factor 2 for the inverted diagrams.
A breakdown of the 2s —#x contributions of Table I
is given in Table II. Most of the result comes from
2s - 3s excitations. In Table I it is seen that the

1s and 2s contributions nearly cancel.

We may also include the effects of insertions on
hole lines of the type shown in Fig. 1(e), where the
crossed interaction is meant to include the net ef-
fect of the interaction with the potential -V and
with all passive unexcited states. These inter-
actions in higher orders may be summed geometri-
cally,®5 and the result is a shift in the single-
particle energies given by

62:: €zs:i:<282[llV 12p2s) (11)
For Elsi’ there is the shift + (1s 2p [V 2p 1s) as
well a5 the shift which causes € to become al-
most exactly the Hartree-Fock value for €, as
shown by Eq. (31) of Ref. 5. Energies of excited
states are also shifted similarly to account for in-
sertions on the particle lines as in Fig. 1(e). For
excited continuum states, these effects were cal-
culated as described in Ref. 5 and were small com-
pared to the shift of Eq. (11). The result of in-
cluding these insertions for 2s diagrams is given
in Table III. There are now significant differences
in the 2s* and 2s~ contributions, mostly due to the
shift of Eq. (11). However, the sum is only slight-
ly different from the 2s result given in Table I.

B. Third-Order Core-Polarization Contributions
In the next order of perturbation theory, we start

by considering the modifications to the lowest-
order core-polarization diagrams of Fig. 1. These

TABLE I. Lowest-order contributions to Eq. (2).
Excitation Contribution
25—~k 0.167 772

2s = n 0.05611
1s— k& -0, 205032
1s—n ~0.00627P
Total 0.01258

a
Contribution from continuum excited states.

bContribution from bound excited states.
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TABLE II. Bound-state contributions.

n 2s—ns
3 0.03908
4 0.00875
5 0.003 36
6 0.00164
7 0. 00092
8 0.00057
0
2z 0.00179
n=9

o]
o
8
—
=

.056 11

diagrams have an additional Coulomb interaction
and are shown in Fig. 2. For each diagram shown
there is also the inverted diagram obtained by ro-
tating the diagram about a horizontal line through
the center. Corresponding to Fig. 2(b) there is
also a diagram with the hyperfine interaction and
the crossed interaction exchanged. The crossed
interactions in Fig. 2 now correspond to inter-
actions with passive unexcited states as well as
with - V. This notation will be used from now on
in this article in all figures other than Fig. 1 in
order to save space, In Fig. 2(a) and (b), both
hole lines refer to 2s states or to ls states since
all other diagrams cancel. That is, let the top
hole line in Fig. 2(a) refer to 2s*. Then, there

is an equal and opposite contribution according to
whether the bottom hole line is 1s* or 1s~. Asa
result, only the exchange diagrams contribute when
one hole line is 2s and the other is 1s, as shown in
Fig. 2(c), (d), and (e). Similarly, only exchange
diagrams contribute when one hole line is 2s or 1s
and the other is 2p. That is, all the direct dia-
grams add to zero in these cases except for 2(a)
and 2(b). We note that the net interaction of 2p

(my =+1, mg=-7%) with the other unexcited states
and with - VHy is equal and opposite to the sum of
this net interaction for the three other 2p electrons
with mg =+ 3.

TABLE III. 2s contributions with insertions of Fig. 1(e).
Excitation Contributiona
2st—p* 0.078 822

25t —nt 0.024 65,

2s——k" 0.08949

2s ~ —n~ 0.03250

Total 0.22546

-

A
GS:Q\ / _@‘“ B
-

~--X

(a) (b) (c)

FIG. 2. Third-order core polarization diagrams.
These diagrams are second order in the Coulomb
interactions and first order in the hyperfine interaction
that is represented by the triangular symbol. The crossed
interaction represents the net effect of interactions
with —V and with all passive unexcited states. There
are also inverted diagrams corresponding to all diagrams
shown. There is also a diagram like (b) with the crossed
interaction and the hyperfine interaction interchanged.

The numerical contributions of the diagrams of
Fig. 2 are given in Table IV. Inverted diagrams
are included in the results and also the diagram
like Fig. 2(b) but with the top two interactions in-
terchanged. The total contribution of diagrams
2(a) and 2(b) with o =2s is 0.03198. Of this value,
0.01949 comes from the case when both excited

TABLE IV. Contributions from diagrams of Fig. 2.

