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the shape of the form factors, when using a 1/r potential,
is much improved over the harmonic-oscillator case.

The absolute normalization in the 1/r case, however,
is much too small for most of the resonances. (See
Table V and Figs. 1—5.) (The only resonance having
form factors that agree with experiment' " is the 1236
resonance. ) The small normalization factors come about,
roughly speaking, because of the energy-level depend-
ence of the exponential e ~" in a Coulomb potential:
The constant b is inversely porportional to e, where e
is the label of the energy level of the excited quark.
Thus for large e (high-lying resonances) the exponential
does not damp as strongly, and to normalize the wave
function one must divide by a larger number. This
effect was not present in the harmonic-oscillator case,
and agreement for small q' was obtained. Thus we

conclude that the magnitude of the form factors, as well

as their shape, depends on the potential chosen.

"H. L. Lynch, J. V. Allaby, and D. M. Ritson, Phys. Rev.
164, 1635 (1967).

We also note that whereas for a harmonic-oscillator
well the form factors are all proportional to the elastic
form factors, ' this is no longer true for a Coulomb
potential. Finally, we present in Table VI the quark-
model predictions for various photoproduction ampli-
tudes. " The predicted magnitudes are in general too
large, but the signs (when M~=3m~„q, „) agree with
experiment. The agreement is better (when 3II~
=-',m„,t,„) for a 1/r potential than for the harmonic-
oscillator well.
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A Lagrangian field theory is constructed which gives a canonical realization of the recently proposed
theory of currents. It is very similar to Gell-Mann and Levy's a model, but with some crucial diGerences.
It is the second-quantized theory of the spherical top in the internal space, thus implying some connection
the strong-coupling theory.

1. INTRODUCTION

ECENTLY a simple nontrivial model field theory
in which only currents appear as the coordinates

was proposed. ' The vector and axial-vector currents
were taken to satisfy the algebra of fields implied by the
massive Yang-Mills theory. ' Then the energy-mo-
mentum tensor was given in terms of these currents:

This form of H„„determines the theory completely and
it was shown that the theory does not contain any
internal inconsistencies. In this theory we do not have

* Work supported in part by the U. S. Atomic Energy Com-
mission.' H. Sugawara, Phys. Rev. 170, 1659 (1968). The erst explicit
suggestion of this kind of theory was made by M. Gell-Mann in
Proceedings of the Thirteenth International Conference on High-
Energy Physics, 1966, Berkeley (University of California Press,
Berkeley, 1967), p. 3.

~T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

canonical variables explicitly. The reason for this was
studied by Bardakci, Frishman, and Halpern. ' It turned
out that this theory is a peculiar limit of the Yang-Mills
theory. Nevertheless, we might still be able to find some
canonical realization of the theory.

We indeed found a Lagrangian field theory which is
equivalent to the original theory of currents, at least
when the internal symmetry is SU2 or SU2)&SU2. A
very important feature of this Lagrangian theory is
that, although we have canonical variables in it, we
cannot attach particles directly to them because of
their transformation property in the internal space.
Actually, the theory is quite similar to the "0.model"
of Gell-Mann and Levy' except for the difference in the
isospin rotation. Thus our theory is very much like
the currently popular phenomenological Lagrangian
theory, ' at least in appearance. We can easily extend

' K. Bardakci, Y. Frishman, and M. B. Halpern, Phys. Rev.
170, 1353 (1968).

4 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).
'See, e.g., P. Chang and F. Gursey, Phys. Rev. 164, 1752

(1967).
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this o. model to the SU2&SU2 case and incorporate the
PCAC in a certain sense.

We can also consider the SU3 theory without much
cMiculty, but we leave this to another publication.

In any case, we have examined the case of SU2 more
extensively and have rewritten the 0-model Lagrangian
in terms of the Eulerian angle in the isospace. It turns
out that this is a second-quantized version of the
spherical top. In the first-quantized case (Schrodinger
equation) we know that it gives the following energy
spectrum:

Z= aI(I+1) . (2)

In our field theory it is not so simple as this. In the
case of the harmonic oscillator the spectrum is the same
both in the Schrodinger equation and in the held theory
because of the linearity of the equation. The highly
nonlinear character of our equation prevents us from
making the analogous discussion.

In Sec. 2 we present a Lagrangian formalism which
is a particular solution to the original model, restricting
ourselves to the SU2 case. In Sec. 3 we extend this to
the SU2&(SU~ case and incorporate the PCAC. In
Sec. 4 we discuss the spherical top and related problems.

where i, j, k run from 1 to 3. Introducing 2&&2 vector
matrices V„=r'V„' (r'=Pauli matrices), Eq. (3) is
simplified:

B„V„—B„V„=—(i/2C) C V„,V.j. (5)

Note that c-number terms CV„'(x),V„'(x)j vanish
because of our assumption on the equal-time com-
mutation relations.

