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An Exact Solution for the Scattering of Electromagnetic Waves from Conductors
of Arbitrary Shape. I. Case of Cylindrical Symmetry~
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The problem of the' scattering of an electromagnetic plane wave, incident along the axis of symmetry
on a cylindrically symmetric, though otherwise arbitrarily shaped conductor, is solved exactly by means of
a perturbation-expansion technique developed for this purpose. The solution obtained is an exact analytical
solution, equally valid in the near and far zones, as well as over the entire frequency range, including the
resonance region. The general solution is obtained, and several special cases are treated in detail. The term-
by-term agreement of the perturbation-series solution with the known exact solution is demonstrated
analytically for the case of a sphere. The form of the solution is particularly well suited for methodical
numerical evaluation by machine calculation.

I. INTRODUCTION

HE theoretical calculation of the scattering of
electromagnetic w'aves by objects of arbitrarily

specified shape and electromagnetic structure is a prob-
lem which has many and varied practical applications.
Mathematically, this problem is represented by an ex-
ceedingly complicated boundary-value problem. De-
spite the prodigious amount of eGort which has been
expended in its analysis, an exact solution for the gen-
eral case remains yet to be found. This is true even for
the special case where the scattering object is a perfect
conductor, which is the immediate concern of this
paper

Analytically rigorous solutions to this problem have
generally been based on the method of separation of
variables and on the expansion of the general solution of
the vector wave equation in terms of appropriate orthog-
onal functions. ' ' However, in order for this method to
be applicable, two requirements must be fulfilled. To
begin with, the vector wave equation must be separable
in some suitable coordinate system, and the resulting
differential equations must be analytically solvable.
Secondly, the relevant boundary conditions must have
a simple form in the coordinate system selected, which
generally requires that the scattering object in question
must constitute a complete coordinate surface in the
coordinate system chosen for the separation of variables.
As a consequence of these limitations, exact solutions to
the three-dimensional problem of the scattering of elec-
tromagnetic waves have been obtained by this method
only for the cases of a sphere and an in6nite cylinder. 4

Because of the analytical complexity of the over-all
boundary-value problem, a large number of approximate
methods have been developed for dealing with the scat-

*This work was supported by the Once of Naval Research,
Code No. 418, Washington, D. C.

'The extension of any general method valid for conductors to
the case of a constant refractive index is mathematically trivial in
most cases.' R. King and T.T. Wu, The Scattering and Digraction of 8'aves
(Harvard University Press, Cambridge, Mass. , 1959).' C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954).' For the simpler two-dimensional case, the class of shapes ac-
cesible to this method is slightly larger.

tering problem. Foremost among these are various
variational techniques. '6 However, variational prin-

ciples can be developed for only a few of the physical
quantities of interest; moreover, their success depends

to a large extent on the ingenuity shown in choosing a
suitable trial function. For the extreme cases where the
wavelength of the incident radiation is either very large
or very small compared to the characteristic dimension
of the scatterer, satisfactory results are obtained by the
methods of the Rayleigh scattering approximation' and

by the methods of geometric and physical optics, ' re-
spectively. However, when these approximate methods
are pushed beyond the extreme ranges of the wave-

length, their physical basis becomes cloudy, and the reli-

ability of the corresponding numericalresults is generally
uncertain. They are intrinsically incapable of yielding
meaningful results in the important resonance region.

In light of the foregoing remarks, it is evident that
there still exists a need for a straightforward method for
treating the scattering from conductors of arbitrary
shape which is of suflicient generality to encompass both
a great variety of shapes and a broad range of the fre-

quency spectrum including the resonance region. The
present work is intended to provide such a method. It
should be emphasized from the outset that the solution
obtained here represents an exact unalyticat, solu60e of
the scattering problem, valid for all values of the rele-
vant variables and physical parameters, for which the
series solution converges.

The spirit of the method described here is to return
to the original mathematical boundary-value problem
in its full complexity, and to approach it analytically by
means of a boundary-perturbation technique specially
designed for this problem. ' In an earlier paper, ' the

5 P. M. Morse and H. Feshbach, Methods of Theoretica/ Physics
(McGraw-Hill Book Co. , New York, 1953).' H. Levine and J. Schwinger, Theory of Electromagnetic Waves
(Interscience Publications, Inc. , New York, 1951).

~ A. F. Stevenson, J. Appl. Phys. 24, 1134 (1953).' V. A. Pock, J. Phys. (USSR) 10, 130 (1946); 10, 399 (1946);
J.B.Keller, J. Opt. Soc. Am. 52, 102 (1962).

For a review of other boundary-perturbation methods in
mathematical physics, see Ref. 5.

"V. A. Erma, J. Math. Phys. 4, 1517 (1963).

1243



V I CTO R R A. ERMA

author was successful in developing a particularly simp1e
and straightforward boundary-perturbation technique
for treating the electrostatic problem (scalar problem)
for irregularly shaped conductors, which yielded an
analytical expression for the capacitance of such con-
ductors, valid to all orders in the perturbation param-
eter. The possibility of generalizing this approach to the
much more complicated case of the vector wave equa-
tion was first suggested by the author, who also ob-
tained an explicit 6rst-order solution for the special
case of cylindrically symmetric conductors, with the
incident electromagnetic wave along the axis of sym-
metry. "A number of other steps in this direction have
been reported by various authors, ' in particular by
Yeh."'4 However, these were limited to results valid
only to the first order in the perturbation, or were other-
wise restricted. Inasmuch as the work of Yeh" closely
resembles the approach of the present paper, it warrants
more detailed discussion. Yeh treats the case of a scat-
terer of constant refractive index. However, as noted
earlier, the generalization from the case of a perfect
conductor to this case is mathematically trivial. He ob-
tains a formal solution for a general form of the per-
turbed boundary, but calculates an explicit solution
only for the restricted case of cylindrical symmetry,
with the incident wave along the axis of symmetry,
which corresponds to the case considered here and in
Ref. 11.More important is, however, that Yeh developed
the method only to first order in the perturbation pa-
rameter, which restricts its practical usefulness to
shapes differing only minimally from that of a sphere.
Furthermore, due partly to the particular analytic form
chosen to represent the perturbation, the result. ing
analytical expressions are needlessly complicated. "
Accordingly, while his claim that his method may be
extended to higher orders is true "in principle, " it is
virtually impossible, or in any case much too cumber-
some to be practically useful, to do so "in practice. "
Beyond the very first few orders, the analytical work re-
quired to determine the contribution of each tern. to
a given order becomes precipitously prohibitive.

In the present paper, we restrict our considerations to
the case of a cylindrically symmetric perfect conductor,
with the incident wave traveling along the axis of sym-

"V. A. Erma, Plasmadyne Corporation Report Nos. PTL-2—
607 and PTL-2—607* 1963 (unpublished).

'2 P. C. Clemmon and V. H. Weston, Proc. Roy. Soc. (London}
A264, 246 (1961);Lu, Acta Phys. Sinica, Peking 22, 223 (1966);
21, 1798 (1965); T. Oguchi, J. Radio Res. Lab. (Japan) 7, 467
(1960); 11, 19 (1964); M. L. Burrows, Can. J. Phys. 45, 1729
{1967);C. J. Marcinkowski and L. B. I'ilsen, J. Res. Natl. Bur.
Std. 660, 699 (1962); 669, 707 (1962).