Diagram Value®
(a) os=2s 0.015 99
(b) as=2s 0.015 99P
(a) as=1s —0. 006 01b
(b) ozs=1§ . —0.006 01
(c) a=2st, B=1s —0.00117
(c) a=1sF, B=2s* 0.00925
(d a=1s*, g=2sF —0.00063
@ a=2s, B=1s* 0.00031
(e) a=1s*, p=2s* 0.00854
e) a=2s*, B=1s* —0. 00024
) a=2s%, B=2p" 0. 02287
(d) a=2p*, B=2s* 0. 003 21
(e) a=2s%, B=2p* 0.00641
() a=1s*, g=2p* —0.005 97
@ a=2p*, B=1s* ~0.000 02
(e) a=1s*, B=2p* —0.00512
Total 0.05740

B¢y T=—1.40187, €9g™=—1.08711.
particle lines also included.

Insertions on

bContiJm.J.um excitations.

®Bound-state excitations.

* The inverted diagrams are also included. The crossed
interaction in Fig. 2 represents the net interaction
with —V and with all passive unexcited states.

bThe diagram with the hyperfine interaction and the
crossed interaction exchanged is also included.
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states are in the continuum. When one excited
state is bound and the other is in the continuum,
the result is 0.01091; and when both excited states
are bound, the result is 0.00158. As is expected
from Table I, the bound excited states are less im-
portant for Fig. 2(a) and (b) when @ =1s. In this
case, the total is —0.01202, with —0.01153 con-
tributed from two contmuum excitations. In Fig.
2(c) with o =2s%, and B=1s* the excitations with

at least one bound state contribute 8.1% of the to-
tal. For diagram 2(c) with @ =1s%, B=2s%, exci-
tations with at least one bound state contribute 25%
of the total. It is seen that although two continuum
excitations give the largest contributions, bound-
state excitations are still quite significant.

C. Correlation Diagrams

We now consider diagrams which do not depend
on core polarization but depend on true correla-
tion effects. The basic diagrams are shown in
Fig. 3 and the contributions of these diagrams are
listed in Table V. The largest values are contri-
buted by diagrams 3(a) and its exchange 3(b),
including the diagram like (b) where the labeling
on the particle lines is interchanged. The contri-
bution from 3(a) when @ =B =2s~ is seen to be very
large. This is not surprising since similar exci-
tations were found to be very large in the previous
correlation-energy calculations.5 The value 0.066 31
was calculated using shifted denominators to ac-
count for insertions on the hole and particle lines
as discussed in connection with Eq. (11). These
shifts also accounted for hole-particle and ladder
diagrams as discussed in the correlation energy
calculations.® Nevertheless, the net effect of in-
cluding such higher-order terms in connection with
diagram 3(a) is not large, since the result without
any shifts is 0. 06554. The nondiagonal ladder dia-
grams for 3(a) were calculated and also found to be
small, and they are not included. A rough estimate
indicates a contribution of — 0. 0020 from the non-
diagonal ladder diagrams.

0 K A5
P -
5 G

(g) )

FIG. 3. Correlation diagrams. All particle lines
labeled 2p refer to the excited 2p state with mg=— 3 and
my =0 and —1. The excited 2p states are not included
in kp. Diagrams (b), (f), and (g) with the particle lines
interchanged should also be included.

TABLE V. Contributions from diagrams of Fig. 3.

Diagram Value
(a) a=B=2s 0.066312
() a=p=2s" —0.02019P
(8) a=B=1s_ 0.00167
(b) a=B=1s" —0.00041P
(a) a=1s, B=2s —0.007 23
(@ a=2s, B=1s —0.007 23
(b) a=1s, B=2s 0. 001 07
(b) a=2s, B=1s 0.002 07P
(c) a=p =2s* 0.001 00¢
(@ a=B=2s" 0.00289
@ a=1s", B=2s" —0. 001 02P
(@ a=p=1s" 0. 00020
(e) a=2s" 0.00138
(e) a=1s~ 0. 000 06
() a=2s —0.01126
® a=1s 0. 00062
(@) a=B=2s 0. 009924
(8 a=1s, B=2s —0.00362b,d
(8 a=B=1s 0. 000594
(h) —~0. 02044
Total 0.016 38

aShifted denominators used. Without the shifts, the
result is_0. 06554,
Inverted diagrams included. For (b), this means
interchange labels on the particie lines.
Shifted denominators included so there is not exact
2s*, 25 cancellation.
1 =0, 1, and 2 excitations included.