From the form of Eq. (5) it is easy to show that
V„=U 'V„U 2iCU 'B—„U is also a solution of Eq. (5)
when V„satisfies (5) and U(x) is an arbitrary matrix.
In particular,

V„=—2~CU 'B„U (6)

satisfies (5). We express U in terms of new fields,

o '(x) and o (x), whose properties will be specified below:

(7)

To insure the Hermiticity of V„, we require U' to be
unitary. 6 Then

p'p~+& =1
Co'(x) o'(x)j=Co'(x), (x)j=0.

o This is, of course, except for the normalization.

2. REDUCTION TO A LAGRANGIAN THEORY

Let us start our discussion by writing the equations
of motion in our model. In the case of SU2 symmetry,
that is, when only itotopic spin vector currents appear
in the theory, the equations are'

B„V.'—B.V„'= (1/2C) o;,o(V„&V."+V,"V„'), (3)

Using these variables, the currents are

V„=2Cr'(o;,oy'8 ohio
—q'8 0+08 oo')

ol
V~ = 2C(oe'k(p~B» p (p~Bpo+0'Bpp ) ~

In deriving this equation we used the fact that

CBo|p'(x,~), o '(y, i)3+LB ~(x,~),~(y, ~)j*-.

(9)

I'= V '(x)d'x

becomes a singular c-number term which can be re-
moved from the expression for V„(x) without affecting
the physical content of the theory. It can be rigorously
justi6ed only after we establish the commutation
relations among oo' and 0 CEqs. (14)j.

So far we have considered Eq. (3). Equation (4)
implies

o;,ooo'grp —y'Qo+o[]y'=0. (10)

Furthermore, condition (8) and the currents (9) have
the same forms as the ones considered in the nonlinear
fT model by Gell-Mann and Levy. 4 Thus we are led
to the following possible Lagrangian in our field theory
of currents:

I.= —(1/2C) V 'V '.
Using Eqs. (8) and (9) and regarding the q', o as
classical fields, this can be rewritten

I = 2C(Bpp Bye +Bgo'Bpo'). (12)

We can also start from the Lagrangian (12) with the
constraint (8) and follow the conventional canonical
formalism. The results are as follows: The equation of
motion is

pQO —0 p =0~

and the canonical quantization is

Co '(x) ~'(y) j"="=0
C&*'(x) Booo'(y) j„„,= (i/4C) (8,; oo'oo')8'(x ——y),
C~'(x),8.(y)j*.=,.= —(i/4C) ~' &'(x-y),

CBoo '(x) Boo '(y)3*o="
= —(i/4C) (y'Boy' q'Booo') P—(x y) . (14)—

Our next important task is to check the commutation
relations of the algebra of fields. This can be done
straightforwardly, using Eqs. (14). We simply note
that the 0 term in Eq. (9) is essential to obtain the
correce c-number Schwinger term which otherwise
would be a q number.

Although the similarity of our model to the 0 model
is quite obvious, there are two important differences.
First, y' and 0- must have the same parity in our model.
Second, and more important in the development of the
theory, the transformation properties of y' and o. in
SU2 space are different from those in the 0. model. In
fact, dehning the total isotopic spin I',



173 CURRENTS, o MODEL, AN 0 SP HE R I CAL TOP I N I N TERNAL SPACE 1421

We obtain

p' '(*)j=l'"' "(*)—l'&' (*),
t:I',o(x)7= k4'(x) (13)

These equations de6nitely indicate that we are treating
6elds

which transforms like an isodoublet rather than an
isotriplet y'. The point is that the 0 term is contained
in the isotopic spin current, whereas in the Gell-Mann—

Levy model the r term gives an axial-vector current.
In terms of f, the equations take a more symmetric
form:

L= C(a„yta„y—+a„Pa„yt), (17)

3. EXTENSION TO SU2)&SU2 AND PCAC

In order to incorporate the axial-vector current
A„'(x), we introduce another independent set of 6elds

P(x). The extended Lagrangian is (for simplicity, we

do not symmetrize the formulas below)

C(~A' ~A+ rtl Pitl 4') ~ (19)

with the constraints

4'"4=IV=1.

The definition of space inversion I' is

Pg (x,t)P-'= tt (—x,t),
PP(x,t)P-'= P(—x,t) .

(20)

(21)

Under the infinitesimal transformations with gauge
parameters e, e,

4~(1+2ie ~)f
tt -+ (1+~is s)$, . (22)

the following two currents are generated, respectively,
from Eq. (19):

V„*= ;tC(a„g—'~y g'r'a„y-
+symmetrized terms) . (18)

The equation of motion (13) guarantees the con-
servation of the o part of our vector current (axial-
vector part in the Gell-Mann —Levy model). It is clear
that (13) is equivalent to (10) because e,,~y' q"=0.
The important thing here is that we have an extra
conserved current in our theory. In fact this is obvious
from our Lagrangian being 04 symmetric. The restric-
tion of the t,.-number Schwinger term forces us to choose
this particular combination of the two currents. Because
our original current theory does not imply this kind of

symmetry at all, it implies that we are choosing a very
special solution.