'3 C. Yeh, Phys Rev 135 A1193 {1964}.' C. Veh, J. Math. Phys. 6, 2008 (1964)."In this connection, it should also be noted that the paper of
Yeh (Ref. 13) contains errors of sign and normalization. Thus, Eq.
(8) of Ref. 13 is incorrect in sign; this error persists throughout all
subsequent equations derived therefrom, and presumably also
sects the validity of the numerical results presented. We may
also point out that the integrals given in the Appendix of Ref. 13,
which are there evaluated by numerical machine computation,
can very readily be evaluated analytically.

metry. The analytical solution obtained here is exact to
all orders of the perturbation parameter, and is valid at
all points of space (both near and far zone), and for any
arbitrary frequency of the incident wave.

The problem to be treated and the method of ap-
proach are formulated in Sec. II. In Sec. III we obtain
the general analytic series solution, valid to al/ orders in
the perturbation parameter. Section IV is devoted to
the consideration of some special cases of the general
solution, Thus, to begin with, we obtain the solution for
a sphere of radius a(1+&) (considered as a perturbation
of a sphere of radius a) and show that it agrees with the
known exact solution for this case. As an illustration of
the basic simplicity of the formalism, the special case of
the first-order solution is presented explicitly, and ap-
plied to the calculation of the scattering from an oblate
spheriod. Finally, Sec. V encompasses various conclud-
ing remarks, as well as indications of future work.

II. FORMULATION OF THE PROBLEM

The problem we shall consider here consists of the
scattering of an electromagnetic plane wave, incident
along the axis of symmetry on a cylindrically symmetric
perfect conductor. Specifically, we shall consider con-
ductors, whose boundary surface can be described in
spherical coordinates by an equation of the form

Here a is a constant, representing the radius of the
"unperturbed sphere, "

e is a constant "smallness pa-
rameter, " and f(0) is a function which must obey the
restriction

(2)

but is otherwise arbitrary.
Two remarks should be made concerning the repre-

sentation of arbitrary boundary surfaces by means of
Eqs. (1) and (2). To begin with, it would appear at first,

sight that, in view of restriction (2), Eq. (1) is capable
only of describing irregular surfaces which do not devi-
ate excessively from a spherical shape. However, we
must recall that both the value a of the radius of the
unperturbed sphere, and the location of the center of
the spherical coordinate system may be chosen arbi-
tarily. Hence, it is clear that all cylindrically symmetric
irregular shapes, for which it is possible to locate the
center of the coordinate system in such a way that the
radius vector to all points on the surface is single-
valued, " can be described by Eqs. (1) and (2). For
example, all simply connected, convex shapes fall into
this class. The question of the optimum choice of the
unperturbed sphere for any given conductor is considered
in more detail in Appendix A.

Secondly, the above analytic form for the equation of
the irregular surface, considered as a perturbation of

"These are known in mathematical parlance as surfaces which
admit of a "radial single-valued explicit representation. "
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a sphere, di fers from that used earlier by the author, '0

Rs well as by Yeh."In both cases, the irregular surface
w'as expressed in the form

= .(8)= L1+ f (8)+"f(8)+" ],
defi(8)+e'f2(8)+ i &1, 0&8&~.

(3}

It is clear, however, that any surface which can be de-
scribed by Kq. (3) can also be expressed in the simpler
form (1), with a suitable choice of e and f(8).While form
(3) was particularly well suited to the scalar-electro-
static problem, '0 it leads to needless complications in
the vector problem of electromagnetic scattering, and,
in fact, makes it impossible to obtain a single analytic
expression valid to all orders in the perturbation.

Assuming a time dependence of e '"' for the electro-
magnetic fields, the scattering problem is then defined

by the boundary-value problem consisting of the vector
Helmholtz equation for the 6elds outside the scatterer,
and the boundary condition that the total tangential
electric 6eld must vanish on the surface of the conductor.

This boundary-value problem will here be at tacked by
means of a perturbation technique. Unlike in the more
familiar perturbation methods of quantum mechanics,
where the partial differential equation is perturbed, we
are here dealing with perturbed boundaries. Since in this
case the partial differential equation remains unchanged,
it is not necessary to solve the vector Helmholtz equa-
tion anew for each particular shape. Instead, we must
match boundary conditions at the perturbed boundary.
As in the scalar case, ' this may be accomplished by
expanding the boundary condition in a Taylor series,
which in effect transforms the boundary conditions at
the perturbed boundary into a succession of boundary
conditions at the unperturbed boundary. This is tanta-
mount to replacing the single "necessary" boundary
condition by an infinite set of "sufhcient" boundary
conditions. That this is indeed a consistent procedure
may be demonstrated by means of the uniqueness
theorem for the solutions of the relevant partial diBcr-
ential equation.

The point of departure for the solution for an irregular
shape is provided by the known exact solution for the
problem of the scattering of a plane wave from a per-
fectly conducting sphere. For later reference, we briefly
review some of the wc}l-known results" in connection
with this problem. For the case of a cylindrically sym-
metric scatterer with the incident plane wave along the
axis of symmetry (chosen to be the s axis), the general
solution of the vector Helmholtz equation can be ex-
panded in terms of two so-called "unit fields" M„and
N, which are given by (the time dependence e '"' has
been suppressed ab initio)

M =(sin8) —'s„(p)P„'(x) cosy eg—s„(p)
X(dP '(x)/d8) siny e„, {4)

N =n{n+1)p-'s {p)P„'(x)cosy e,
+p '(-d/dp)Les. (p)](d~-'(~)/d8) cosy ev

—(p sin8) '(d/dp)['ps„(p)]P„'(x) siny ev. (5)

Here e„, eg, and e„are unit vectors along the directions
of the increasing spherical coordinates r, 0, and y, re-
spectively; p=kr (k=~/c); x=cos8; s (p) is an appro-
priate spherical cylinder function; P (x) is an associ-
Rtcd Lcgcndrc function Rlld s ls R summation lnd. cx:
tt —1, 2, 3

If we choose the incident wave to be a plane-polarized
plane wave travelling in the direction of the positive
s axis with its electric vector along the x axis, the inci-
dent electric field R' of this wave can be expanded in the
form

E'=e*'~e,= P v [M„&—iN '],

v„=i"(2n+1)/n(n+1),

and the superscript j on the unit 6elds denotes the
choice s„(p)=j„(p) for the spherical Bessel function.
Finally, we have taken the incident field to be of unit
magnitude.

The electric 6eld E' of the scattered wave can likewise
be expanded in an infinite series of the unit 6elds M
and N„, with undetermined coef6cients. In order to
satisfy the boundary condition at in6nity, we must
choose s„(p)=h„i'&(p). If we let the superscript s denote
this particular choice for the spherical Sessel function,
the scattered 6eld may then be written in the form

K'= g v„[a.M„' ib„N„'],—

where u and h are the undetermined "scattering
cocf6cients. "

The boundary condition to be satis6ed. for a perfect
conductor is that the total tangential electric field must
vanish at every point of the surface. For a sphere, the
two independent tangential components may be chosen
along the mutuaHy perpendicular unit vectors eg Rnd

e~, so that the boundary condition may be written in
the form

~s'+K&'(.=.=0,

z,'~z„~,=.=o. (10)

H we then substitute Kqs. (6) and (g), with the unit
6elds obtained from Kqs. (4) and (5), into the boundary
conditions (9) and (10), it may readily be verified that
the latter are satisfied if, and only if,

a-= —J-(p.)/h-"'(po),

'VSee, for example, J. A. Stratton, E/ectroniageetic Theory
(McGraw-Hill Book Co., New Vork, 194I).

b-= ——Lpj.(p)]
(Sp p po

—Lpb "'(p)] (12)
Gp P=Po
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where pe= ka. Expressions (11)and (12) for the scatter-
ing coeKcicnts u„and b complete the solution for the
case of R perfectly conducting sphexe. As is weH known,
Rll physical quantltltcs of interest) such Rs thc various
scRttcrlng Rnd RbsorptloQ cross scctlons, CRQ bc CRlcu-

lRtcd ln tcI'Gls of these cocScicnts.
%C now turn to the problem of obtaining the corrc-

spondiQg solution fox' irrcgular conductors %'hose surf Rcc
shape is described by Eqs. (1}and (2).We note that Eq.
(1),with r and 8 reinterpreted as plane polar coordinates,
also represents the equation of the boUQdary curve of
the cross section of the surface (1) in any plane passing
through the sylnxnetry axis.