In all diagrams, the continuum excitations gave
the largest contributions with bound-state effects
also large for /=0 and ! =1 bound excited states.
However, the I =2 bound excited states contributed
only small amounts. For diagram 3(a) with a=p
=2s~, the bound states contributed 0. 00088 which
is 1.3% of the total. However, in diagram 3(k) the
continuum excitations contribute — 0.01297 and I=0
bound excited states contribute — 0,007 06. Ex-
change diagrams for Fig. 3(h) and higher iterations
of the single excitation at the top of Fig. 3(h) by
interactions of the types of Fig. 2 are estimated to
nearly cancel and are not listed. We also note that
there is much cancellation among the different con-
tributions listed in Table V. For example, the re-
sults from diagrams 3(d) and 3(e) are approximately
equal and opposite to the results from diagrams
3(f) and 3(g).

D. Higher-Order Diagrams

Some of the types of higher-order diagrams which
have been considered are shown in Fig. 4, and the
results of calculating them are listed in Table VI.
The diagrams 4(a), (b), (c), and (d) are typical
higher-order iterations of the diagrams of Fig. 2.
All possible iterations of the basic diagrams of Fig.
2 were considered, not only 4(a) to (d). Reliable



FIG. 4. Typical higher-order diagrams. (a), (b),
(c), and (d) are typical higher-order iterations of the
diagrams of Fig. 2. (a) and (b) involve only two different
unexcited states. (c) and (d) involve three different
unexcited states. Diagrams (e), (f), and (g) correspond
to the lowest-order three-body correlation energy
diagrams with two 2p hole states and 2s hole states and
a 2s~ or 1s™ electron excited into the 2p excited states.
(g) is only one example of the possible exchange terms.
(h) should be calculated with shifted denominators to
account for insertions on the hole line and particle line.
In order to reduce the number of figures, the crossed
interaction represents the net effect of interactions with
-V and also with all passive unexcited states.

estimates of these types of diagrams may often be
obtained®% by considering ratios of the diagrams
of Fig. 2 to those of Fig. 1. For example, we
would estimate the diagram of Fig. 4(a) by multi-
plying the diagram of Fig. 2(a) by the ratio of 2(A’
to 1(a). Diagrams 4(e), (f), and (g), including all
possible exchange terms, were directly calculated.
Diagrams of Fig. 4(h) were calculated with shifted
denominators as in Eq. (11). In 4(h), the excita-
tion # may have either /=0 or /=2. For /=0, the
hyperfine interaction may also occur on the particle
line and this was included. The total result is ex-
tremely small.

Other higher-order terms which were found to
contribute large effects are shown in Fig. 5. We
call these “renormalization” diagrams, since the
effect of these diagrams is to “renormalize” the
basic diagram of Fig. 1(a). Diagrams 5(a), (e), (f),

(g), and (k) are also called rearrangement diagrams.®
These same interactions are also repeated in higher

orders. In diagrams (e) and (f), the correlation
part of the diagram involving » has two different
time orderings relative to the basic part of Fig.
1(a). The sum of these two terms is minus

diagram 1(a) times the correlation energy of the
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L A<
ﬂ—\o\ G;O"—q ;0___<
Y. 0w B
_% S B __X
(a)

(b) (c)

TABLE VI. Contributions from diagrams of Fig. 4.

Diagram Value
(a—(d) 0. 00768;
(e), ), (8); a=p=2s" ~0.01861
e), (B, (@); @ or B=1s~ 0.00303
(h) 0.00037°
Total -0.00753

aEs‘cima’oed result. All possible higher iterations of
Fig. 2 included in estimate, not only the examples of
Fig 4. Also includes estimate of all higher orders.

All possible exchange diagrams included, of which

Fig. 4(g) is only one example.