+L'(Ak), (24)

with L;„given by Eq. (19), we get the partial con-
servation under the same transformation as (22):

b
8„(V„*+A„')'=i L', —

be'

b

B„(V„* A„') =' —i I.'. —
be'

(25)

One might think that the linear term proportional to
o+o in L' would give us PCAC in analogy with the o.

model. However, this is not correct, because it also
yields the breaking of vector-current conservation.
Thus the simplest realization of PCAC is achieved by
the following L':

L'= f(v'y'+ oo).
= fkV'

where f is some constant. We can easily check that

B„V„'=0,
~~A~'=if''r V'

(26)

(27)

Note that the effective pion field is proportional to

The equations of motion (3) (and the similar equa-
tions for A„') are satisaed because the structure of the
currents is unchanged by the extra term in the
Lagrangian.

Finally, since our g„„contains the term fg„„ptp
explicitly in addition to the original current term, we
can no longer claim that we have only vector and axial-
vector currents in the theory. We are not particularly
fond of this kind of theory with additional 6eld. It
would be very interesting to see if it is possible to
incorporate the PCAC within a theory where only V„'
and A„' appear.

4. SPHERICAL TOP IN THE
INTERNAL SPACE

It is easy to see that the vector and axial-vector
currents given by Eqs. (23) satisfy the commutation
relations of the albebra of fields, and. the equation of
motion given in Ref. 1. The fields which have de6nite
parity are easily de6ned to be

tt s=-',v2'(P+P) for scalar field,

f~= ~2v2(f —P) for pseudoscalar Geld.

Next, we try to incorporate PCAC, where we destroy
only the conservation of the axial-vector current by
introducing an additional term to the above Lagrangian.
Writing the Lagrangian

V„'+A„'= iC(&,4'~V —0'r'~A—),
V '—A '= —i&(& PrV P~'~ 4') . —

As we have seen above, the simplest version of our
(23) theory of currents in the SU2 case is equivalent to the
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0 model:

where

L= —2C(Bpp Bpp +Bp(TBpir) ~

~i~i+ 02 —I

transforms like a doublet under isospin rotation.
YVe introduce Eulerian angles in the internal space

by the following definition:

q
' —i p' sin-,'0 e'& ~&&~2

—
q '+io cos-,'-9 e'~ ~&)I'

(28)

Then it is easy to see that condition (8) is satisfied
automatically. We can rewrite our 0--model Lagrangian
in terms of these variables. The result is

n.g= BL/bB00= CBp0,

M &= C(Bpp+cos8 BplP)

7I p= C(BOP+cos0 Bpp) .

(30)

(31)

(32)

We can check that this choice of canonical variables is
consistent with the commutation relations axnong y'
and 80q», and therefore with the original current-
commutation relations.

In terms of 8, p, and g the current densities are

J„'=C(sing B„0—sin0 cosP Bprp),

J„'=C(—cosP B„0—sin8 sing Bpy),

Jp = C(BpIP+cos0 Bp&p) . (33)

L= —-', C)(Bp8)'+ (sin8 Bpq)'+ (Bpg+cos8 Bpp)'j. (29)

The reader may immediately notice the similarity of
this Lagrangian to that of the symmetrical top in free
space, C being the moment of inertia. The essential
difference is that we have the top in the internal space
attached to every point in the external space. Moreover,
we have space-derivative terms which are obviously
absent in the ordinary top Lagrangian.

The quantization of this system is quite conventional:

In particular, Jo'(x)=n-~(x). This means that in
order to diagonalize the isospin we have to diagonalize
j'xp (x)iPx.

It is well known~ that the first-quantized spherical
top is a soluble problem. In fact, it appeared in particle
physics through the strong-coupling theory. ' But our
second-quantized theory does not seem to be so easy to
solve. The perturbation method is incorrect here
because 8, p, and P do not correspond to real particles
though they are canonical. The reason is, of course,
that they do not have definite isospin. The problem is
to find out the vacuum state which has the required
property: Lorentz invariance and isospin invariance.
We have not succeeded in solving this problem.

We have tried to apply the method used in solving
the Ising and Heisenberg models for ferromagnetism. '
However, because we have space components of the
currents in our Hamiltonian, we could. not go through
with it. Perhaps a more sophisticated version of the
method would work, at least to get a reasonable
approximation,

Finally, the fact that the Schwinger constant C is
the moment of inertia could be guessed immediately
if one looks at the original Hamiltonian in terms of
current densities:

H= PJO*'(x)JO*(x)+J '(x)J *'(x)jd'x (34)
2C
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