As before, we shall assume that the incident wave is
a plane wave traveHDg along the positive z axis, with
its electric 6eld polarized along the x axis. The incident
electric field E' (of unit magnitude) is then again given
by Eq. {6).Similarly, the scattered field E' is again
represented by the general expansion (8), with a and
b& as unknown codBcients. Ke must now formulate
the boundary condition that the total tangential electric
6eld vanishes at each point on the surface of the irregular
conductor. To do this, wc must 6rst 6nd two mutually
perpendicular tRQgcnt vcctox'8 Rt cRch point Of tbc sux'-

face of the irregular conductor described by Eq. (1).
OQc of these ls clearly c~.ADothcx' vector» tRngcQt to tlM
siiifac e('1) a'iid perpendicular 'to eq, , is provided by

s=dr/d8„ {13)

where x™=t',6&. %e Dote t4Rt the tRQgcQt vcctox' 0 de-
6ncd ln this Inanncr ls not R UQlt vcctol" how'ever ln"
RSIDUch Rs thc cox'x'cspondlng tRngcQtlRl compQQcDt Of

the electric field vanishes, only the direction of the
tangent vector is of significance. Noting ths, t de,/d8
= ee, and substituting from Kq. (1) for r„we 6nd that
the tangent vector z is given explicitly by

~= r,ee+aef'(8) e„. {14)

The boundary condition that the total tangential elec-
tric 6cld vanlsIlcs Rt each point of the surface may then
bc x'cpI'cscDtcd by thc equations

E„f, „=0, (15}

r,Ee+aef'(8)Z„[,=,,=0, (16)

where E=E'+E' represents the total electric field which
enters into Eqs. (15}and (16). The problem now con-
sists of employing the above boundary conditions in
order to deteHMQC the unknowrl scattering cocfEcicnts
e„and b . This problem vnll be solved for the general
case in Scc. III.

DL GE~RAI. SOI.UTIOH

Kc now turn to the pxoblem of determining the scat-
tcI"lng cocKclcnts 8~ Rnd b~ for thc cRsc of Rn lrrc~lax'
conductor whose surface is described by Kq. {1).As
IMtcd cRlllcr, thc lncidcDt Rnd scattered clcctI'lc 6clds

are given by Kqs. (6) and (8), respectively, and the ap-
ploprlRte boundRly condltlons by mcRQS of which wc
hope tO deterlnine the COCK.CientS Q„and bshe RI'C pX'0-

vided by Eqs. (15) and (16).
Thus, if we substitute Eqs. (6) and (8), together with

Eqs. (4) and (5},into the boundary conditions (15) and

(16), the latter take the exphcit form"

4P~
&& E~j.(u)O'.P '—o-L~*&-"'6*)j

d8

C~—~L~j.6)j'., +—. Lu.h. '"6.)Ã-'
d8 Sin 8

im(1+1)
eI of (~—) j-{p.}I"—-'

a.e(m+1)
+ - — —h. &'~(p,)Z.' =0, (18)

Pa

where thc subscript p, dcDotcs that thc fuQctloQ 1Q

ucstloQ 18 to bc evaluated at p= p8= kF~~ R prime dc-
Dotcs dlGcrcntiation w'ith 1'cspect to p, Rnd thc RI guIIlent
of t4c Inod16cd Lcgcndrc fuQctlons I& 1s undcx'stood to
be x=cos8. Equations (17) and (18) represent the final
form of the boundary conditions which Inust Dow be
used to determine the scattering coeS.cients.

At tIlis stRgc lt bccomcs QcccssRry to lntxoducc the
perturbation technique which forms the basis of our
HMthod fox' determining thc coeKcjcnts c„and b„. Ac-
cordingly, following the basic principle of any pertur-
bRtlon Dmthod, wc write thc coeKcicnts G„and b& ln thc
forlTl

where u i' and b„i' represent the pth-order corrections to
the unperturbed scRttcxiQg cocfBcients 8& and b& ~

given by Eqs. (11) and (12), respectively.
Thc next step ls to expand cachL of ac tc~ occurring

in the boundary conditions (17) and (18) as a power
scrlcs 1D 6. This Inay bc RccoIQpllshcd by cxpandlng each

'8 For the sake of analytical convenience, the boundary condi-
tion (15) was multiplied by the factor kr, prior to substitution.
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o(„pppnfn P l io( y+i dP l
po"f"

P! sing P! dg
Pn

(21) n=o n=lb.i-(t.)1= 2 p "t o"f",
~=0 )

functioncontainingp, in a Taylor seriesabout thepoint If the remaining terms of Eq. (18) are treated in a
p=pp=k(i. Thus, for example, let us consider the first similar fashion, the expanded form of Eq. (18) may be
term of Eq. (18). In view of Eq. (1), the function written as
Lp, j„(t4)] may be expanded in a Taylor series of the
form

where we have de6ned

~-'= bJ.(t )j.o'"'—= Loi-(o)3
dp~ P PO

(22)

and where p=kr, p, =kr„po ——ka. Accordingly, the 6rst
term of Eq. (18) can be written in the expanded form

&n ponfno(npPn

y=o n=l Sing pl
(23)

The third term of Eq. (18), to wit,

The second term of Eq. (18) may be similarly expanded
and yields

pp"f" dP '
ZQ on+ Vn Q'

n=p n.=i p! dg

r P p P„l n P„p+l dP i

+2 popfpu r p i —p p, pfpb„l p

q=0 q! Sing q-0 q! d8

, 7""
in(n+1) oppf' pp"f"P '

t

~ b„q
+ p tip ofpb„n—pp„l =0 (31)

q-0 q!

where we have introduced the additional abbreviations

7-"=Li.(t)/P jnp'"

n Llt (l& (p)/p7 (p)

(32)

(33)

Following the same procedure, Eq. (17) may be ex-
panded in the forn1

Lo.&."'(o.)jP-',
~=& sin8

00 00 n„& dP'„'
(25) P pn P l ppnfP

n=o n=l P! de

is more complicated in nature. The function containing
p, may again be expanded in a Taylor series, as follows:

~p+l Pl ppp dP„'
+j — ponfn —Q poof pg n

p! sin(1 p-o (I! de

P ppnppnfn

Lo.&-("(t.)7= &
f

where we have de6ned

(26) & P p+l p 1

+i p t opf pb.~p — =0. (34-)
q=o q! sing

P."= Lt»-("(t )3,.("' (27)

However, this expression may be written as a single
power series in e by making use of the following well-
known theorem for the product of two infinite power
series:

q=o

When this theorem is applied to term (28), expression
(25) which represents the third term of the boundary
condition (18), may be written in the form

p n P ppppf Qg n QP

Ep" 2 .
p=o n=r sing q=o

(30)

On the other hand, according to the ansatz (19), the
parameter e is also involved in the coeS.cient u„. Ke
thus have

00 P pp one
(i-Lo.&-"'(o.)j=(Z p"o.") 2 p" (28)

p!