®Includes a small contribution from case where & has
1 =0 and the hyperfine interaction is on the particle
line.

pair #, a divided by the denominator of the 1(a)
part. As discussed previously,* the higher-order
interactions like 5(e) and (f) give a geometrical
series which may be summed to give the basic dia-
gram of Fig. 1(a) with a shifted denominator such
that

>

€a~€a i E.(a,n),
m+a)

where E c(a,n) is the pair correlation energy for

a,n. The sum of diagrams 5(g) and (h) is given by

minus diagram 1(a) times

(12)

Nmlan) =24 1 kR’ 10| na) 1°/
(e,+€,~ - ek,)z, (13)
—-

(d) (e) (f)

n . ““<]
; n
——— a
--X
(g) (h)
FIG. 5. Renormalization diagrams which modify the

basic diagram of Fig. 1(a).
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The quantity Nm (a,n) is similar to the pair corre-
lation energy E.(a,n), except that Nm is calculat-
ed with a squared denominator. If we had used Eq.
(2) directly to calculate the hyperfine energy, we
would have calculated

Wold) =1+ 22 Nmip,q), 14
(ol =1+ 2 Nm(p,q) (14)

where 2., < g 1S a summation over all pairs of un-
excited sStates (p,q). As previously discussed,*
there may be much cancellation between (¥, 1¢,)
and disconnected terms occurring in ¥, 10 19,),
where O is the operator being evaluated. After
this cancellation we are effectively left with the
diagrams like Fig. 5(g) and (k). Renormalization
diagrams are expected to be more important for
a=2s* than for 1s¥, since denominators in the
latter case are much larger. Since the contribu-
tion from the diagram of Fig. 1(a) with a=2s* is
considerably larger than our final value, we may
expect significant effects from the renormalization
diagrams of Fig. 5, even though these diagrams
are much smaller than Fig. 1(a).

The results of calculating the diagrams of Fig.
5 are listed in Table VII. There is much cancel-
lation among diagrams 5(a), (b), (¢), and (d). This
is not very surprising when we consider the struc-
ture of the diagrams. We note that 5(a) and (d)
have the same sign, which is opposite to the sign
of 5(b) and 5(c). Diagram 5(a) was calculated to
be 0.008 68, but the total of (a), (b), (c), and (d) is
0.00247. The value for 5(e)+5(f), which is the
largest contribution, was obtained by recalculat-
ing the diagrams of Fig. 1 with the shift in denom-
inators given by Eq. (12). Values for }, E.(2s%n)
were taken from the oxygen correlation energy
calculation.? Higher-order iterations of 5(e) and
5(f) are then included in the result. In order to
obtain Nm (a,n) for diagrams 5(g) and 5(h), the pair
correlation energies of Ref. 5 were divided by an
average energy denominator which was chosen in
each case from the middle of the range of impor-
tant excitations for the correlation energy. The
1s* contributions are much smaller as expected.
Renormalization effects on the basic diagrams of

TABLE VII. Contributions from renormalization dia-
grams of Fig. 5.

Diagram Value
(a), (), (), (d); a=2s* 0.00247
(e), (O; @=2s* —0.01075
(8), M); a=2s* —0.005342
(@)~ (); a=1s* 0. 00060
Higher-order terms —0.00733P
Total —-0.02035

a .
Estimated with correlation energy results of Ref. 5.
Estimate of renormalization effects on diagrams of

Figs. 2, 3 (except h), and 4.

Figs. 2, 3 (except h), and 4 have been estimated
and given in Table VII. Most of this result comes
from the diagrams of Fig. 2 and Fig. 4(a)-(d).

The renormalization diagrams associated with Fig.
3(h) were omitted because we have estimated a can-
cellation between the exchange terms of 3(h) and
the higher-order terms associated with 3(h). We
note that the diagrams of Fig. 5 reduce the basic
diagrams of Fig. 1 by 6% when a =2s*. However,
the relative effect of the renormalization diagrams
increases in higher orders. For example, the dia-
gram of Fig. 2(a) for o =2s¥ is reduced by 12% by
the renormalization diagrams.

The final result for the oxygen hyperfine contact
interaction as given by Eq. (2) is obtained by adding
the total results of Tables I, IV, V, VI, and VII,
and then adding the quantity 0. 001 58 which accounts
for the correction of Table III to the 2s results of
Table I. The result is 0.0601.