Equations (31) and (34) represent the two basic bound-
ary conditions, expanded as power series in e.

The critical step now consists of requiring that the
coeflicients of each power of o in Eqs. (31) and (34)
vanish individually. This in eGect replaces the two
necessary boundary conditions by an in6nite set of
"sufhcient" boundary conditions. The consistency of
this procedure is easily demonstrated. Thus, if the co-
eS.cients u„and b are determined by this method, the
resulting fields will a fortiori satisfy the boundary con-
ditions at the surface of the conductor. Moreover, the
choice s„(p)=h '"(p) in the expression for the scattered
6eld guarantees that the boundary condition at in6nity
is likewise satis6ed. Finally, regardless of what values
we 6nally obtain for the scattering coeRcients u„and
b„, Eq. (8) shows that the resulting field is a solution of
the vector Helmholtz equation. We may thus appeal to
the applicable general uniqueness theorem to demon-
strate that the solution obtained in this manner repre-
sents indeed the unique solution to the problem.

Accordingly, we now set the coeKcient of p' (t arbi-
trary) in each of Eqs. (31) and (34) equal to zero. This
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EI„Epogfgp I
EE

I+' dp ' I p„' P ' I p o+I dp I
po'f-' -+P —po'f a.' - i—P po'f 4'

Sine 3! d8 ~-O q! Sin8 ~=0 q! d'g

g lg E2

Egg(—go+1)pof' po' 'f' EP,E+ Q — poofob ' ' 'P„' =0, (35)
i (/ —1)! o=o q!

1 Egg+I pl gpo dpi gpo+I pl
Q I — po'f' +E po'f' —Z poof'gg ' ' +& Z p—o'f'b ' '

d8 3f Sin8 v=0 q I d8 e=O q! Sin8

Our task js Dow to extract aQalytic expressions foI' thc perturbatlon scattering cocfFlclents 8&, b& froHl the set ot
Eqs. (35) and (36). Toward this end, we shall 6rst isolate the highest-order perturbation coeKcients occurring in
Fqs. (35) snd (36).These correspond to the terms q= 0 in the summation over the index q. (Note that the remaining
terllls in the I!' Summation Involve pcltllrba'tloI1 cocKclcnts ollly lip to order f—1.) Tlllls, wc Qlay rewrite Eqs.
(3$) and (36) in the form

oo I~ 8I~ oo C~ I rg, Q~
Pog I gP Eb I +Q p . pogfg

Sin9 d8 ~& l f Sin8 l!
g P o P 1 g P o+1 dP 1

+g poofogl I—o —I, g . poofob-
~=& q! sin8 c=& q! jg

-&Eg(iI+1)pof' — po' 'f' Ipo-l+Q — po'f'b I ' 'P.' ' =0, (3/)
(f—1)! e-0 g!

P ~„l —P ogg ' +gP. 'b' +Z—.~ — po'f' +I pogf'
dg sin8 ~-& l! d8 1! sin8

g Et! o dP I g P 0+I P 1

—Z — po'f'Eg. ' ' +o Z po'f'b. ' ' . —-=0. (3-&)
~=& ql d8 e=& q! sing

dP' 'dPI, '
-+ — sin8dtg=

Sln 8 Ig dg
(39)

We observ'e that tile highest-order cocf!Iclcnts Eg& alld b& occlll' only 111 tile first sunl of cRch of the Eqs. (37) Rnd

(3g); ag, rernsining perturbation coefficients are of lower order in the perturbation. Unfortunately, the coefiicients
g„& and b„t' stjIJ occur under a summation sign and cannot be extracted immediately, inaslnuch as the scl.jcs as they
stand do not baye tQc forID of orthogonal sclles. HO%'cvcx; this Diag bc achieved by IQaking use of Inorc coIDp/icatcd
orthogona]itics. ID particular, %'c map cIQplog the fo110%lng easily verified lntcgIRI properties of tIle associated
I cgcD(4'c functions:

2 '( +1)'

dI'I, ' N' '
+Pog d8=0,

d|I dg

where 8&g I'cprcscnts thc usuaI KroneckeI' 5.
We observe that by taking suitable linear combinations of Eqs. (3'/) and (3g), we may make usc of thc orthog

onahty properties (39) and (40) in order to extract the desired coef!Icients EE„E and b„g.

Thus& 111Order 'to obtain lg~, wc multiply Eq. (37) by Po
&
Ec!.(38) by —(dpog/dg) sing and add the two resu!ting

equations. Introducing the abbreviations

(42)
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the result is

Q i„(P 'a„'Pi, sin8 —iP„'b.' i!i„)
n~l

i P" i p&+'
+ Q v„po'f'gi, „sin8—i- po'f'in„+ P pP f&a„' &ki„sin8 —j. P — ppf&b„'

n-X )! $! q=y g! q!

l—1
~ ~ g q

—i'(ri+g)p„f' p
~ if~ i—+ Q—

p ef~b i—i—e P iP i =0 (43)
(l—1)! ~=0 q!

If we now integrate this equation with respect to 8 between the limits 0 and x, we 6nd that because of the orthog-
onality properties (39) and (40), the erst infinite sum contains only a single nonvanishing term, namely, viPi'aq'2k'
)&(k+])'/(2k+i). We have thus succeeded in isolating the /th-order perturbation coefficient ai', which may be
written as

Ey)do)
2k'(k+ &) 'Pi"v~

where p&& represents the second sum (over n) of Eq. (43). It is important to note that Rii contains only known con-
stants and perturbation coeRcients of lower order.

In order to isolate b„', we proceed in an analogous manner. Thus, if we multiply Eq. (37) by —(dP&'/d8) sin8,
Eq. (38) by Pi, ', and add the two resulting equations, we obtain

g v ( P'a 'q—i,„+iP.'b„'&i. sin8)

i+1 i P g i P q+i

+Q v — po'f'na +i pa'f'$i sin8 —P po&f&a '
&r!i,—„+i P p0'f b„' (i-„sin8.

n=& )! $! q=j q! q=y qf

E—1 ) yg q — F1
+in(vi+1)pof' po' 'f' '+ P po'f'b —' ' ' P' — sin8 =0.. (45)

-(l—~) ' a=0 q! d0

If we again integrate with respect to 0 between the limits 0 and m, and make use of the orthogonality properties
(39) and (40), we obtain

(2k+ I)
bA, '=i

2k'(k+ I) 'viPi'
SA, )do, (46)

where Si.,~ represents the second sum (over n) of Eq. (45). Again, Si~ contains perturbation coeKcients only of orders
lower than l.

Finally, for reasons of maximum clarity, we shall rewrite the analytic solutions obtained here for the scattering
coefficients in explicit form. Introducing the integral notations

f'(i,„sin8d8, (47)

f'gi.d8,
0

f fI+ II if8, (49)

f"f'P„' sin8r, 8, . =—

0 d0
(50)



VI CTORR A. ERMA

the solutions (44) and (46) for aq' and bq' may be written in the form

P(2ky1)y2P(k+ 1)2P„op„~„,

&,'= Li(2k+ 1)/2k'(k+1)'P, ",j~.,
(51)

(52)

k+1 g p q g p a+1

&w&&= Z ~ po'4-' —i -po'ga. '+ Z po'~ ' '4.'—i P po'&'
0 lJ lf e-& qI c=&

I—Xg &

im—(n+1)po po' '~a. ' '+Q po'b ' ' '~a. '
(i—1)! a-0 g!

p„ t p„&+
po'& ' 'nIe'+& 2 po'4 '&n' '

qI e=& g!
g—I

E I g q

+i~(~+1)po po' 'ps. ' '+ Q po'b ' ' 'ps. '
(/ —1)! e=o q!