III. DISCUSSION AND CONCLUSIONS

The calculated value 0.0601 for Eq. (2), or
1 4(0) 2, may be compared with the experimental
result of Harvey'® which is 0. 0569. We note that
the value 0. 0601 calculated in this paper does not
include relativistic effects which we would expect
to be small. Approximate calculations!®;17 of the
relativistic effects for [(0)[2 in oxygen indicates
that they are very small. Judd!” reports a decrease
in 19(0) 2 by 2% due to relativistic effects. The
value for |¥(0)? calculated in this paper may also
be compared with the results of Bessis, Lefebvre-
Brion, and Moser!8 who calculated the magnetic
hyperfine-structure constant ag (J =2) which, in
the case of oxygen, equals (8mipio/3I)19(0)F.
Bessis et al. calculated ag (J =2) by means of con-
figuration interaction and obtained —11.5 Mc/sec.
They performed an unrestricted Hartree- Fock cal-
culation which gave ag = - 19.5 Mc/sec, and they
also made an extended unrestricted Hartree-Fock
calculation which resulted in —34 Mc/sec. Their
projected unrestricted Hartree-Fock result for the
latter case is —17 Mc/sec, which is in excellent a
agreement with the experimental value —17.2 Mc/
sec, The result calculated in this paper is -18. 2
Mc/sec, not including the relativistic corrections.

In examining the results of the previous section
we find very large cancellations between the lowest-
order core polarization diagrams of Fig. 1 for 1s
and 2s electrons. There are large contributions
from the core polarization diagrams in the next
order as shown in Fig. 2. These contributions are,
however, considerably smaller than the lowest-
order results of Fig. 1 for 2s electrons alone.
From Table II we also observe that there are large
contributions from the core-polarization-type dia-
grams in which a 2p electron is excited or de-
excited through the net interactions with —V and
with the other unexcited electrons. These contri-
butions come to 0. 032 49 when the other electron
which is excited is 2s* and —0.011 11 when the other
electron is 1s*. Even though the third-order dia-
grams (second order in Coulomb interactions and
first order in the hyperfine interactions) of Fig. 2
give a larger net contribution than the second-order
terms of Fig. 1, this does not imply a divergence
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of the expansion but merely reflects the near can-
cellation of the second-order terms. In the next
order in the Coulomb interaction, the diagrams cor-
responding to Fig. 4(a)-(d) contribute 0.006 76,
which is only 12% of the result from the diagrams
of Fig. 2. The value 0.007 68 in Table VI includes
an estimate of all higher iterations of these types
of interactions. We see that the core polarization
effects are large and add to a result which is larger
than the experimental value 0. 0569. Under “core
polarization” we have included all diagrams with at
least one interaction with —V and with the unexcited
states - as in Figs. 1,2,4(a)-(d), and 4(h).

We also find that many diagrams which involve
true correlations may be quite large. The most
striking example is the diagram of Fig. 3(a) with
a=8=2s". When a =4, the hole-line interaction
is diagonal, and we have an example of an
“exclusion-principle-violating diagram.” - Only 2s~
or 1s~ electrons may be excited into the 2p (ng
= - 3) excited states, When such an excitation oc-
curs, the 2s* or 1s* electron remains unexcited
and there is an effective net spin density at the nu-
cleus. Since such excitations were found to be im-
portant in the correlation energy calculations,5 it
is not surprising that they play an important role in
the present work. However, we note that there is
much cancellation among the various correlation
diagrams of Fig. 3.

In investigating higher-order terms beyond those
of Figs. 2 and 3, we first included the terms of Fig.
4 and listed their contributions in Table VI. The
first entry includes all terms like Fig. 4(a)-(d),
and also estimates of all higher iterations of these
effects. Contributions from the diagrams of Fig.
4(e), (f), and (g) are also listed in Table VI, in-
cluding all possible exchange diagrams. When the
hyperfine interaction is removed, these correspond
to the lowest-order three-body correlation energy
diagrams with two 2p hole states and a 2s™ or 1s-
electron excited into the 2p~ excited states. In Fig.
4(e), (f), and (g) these are also three-body diagrams
when a =8, and are four-body diagrams when a #3.
Although the sum of these diagrams is smaller than
diagrams such as Fig. 3(a) and (b), which are the
corresponding lower-order diagrams, the contribu-
tions from Fig. 4(e), (f), and (g) are fairly large.