Equs, tions (51) snd (52), together with (53) and (54),
represent our 6nal analytic solution for the perturbation
scattering coeKcients. As noted earlier, the right-hand
sides of Eqs. (51) and (52) involve only known constants
and perturbation scattering coeKcients of lower order.
Accordingly, inasmuch as the zero-order (1=0) coe!6-
cients corresponding to the case of a perfect sphere are
known, these equations may be used to successively
compute the perturbation scattering coeScients up to
any arbitrary order. The nature of the analytic expres-
sions is such that this may be accomplished in a com-

pletely systematic manner which is well suited to
machine calculation. The over-all scattering codFicients
are then obtained by means of Eqs. (19) and (20). All

scattering quantities of interest may be calculated in
terms of these coefficients; in particular, the actual
scattered field is given by Kq. (8).

We have thus accomplished what we set out to do,
i.e., we have found an explicit analytical solution to the
scattering problem under consideration, which is ca-
pable of yielding numerical results to any desired degree
of accuracy. Although this solution was arrived at by
Ineans of a perturbation technique, this technique was
used only as an analytic tool and it should be emphasized
that the solution obtained is exec], inasmuch as no ap-
proximations of any kind, either mathematical or
physical, were introduced. Moreover, the solution is
general, i.e., it is equally vaHd in the near and far zones,
as well as over the entire frequency range.

Finally, we should like to point out that although the
final expressions (53) and. (54) appear complicated, in-

asmuch as they involve in6nite series, for most "rea-
sonable" shapes these series will terminate after a
moderate number of terms, due to orthogonality prop-
erties inherent in the associated Legendre functions.

In order to illustrate the analytic nature and basic
simplicity of the general solution obtained above, we
shall next consider some special cases in more detail.

(5/)

The second equalities of Kqs. (55) and (56) are true by
virtue of Kqs. (39) and (40).

Substituting these values into Eqs. (53) and (54) for
yE and 8IrE, We lmmedlately Obtain

2k'(k+1)' ny' & Pg'p'+r p '~" '), (—&8)
(2k+1) il -x q!

2k 2(k+ 1)2 ~~l+1 ) P~q+1

8kl —ZP@ p'+Z n'&' ') (&W
(2k+1) i! a=& q!

&I n =pI n =0.g A

A. Verification of the General Perturbation Solution
and its Convergence for the Case of a Sphere

It would be interesting to verify the validity of the
analytic perturbation solution by checking it against
a known analytic solution for some special irregularly
shaped object. This is impossible, however, for the sim-
ple reason that no exact analytic solution is known,
other than that for the case of the sphere.

Accordingly, we shall here obtain the perturbation
solution for a sphere of radius r, = a(1+a), considered
as a perturbation of a sphere of radius a, and compare it
with the known exact result. This comparison is not
trivial, inasmuch as the general perturbation solution
and the known exact solution have entirely different
analytic forms.

In terms of our formalism, the sphere of radius
r,=a(1+c) is characterized by f(8)=1, f'(0) =0. ~ith
this function f(8), the integrals (4'7)—(50) become

2e'(++ 1)'
rq„sinod8=

0 (2m+1)
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When these expressions are substituted into Eqs. (51)
and (52), we obtain the following expressions for the
perturbation scattering coefFicients:

indeed equivalent to all orders in ~, wc must make use
of the following theorem concerning the quotient of two
power series:

If we write
~ P~'~ '~' ')+Z

poo 1! q i g
1

(60)
Q a x"/g b,„x"=P c„g~,
n=o n=o

ao'+'po' & poo+'—+Q po'bd ' ~.
pa' l! o& q! I e

c = (a P co—~b~)
bo u=&

(66)It is immediately verified that these expressions repro-
duce the correct zero-order results for an unperturbed
sphere, corresponding to the case l=o. For the "per-
turbed" sphere of radius a(1+o), the solution for the
scattering coeIIIicients given by our method is provided
by Eqs. (19) and (20), with ao' and bo' given by Eqs.
(60) and (61). On the other hand, the known exact
solutions for the same scattering cocS.cients are pro-
vided by Eqs. (11)and (12), which for this case take the
form

This thcoIcIB ls cRslly proved. If wc now Rpply this
theorem to expression (64) by making the appropriate
identifications, the analytical equivalence of the solution
(64) for ao with the perturbation solution (19) and (60)
is easily established. In an exactly analogous manner we
can also demonstrate the equivalence of the correspond-
ing solutions for b~.

Ke have thus shown that for the special case con-
slstlng of thc pcI'tuI'bRtlon of R glvcn sphcI'c to R 1RrgcI'
sphere, the solution obtained by our perturbation
method actually agrees analytically with the exact result.
%hile no other exact solutions are available for com-
parison purposes, we believe it is justided to assume that
the analytical solution developed in the previous sec-
tion represents the exact solution in all cases for which
the series converges.

i-5 o(1+o)]

k "'Lpo(1+o)]
(62)

bo= ——Lpj.(p)]
dp p p0~~+~~

—Lpk-"'(p)]
8p !o=uO&&+&)

B. First-Order Solution

(61) then the coefncients c„may be written in the form

The question before us is whether or not the solutions
(62) and (63) are identical with the solutions given by
Eqs. (19) and (20), together with (60) and (61).In order
to answer this question. for the coefficient aq, for ex-
ample, we must expand expression. (62) in a power series
in e, and compare the result with the perturbation ex-
pansion (19) and (60). In order to facilitate the com-
parison, we multiply both the numerator and denomi-
nator of expression (62) by po(1+o) and expand the
resulting expressions in the form of Taylor series about
po. In this manner, we obtain

where

ag, '= L(2k+1)/2k'(k+1)'Poovo]goy,

bI, '——Li(2k+1)/2k'(k+1) 'Po'r o]Sod,

(67)

(68)

For reasons of increased insight into the nature of the
perturbation solution and comparison with previous
results, we shall here present the special case of the first-
order solution explicitly. This is obtained simply by
substituting 1=1 into the expressions (51)—(54), which
yields

oyp &pop

„=o p!
(64)

Box=po Q ran~'&on' —«~'yon'+pm'a~'go~'

iP„'b orle ' in(—n+1)(y '+—b 'b ')oo '], (69)
We observe that the analytic form of (64) is quite differ-
ent from that of our perturbation solution, given by
Eqs. (19) and (60). The former is in the form of a
quotient of two infinite power series in e, each of whose
codhcients are known explicitly. On the other hand,
the perturbation solution is in the form of a single power
series in e, where each expansion coefFicient ag' is given
by a sort of "recursion" relation involving all lower
coeKcients uI," with r & l.

The equivalence of the two solutions to low order of
e may easily be verified by means of direct expansion.
In order to demonstrate that the two expressions are

8w= po Z r.P ~.'go. '+«.'(o.' p„'a„og„„—
+&p-'&o-'b-'+in(n+1)(v-'+&-'b-')p. .']. (70)

Expressions (67) and (68), in conjunction with (69) and
(70), give the /rsvp order perturbation. c-orrections to the
zero-order scattering coefFicients uI, ', b~o, foI any value
of k. These results may be shown to be in agreement with
those of Yeh, "once the latter are modi6ed to apply to
conductors and the analytical errors occurring therein
are corrected (cf. Ref. 15).
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s2+(1+3) 2(xg+y2) =u2.

In the present calculation we shall only be concerned
with terms up to the first order in e. To this order, Eq.
(71) may be rewritten in spherical coordinates in the
form

r=a(1+c sin28). (72)

C. Examyj. e: First-Order Scattering from an
Oblate Syheroid

As a specific example of the application of the preced-
ing general solution, we shall here calculate the first-
order corrections to the scattering coefficients for the
case of scattering from an oblate spheroid with semi-
major axes of length a(1+3) (along the x and y axes),
and semi-minor axis of length a (along the s axis). The
equation of this oblate spheriod in Cartesian coordinates
is then given by

In terms of our formalism, this shape is thus described
by tile pel. tllrbatlon function f(0)= sin20= 1—gg. lo

Our aim is now to evaluate the fi.rst-order expressions
(69) and (70) for Il,'kl and Ski. We shall begin by con-
sidering the integrals pk„', gk„', ok„o, and Pk„o, with
f(0)=singe. These integrals are identical with the in-
tegrals given in the Appendix of Ref. 13, which were
there laboriously evaluated by nunierical machine cal-
culation. However, by making use of appropriate recur. —

sion relations, they may readily be evaluated ana, 1yti-
cally, which is accomplished in Appendix B.Their values
are given respectively by Eqs. (819), (821), (823), a,nd
(827) of Appendix B. As may be seen from these ex-
pressions, the various integrals which enter into expres-
sions (69) and (70) for Rkl and Ski are nonvanishing for
only a few values of n. Accordingly, the infinite-series
expressions become finite. ' If we now substitute the
values (819), (821), (823), and (827) into expression. s
(69) and (70), these take the explicit form:

Rkl/Po Pk 2(rgk 2+—pk 2—ok 2)—gk, k 2— 2Pk l[—(olk1—+pk -1 bk 3 )—'gk, k —l-
+&(&—1)(Vk—l +hk—3 4—3")Ok, k—3 $+Pk(ak'+pk'ak ) )kk' —iPk+1L(ok+32+ pk+32bk+iO) pk, k+3'

+(~+1)(~+2)(7k+3 +~k+1 ~k+2 )O'kk+1 ]+P, k+2(rgk+2 +pk+2 ok+2 ) $k, k+2 p (73)

8kl/PO —2Pk 2$(rgk 2+pk —27lk 2)—$ , k—2k+(~ 2)(~ 1)(rk—2 +6kgflk 2 )-Pk, k

—Pk l(32k—l'+pk —3'ok—l') nk, k—2'+»kL(ak'+pk'4') tkk'+73(k+1) (yk'+6kobko)pkko1

Pk+1(&k+1 +pk+1 ok+1 )'9 ,kk+2+3Pk+2$(&k+2 +pk+2 61c+2 )tk, k+2

+(k+2)(k+3)(yk+2 +7'lk~g bk+23)Igk k~g ] (74)

The coefficients n„', p ', y ', 8 ', and a ', fl„' are known
constants which may be calculated by means of their
respective de6ning equations. Accordingly, Eqs. (73)
and (74), in conjunction with Eqs. (67) and (68),
represent explicit analytical expressions for the first-
order perturbation corrections for all of the scattering
coeKcients aI,', bI,", k=1, 2, 3 . These expressions
may then be used in appropriate formulas to calculate
the over-all first-order perturbation corrections to any
physical quantity of interest, such as various scattering
cross sections, at any arbitrary frequency.

For purposes of even more speci6c illustration, we
sha11 now consider the so-called "Rayleigh region" in
more detail. This region corresponds physically to the
case where the wavelength of the incident wave is very
large compared to any characteristic length of the scat-
terer. Analytically, this approximation is equivalent to
keeping only the leading terms in the expansion of all
expressions as power series in the parameter po

——ka
(«1). As is well known, only the lowest order (23=1)
scattering coefficients a~ and b~ need to be considered in
the Rayleigh limit. Accordingly, we need only calculate
the leading terms of the 6rst-order correction terms a~',

These are obtained by substituting k = 1 into the gen-
eral expressions (73) and (74). Inasmuch as the summa-
tion of the finite series from which these expressions

were derived commenced at e= 1, we note that for k = 1
the terms corresponding to e=k—2 and e=k—1 are
absent. Accordingly, substituting k=1 into expressions
(73) and (74), these reduce to

Rll/PO Pl(&1 +pl lgl )$11 3POL(a2 +pg 7' )'gi2

+6(72 +~2 b2 )O12 j+Pg(egg +p3 og )5 ip g(75)
+ll/PO 2Plp(rgi'+pl'bi')hi'+2(rl'+hi bl')pig'j

—P2(Q2 +Pg C2 ) pig +2Pg'g(CX +P 5 )$
+12(Vgo+~gobgo)Pigoj (76)

Ke shall now proceed to evaluate these expressions
numerically. The numerical values of the required in-
tegrals may be obtained by substituting k= 1 into ex-
pressions (819), (821), (823), and (827) of Appendix
8, which yields

bl'= g/5, pig'= —64/35, gl2' ———56/5,
oig =&/5, kill =&/15, Pigo=32/5. (77)

The remaining constants may be evaluated in the
Rayleigh limit by making use of the expansions of the
spherical Bessel functions j (p), 73„&'&(p) as power series

"It should be emphasized that this is true only to first order in
e. The exact function f(8) appropriate to the oblate spheroid
described by Eq. (71) is more complex.

"This statement remains true even in higher orders, although
the number of nonvanishing terms will increase.
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in p. The leading terms of these expansions are

J.(p)-p "/(2~+1)", (78)

/I "&(p)~—i(2II—1){t/p"+' (79)

where the double factorial is defined by (2m+1)!!—=1X3&(5 . .(2m+1). Substituting the expansions (78)
all{i (79) lllto thc 1cspcctlvc dc6nlng Eqs. (22), (27) (32),
Rlld (33) fol' neo!!3m~, 'r!!"!all{i b~~, wc obtain

dp e—1p7"=
-dp" 2n

d' !{2n—!)!!)
~P

y n+2-uP P P=PO

Making use of these expressions, the coeS.cients required

(80) in the calculation of g» and 811 are easily evaluated
to be

nl'= 2po/3,
//I'= i/Po, —
Po' ——45i/po',
bio= —i/Po',

nl'=-', ,' no{=po'/5, noo= 2po/5; noI=4po'/105, no'=4po'/35;

Po'= —180i/po'; 71'—o, Vo'= po/15, Vo'= po'/105'
boo= 3i/—po', boo= 15i/—po'

Thc leading terms of the required 7«o-order sca,t- and are numencally equa, l to
tering coeKcients a„0, b„' are obtained by substituting
expressions (78) and (79) into Eqs. (11) and (12).This
yields

@'=———
(2'—1)!!(2n+ 1)!!
i (n+ 1)po'"+'

0

N(2a —1)!!(2N+1)!!
From these expressions, the required numerical values
a,re found to be

alo = ipo'/3—, aoo = ipoo/4—5,
ago = —.ipo'/(15) (105); bio= ', ipo', boo -ipo'/30, ——(8'/)

boo =4ipo'/(45) (105).
Finally, thc required numerical values for v„arc ob-
tained from Eq. (7).