It is not known whether there may be significant
contributions from higher-order diagrams such as
Fig. 4(e), (f) and (g) which involve the same number
of hole lines but more Coulomb interactions. A-
mong these diagrams are those involving triple ex-
citations; and there has been almost no work on the
effects of three-particle excitations in the atomic
correlation problem, except for a calculation for
the hyperfine structure of nitrogen by Nesbet!®
However, such terms have been considered in the
nuclear many-body problem by Bethe.?° It is pos-
sible that the basic three-body diagrams with triple
excitations will not add up to a very large result,
since for each excitation through interaction with

a particle line there is also a possible excitation
through interaction with a hole line, and these two
types of excitations will be of opposite sign. This
is analogous to the situation in Fig. 5 where the
double excitation may take place through interaction
with a hole line [as in diagrams 5(a) and (b)] or

through interaction with a particle line |as in Fig.
5(c) and (d)]. We found that there is a fair degree
of cancellation among diagrams 5(a), (b), (c), and
(d). In this case, the effects from interaction with
the hole line were greater; the same should be true
for the three-body diagrams. This would increase
the results from Fig. 4(e), (f), and (g) and cause a
small reduction in our final result.

Since the basic three-body diagrams of Fig. 4(e),
(f), and (g) contribute significantly although they
are smaller than diagrams 3(a) and 3(b), we might
expect a small but non-negligible contribution from
the basic four-body diagrams with one more 2p hole
line than in Fig. 4(e), (f), and (g). We can make a
very rough estimate of these effects by taking the
ratio of the direct diagrams of Fig. 4(e) and (f) to
Fig. 3(a) with a =8=2s~. Using this ratio of
—-0. 405, we estimate the contribution from basic
four-body and five-body terms as roughly 0. 003 75.
However, this result is expected to be too large,
since in the four-body case the number of different
exchange diagrams is increased over the three-
body case, causing a further reduction. The uncer-
tainty in these four-body and five-body terms, and
also in higher-order three-body terms, contributes
an uncertainty from 5 to 10% in the calculated
result.

It has also been interesting to note the large con-
tributions from the renormalization diagrams of
Fig. 5. Much of the importance of these effects
is due to the large contributions of Fig. 1 which
nearly cancel. However, the renormalization dia-
grams have a much greater effect on the basic dia-
grams of Fig. 1 with a =2s%* than on those with a
=1s*, This is due to the much larger energy de-
nominators associated with 1s excitations, and
also due to the fact that the 2s electrons have larg-
er correlation effects than the 1s electrons.® Al-
though the renormalization diagrams contribute
very significantly to the final result, they are a
small fraction of the second-order contribution
from excitations of 2s electrons. These renormal-
ization diagrams are also expected to be important
in many other calculations.

In addition to those results listed in the tables,
the nondiagonal ladder diagrams associated with
diagrams like those of Fig. 3 were found to be
small (approximately —0.0020) and are not included.
Also, in diagrams like Fig. 2(b), where there are
two electrons simultaneously excited, in higher
orders there are hole-hole, hole-particle, and
ladder diagrams as discussed in Ref. 5. The net
effect of these diagrams was found® to be approxi-
mately a 5% reduction of the pair correlation ener-
gies. This would lead to an approximate result of
—0.001 50 in the present work.

Many different diagrams have been included in
this work, and it is hoped that all important dia-
grams were included. However, there are uncer-
tainties due to the higher-order diagrams which
were neglected, and due to those effects which
were estimated by partial calculation. The over-
all estimated uncertainty in the calculated result
is approximately 10%.

It is hoped that this work illustrates the useful-
ness of many-body perturbation theory in atomic
hyperfine calculations. The methods developed
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previously which have been used in this paper are
applicable to other atoms and other atomic proper-
ties. However, in other calculations of hyperfine
structure we may find that many of the near can-
cellations of diagrams found in this paper do not
occur; and we may also find that other diagrams
are important.
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The absolute oscillator strengths for the sodium D lines have been measured using the
Roschdestvenskii hook method, a technique which can provide an accurate means for measuring
the product of the population and f value, Nf, for a gas. The experiment was performed under
well-defined conditions, with a systematic variation of temperature, fringe angle, and fringe
spacing. It was found that the f values were independent of these variations in accordance
with expectations. The measured f values were fp =0.677+0.007 andel= 0.341+0.009.

These results are in excellent agreement with the quantum-mechanical calculations which em~-

ploy Bates-Damgaard or Hartree-Fock methods.

The work presented here represents the first
phase of a program to apply spectral interferome-
try to the study of atomic properties and behavior

of shock-heated gases. A well-known and particu-
larly powerful technique in this area is the Rosch-
destvenskii “hook method,” which yields the prod-