We are now rea,dy to evaluate the erst-order pertur-
bation corrections u1' and b1' in the Rayleigh limit.
Substitution of the numerical values (77), (84), and
(8"/) into expressions (75) and (76) yields after some
algebra,

a„=-(84/15)ipo', 8»= -(32/5)po. (88)

According to Fqs. (6'/} gIla (68)„ tile first-order pertur-
batlon coeS.clcnts 81 and b1 ale then glvcn by

al' ———(3/8pioI I)B», bl'= (3i/8pIII I)8», (89)

which, together with (88), yields., =(21/15)'p. , b '=(8/5)ip" (9o).
Finally, the complete scattering coekcicnts which con-
tribute in the Rayleigh limit are obtained by

(91)

The above results show that in this case the boundary-
shape perturbation, represented by e, contributes al-
ready in the lowest order of the expansion in p0

——kc.
Thus, if the value of e is non-negligible, it would be
meaningless to attempt to calculate the scattering from
an irregularly shaped conductor more accurately by
taking into account terms of higher order in ka, l.e., to
go beyond the Rayleigh limit, while neglecting the
deviation of the conductor from a spherical shape. Yet
this has frequently been the case in approximate cal-
culations reported in the literature.

As an example of the Grst-order contribution of the
shape perturbation to a cross section, we may consider
the total scattering cross section which is de6ned by

4x ~"-=—«/+l)(l I'+Ib I ).
k

For our present purpose we need only keep the 6rst
term corresponding to /= 1.If we then substitute expres-
sion (91) for al and bl, the result is

n- /n. = (10/3)po'(1+(4/25). ), (94)

where the scattering cross section has been norlnalized
to the geometric cross section seen by the incident wave,
which for our geometry is given by {r,=orao(1+o)o
= ma'(1+ 2o}.

In carrying out the above calculation, we have made
no C6ort to choose an "optimum" radius for the unper-
turbed sphere. As will be discussed more fully in Ap-
pendix A, an optimum choice for the unperturbed
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sphere would serve to improve the convergence of the
general perturbation series.

The chief purpose of the illustrative example calcu-
lated in this section has been to demonstrate that while
the general series expressions obtained in Sec. III may
at 6rst sight appear forbiddingly complex, they are in
fact basically simple to evaluate. Thus, for the case of
an oblate spheroid, we were readily able to obtain ex-
plicit 6nite analytic expressions for the first-order per-
turbation corrections to all scattering coeN.cients uq,

b~, (4=1, 2, 3, ) and to evaluate these numerically
in the Rayleigh limit without having to resort to
machine calculation.

V. DISCUSSION

The only electromagnetic scattering problems which
have so far been solved exactly by analytical means have
been the scattering from perfect spheres and infinite
right circular cylinders. The present work greatly ex-
tends the class of bodies for which exact analytical solu-
tions may be obtained. In particular, in the work re-
ported here we have been able to obtain an exact
analytic solution to the scattering problem for the case
where the scatterer is a cylindrically symmetric perfect
conductor, with the incident plane wave traveling along
the axis of symmetry.

This was accomplished by developing an appropriate
boundary-perturbation technique for treating the full
boundary-value problem. It should be emphasized that
the perturbation technique was used only as a tool in
obtaining the final solution, The solution itself is exact,
provided that the series converges, inasmuch as no ap-
proximations of any kind, either physical or mathe-
matical, were introduced. It is thus equally valid in the
near and far zones, as well as over all ranges of the
physical parameters of interest.

The general solution is similar in nature to the well-
known Mie series, although it is of course more compli-
cated than the latter, inasmuch as each individual scat-
tering coeN.cient a„, b„ is itself expressed in terms of
a perturbation series. However, these perturbation series
differ from the more familiar perturbation series in the
literature, in that in this case we are able to obtain an
exact analytical expression for the contribution of every
order in the perturbation. "This enables us to obtain
numerical results in a completely routine and systematic
manner to any desired degree of accuracy. The form of
the 6nal solution obtained is thus exceptionally well
suited for numerical evaluation by computer.

The present work was restricted to the cylindrically
symmetric case and to the scattering from perfect con-
ductors. The next stage will be to generalize the Inethod
to the general problem of a completely arbitrarily
shaped conductor, with an arbitrary angle of incidence

"In fact, for the case of a sphere we were able to demonstrate
the analytic convergence of the perturbation series to the exact
result.

of the incident wave. This includes such special cases of
practical interest, as the scattering from cylindrically
symmetric shapes at arbitrary angles of incidence. Once
the general solution has been obtained for conductors, it
may subsequently be readily generalized for scatterers
of arbitrary, though constant index of refraction (e.g.,
plasmas). Finally, it should also be possible to apply
similar techniques for arbitrarily shaped plasmas with
a varying refractive index, although in that case the
fundamental spatial solutions would no longer be Bessel
functions.

r.=oL&+ef(~)j; ~.f(e) ~
&1, 0&e&~,

where a is the radius of the "unperturbed sphere". At
6rst sight it would appear that Eq. (A1) is capable of
describing only shapes which do not differ too drastically
from the unperturbed sphere. However, this limitation
is largely only apparent. %'e must keep in mind that for
a particular irregularly shaped body there is no a priori
given "unperturbed sphere. " What is really given as
part of any particular problem is the shape of the sur-
face of the irregular conductor, which may in general
be described by an equation of the form

r=g(8) (A2)

in spherical coordinates. This irregu. lar conductor is now
to be considered as the perturbation of some "unper-
turbed sphere. " Clearly, we are free to choose the
radius u of this sphere, as well as the location of its cen-
ter at will. Because of these two degrees of freedom, it
is possible to choose unperturbed spheres for an ex-
tremely large class of shapes in a manner such that
these shapes, given originally by Kq. (A2), f'Lt the re-
quirements of Eq. (Al). For example, any convex body
falls into this class. More generally, any shape which
allows of a radial explicit representation can be de-
scribed by Kq. (A1).

Let us assume for the moment that the center of the
sphere is chosen to be identical with the origin of the
spherical coordinate system to which Eq. (A2) (which
describes the shape of the irregular conductor) refers.
We are then still free to choose the radius u of the un-
perturbed sphere. It may be possible to make this choice
in some optimal manner, in the sense of improving the
convergence of the general series solution. Clearly, we
desire to minimize in some average sense the difference
between the irregular body and the sphere of which it is
to be considered a perturbation. Although there is no
unique prescription for choosing such an "optimum"
unperturbed sphere, a reasonable criterion for the

APPENDIX A: CHOICE OF OPTIMUM
UNPERTURBED SPHERE

The general method based on a perturbation tech-
nique which was developed in this paper is restricted to
perfect conductors whose boundary surface in spherical
coordinates can be described by the equation
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choice of u would be to a pick a value which minimizes
the average square deviation between the sphere and
the cross section of the cylindrically symmetric irregular
conductor, i.e., to minimize

The optimal radius c for the unperturbed sphere corre-
sponding to the oblate spheroid described by Eq. (A6)
is thus not a (as was used in Sec. IV C) but c=a(1+~ ~).

If we now equate Eqs. (A7) and (A6), with the value
of c given by Eq. (AS), we obtain

[g(8)—u]no 8 (A3) r, = c[1+(e/(1+2'))(sin'8 ——,')], (A9)

by choosing the optimum value of a to be the solution
of the equation

M/Ra= 0. (A4)

The value of u which minimizes 6 is easily found to be

g(8)d8,

and we may accordingly pick this as the optimum choice
fol G.

In the above developm. ent we assumed that the center
of the sphere is coincident with the center of the spheri-
cal coordinate system in terms of which Eq. (A2) is ex-
pressed. In most cases which can be envisaged in
practice, the choice of location for the center of the
unperturbed sphere will be obvious. H this should not
coincide with the center of the spherical coordinate
system of Eq. (A2), the simplest procedure would be to
rewrite Eq. (A2) in terms of spherical coordinates cen-
tered at the center of the sphere, and then to use (A5)
for the choice of optimum radius. If in any circum-
stances the location for the center of the unperturbed
sphere should not be obvious, it may be left arbitrary
and determined by varying Eq. (A3) with respect to
both a and the location of the origin of the unperturbed
sphere. As an illustration of the application of the fore-
going, let us consider the prolate spheroid described by
the 6rst-order equation

r, =a(1 +csin'8), (A6)

r,=c[1+Bf(8)]. (A7)

The function g(8) describing the actual oblate spheroid
under consideration is given by Eq. (A6). The optimiza-
tion criterion (A5) thus becomes

which was used as an example in the calculation carried
out in Sec. IV C. No attempt was made there to optimize
the radius of the unperturbed sphere.

In order to avoid confusion in notation, let us denote
the radius of the unperturbed sphere by c and the cor-
responding perturbation parameter by 6. Thus c re-
places a, and 8 replaces e in all of the equations (A1)—
(A5). In particular, the standard form (A1) for the
oblate spheroid, considered as a perturbation of a sphere
of radius c now takes the form

which takes the place of the standard form (A6). Ac-
cordingly, the result of optimizing the unperturbed
sphere for the case of the prolate spheroid described by
Eq. (A6) is to change the perturbing function f(8) from
f(8) = sin'8 to f(8)= sin'8 ——',, while at the same
time changing the perturbation parameter from ~ to
e/(1+~~&), and the unperturbed sphere radius from u to
a(1+—2e). Inasmuch as in our example e) 0, we will have
5( e, and accordingly the convergence of the correspond-
ing series solution is likely to be improved as a result of
the optimization procedure.

APPENDIX 8: EVALUATION OF
FIRST-ORDER INTEGRALS

This Appendix is devoted to the analytical evaluation
of the integrals needed to obtain the explicit expressions
for the first-order perturbation coeKcients u~', b~' for
the case of an oblate spheroid. With f(8)= sin'8, these
integrals are

$q„sin'8d8

P„'Py' dP '(x) dPg'(x)-
sin'8 + d8, (81)

sin'8

sin'NH

dPp' dP„'
P ' +Pq' sin'8d8, (82)

d8 dO

rr~„' ——2 sin8 cos8P„'(x)P~'(x)d8,

7r dP '
p, ~ 0= 2 sin'8 cosOP„' d0.

0 de

These are the same integrals which were evaluated by
means of numerical machine calculation in Ref. 13.
However, as we shall see, through judicious use of ap-
propriate recursion relations they may readily be evalu-
ated analytically.

To begin with, we shall 6rst calculate some prelimi-
nary auxiliary integrals. The 6rst of these is

Pq'(x)P„'(x) sin8d8= 0,

a(1+ e sin'8)d8= a(1+-', ~) . (AS)
2k(k+ 1)

k=e (85)
(2k+1)
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cosH P 'P ' sln8d8= xP 'iP 'dh (86) do d8

se of the recursion relarelation"

xP„'= [1/(2N+1)][nP„~i' ii

a be rewrl ett n in the formthis integral may

j.

(2m+1)
'PI, ' dx[iiP.+i 'P '+(ii+1)P~ i P—a ]

nA g, +i+ (ii+ 1)A y, „—i]. (88)
(2m+1)

F85) to the second equality1 the resultIf we now appy
of expression (88), we n

2(k —1)k(k+1)

(2k —1)(2k+1)

2k(k+1)(k+2)

(2k+ 1)(2k+3)

dP„' dPi, '
(1—x')' dx.

' d )(dP '/d )=[1!(2'+ )(1 2k+1)]
i i +1)2(k+1)2P 1P ia+i' iyi'+ (

'P. i'—ri'(k+1)'P +i—k'(I+1) Pi+i

written in thec . '
x ression (814) may be writ

'
hAccordingly, expression

form

=L/( +)( +)]
n+1) (0+1) AiX[&'k'Ax+i, +i+ n

XA i+i i—iii(k+1

816 yields85) to expression 8 y'A 1 ing the result 3 oApp yin

(811) twice, we maycursion relationApplying the recur
'

write

=0, otherwise.

h 11 consider the lntegraNext, we s a

dP '(x)
sln~oPg~ do

(89) —2(k—2) '(k —1)k(k+1)'

(2k—3) (2k —1)(2k+ 1)

2k(k+1) k'(k+2)

(2k+1)' (2k+3)
dP '

P ' dx. (810)(x'—1 Pi.' x.
dx

f the recursion lrelation"Making use o

x'-' —1 (dP„'/dh) = [1/(2ri+1)]
X[ 'Pii+i' —ii+1 'P

(k —1)(k+1 '
+

(2k —1)

—2k'(k+1) (k+2) (k+3 '

(2k+1)(2k+3) (2k+5)
v=k+2

a be rewri e'tten in the formthis integral may
'

e

/(2ii+1)][ii'Ai. +i (I+1, 'A—i, „ i .Ci,.——[1, 2ii

f now
'

a 1 the resultIf we nowf now again appy
(812), we obtain

=0, otherwise. (817)

uate the required lntegrals
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re ared to evaluate
written in81)—(84). Thus, the integra

the form

2(k —1)'k(k j1
(2k —1)(2k+ 1)

2k(k+ 1)(k+2) '

(2k —1)(2k+ 1)

=0, otherwise. (813)

P 'PA, ' sin8d8
0

dP 'dPi'
sin'0 d8= 3 I,„

do

Static and Dyngmic E/gc-W. R. Smythe, Static a
ok Co. Ne Yo k. 19trj city c(McGraw-Hill Book o., e of the results (85) and (817), weIf we eth n make use of the results



—2(k—2) '(k —1)k(k+ 1)'-'

1=k—2
(2k—3)(2k —1)(2k+1)

2k(k+1) 1 k'(k+2)
1+

(2k+1) 2k+1 2k+3

{k—1)(k+1)'

In view of Eq. (86), and the auxiliary result (89), this
integral 1S fOUlKI to be

4 {k—1)k(k+1)
~I, '=2&~ =

I} S
(2k—1)(2k+ 1)

4k(k+1) (k+2) I=k+1
(2k+ 1)(2k+3)

otherwise. (823)

—2k'(k+ 1)(k+ 2) (k+3)'

(2k+1)(2k+3) (2k+ 5)

otherwise. (819)

Finally, we consider the integral (84), which ma, y be
1C%'ritter ln tbe folXQ

dI'I, '
(x'—1)xE„' dx.

4x

In view of Eq. (810},expression (82) may be written Ma)ring use of the recursion relation (811), the inte-
in the form grand may be vrntten as folio&vs

g~ '=&~.+C j (820)
dPI, '

Substltutlon of the expression (813) 1mBledlatejy yields (* 1)
dx

2k(k+1) {k—1}
'gkn

(k—1) (k+1)
x 6 k

(2k+1) (2k —3)

Xp &I+a —{k+1)&I—z'] (825)

In view of Eq. {86), the integral (824) thus becomes

}»I,„'——2/(2k+1)[k'B~r, —(k+1)'By y, ,]. (826)

Substitution of the result (89) into expression {826)
6nally yields:

(2k+1)

k (k+2)—

2k+3 (2k —1)

otherwise. (821)

—4(k —2) (k—1)k {k+1)'

{2k—3) (2k —1)(2k+ 1)

4k(k+1) -k'(k+2)

(2k+1)' (2k+3)

We now turn to the integral 0»„', given by Eq. (83) (k—1)(k+ 1)'
0=k

(2k —1)

01,„0=2 sin8 cosHP„' x PI,' x d0

xP '{x)PI,'ch. (822)

4k'(k+1) (k+2)(k+3)

(2k+ 1)(2k+3) (2k+5)

otherwise. (827)


