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The problem of the scattering of an electromagnetic plane wave, incident along the axis of symmetry
on a cylindrically symmetric, though otherwise arbitrarily shaped conductor, is solved exactly by means of
a perturbation-expansion technique developed for this purpose. The solution obtained is an exact analytical
solution, equally valid in the near and far zones, as well as over the entire frequency range, including the
resonance region. The general solution is obtained, and several special cases are treated in detail. The term-
by-term agreement of the perturbation-series solution with the known exact solution is demonstrated
analytically for the case of a sphere. The form of the solution is particularly well suited for methodical

numerical evaluation by machine calculation.

I. INTRODUCTION

HE theoretical calculation of the scattering of
electromagnetic waves by objects of arbitrarily
specified shape and electromagnetic structure is a prob-
lem which has many and varied practical applications.
Mathematically, this problem is represented by an ex-
ceedingly complicated boundary-value problem. De-
spite the prodigious amount of effort which has been
expended in its analysis, an exact solution for the gen-
eral case remains yet to be found. This is true even for
the special case where the scattering object is a perfect
conductor, which is the immediate concern of this
paper.!

Analytically rigorous solutions to this problem have
generally been based on the method of separation of
variables and on the expansion of the general solution of
the vector wave equation in terms of appropriate orthog-
onal functions.?®* However, in order for this method to
be applicable, two requirements must be fulfilled. To
begin with, the vector wave equation must be separable
in some suitable coordinate system, and the resulting
differential equations must be analytically solvable.
Secondly, the relevant boundary conditions must have
a simple form in the coordinate system selected, which
generally requires that the scattering object in question
must constitute a complete coordinate surface in the
coordinate system chosen for the separation of variables.
As a consequence of these limitations, exact solutions to
the three-dimensional problem of the scattering of elec-
tromagnetic waves have been obtained by this method
only for the cases of a sphere and an infinite cylinder.4

Because of the analytical complexity of the over-all
boundary-value problem, a large number of approximate
methods have been developed for dealing with the scat-

* This work was supported by the Office of Naval Research,
Code No. 418, Washington, D. C.

1 The extension of any general method valid for conductors to
the case of a constant refractive index is mathematically trivial in
most cases.

2 R. King and T. T. Wu, The Scaltering and Diffraction of W aves
(Harvard University Press, Cambridge, Mass., 1959).

¢ C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954).

¢ For the simpler two-dimensional case, the class of shapes ac-
cesible to this method is slightly larger.
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tering problem. Foremost among these are various
variational techniques.5¢ However, variational prin-
ciples can be developed for only a few of the physical
quantities of interest; moreover, their success depends
to a large extent on the ingenuity shown in choosing a
suitable trial function. For the extreme cases where the
wavelength of the incident radiation is either very large
or very small compared to the characteristic dimension
of the scatterer, satisfactory results are obtained by the
methods of the Rayleigh scattering approximation” and
by the methods of geometric and physical optics,® re-
spectively. However, when these approximate methods
are pushed beyond the extreme ranges of the wave-
length, their physical basis becomes cloudy, and the reli-
ability of the corresponding numerical results is generally
uncertain. They are intrinsically incapable of yielding
meaningful results in the important resonance region.

In light of the foregoing remarks, it is evident that
there still exists a need for a straightforward method for
treating the scattering from conductors of arbitrary
shape which is of sufficient generality to encompass both
a great variety of shapes and a broad range of the fre-
quency spectrum including the resonance region. The
present work is intended to provide such a method. It
should be emphasized from the outset that the solution
obtained here represents an exact analytical solution of
the scattering problem, valid for all values of the rele-
vant variables and physical parameters, for which the
series solution converges.

The spirit of the method described here is to return
to the original mathematical boundary-value problem
in its full complexity, and to approach it analytically by
means of a boundary-perturbation technique specially
designed for this problem.? In an earlier paper,!® the

5P, M. Morse and H. Feshbach, M ethods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1953).

8 H, Levine and J. Schwinger, Theory of Electromagnetic W aves
(Interscience Publications, Inc., New York, 1951).

7 A. F. Stevenson, J. Appl. Phys. 24, 1134 (1953).

8V. A. Fock, J. Phys. (USSR) 10, 130 (1946); 10, 399 (1946);
J. B. Keller, J. Opt. Soc. Am. 52, 102 (1962).

9For a review of other boundary-perturbation methods in
mathematical physics, see Ref. 5.

10V, A, Erma, J. Math. Phys. 4, 1517 (1963).
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author was successful in developing a particularly simple
and straightforward boundary-perturbation technique
for treating the electrostatic problem (scalar problem)
for irregularly shaped conductors, which yielded an
analytical expression for the capacitance of such con-
ductors, valid to all orders in the perturbation param-
eter. The possibility of generalizing this approach to the
much more complicated case of the vector wave equa-
tion was first suggested by the author, who also ob-
tained an explicit first-order solution for the special
case of cylindrically symmetric conductors, with the
incident electromagnetic wave along the axis of sym-
metry.!! A number of other steps in this direction have
been reported by various authors,’? in particular by
Yeh.1%:1¢ However, these were limited to results valid
only to the first order in the perturbation, or were other-
wise restricted. Inasmuch as the work of Yeh?® closely
resembles the approach of the present paper, it warrants
more detailed discussion. Yeh treats the case of a scat-
terer of constant refractive index. However, as noted
earlier, the generalization from the case of a perfect
conductor to this case is mathematically trivial. He ob-
tains a formal solution for a general form of the per-
turbed boundary, but calculates an explicit solution
only for the restricted case of cylindrical symmetry,
with the incident wave along the axis of symmetry,
which corresponds to the case considered here and in
Ref. 11. More important is, however, that Yeh developed
the method only to first order in the perturbation pa-
rameter, which restricts its practical usefulness to
shapes differing only minimally from that of a sphere.
Furthermore, due partly to the particular analytic form
chosen to represent the perturbation, the resulting
analytical expressions are needlessly complicated.!®
Accordingly, while his claim that his method may be
extended to higher orders is true “in principle,” it is
virtually impossible, or in any case much too cumber-
some to be practically useful, to do so “in practice.”
Beyond the very first few orders, the analytical work re-
quired to determine the contribution of each term to
a given order becomes precipitously prohibitive.

In the present paper, we restrict our considerations to
the case of a cylindrically symmetric perfect conductor,
with the incident wave traveling along the axis of sym-

V. A. Erma, Plasmadyne Corporation Report Nos. PTL-2-
607 and PTL-2-607* 1963 (unpublished).

2 P. C. Clemmon and V. H. Weston, Proc. Roy. Soc. (London)
A264, 246 (1961); Lu, Acta Phys. Sinica, Peking 22, 223 (1966);
21, 1798 (1965); T. Oguchi, J. Radio Res. Lab. (Japan) 7, 467
(1960); 11, 19 (1964); M. L. Burrows, Can. J. Phys. 45, 1729
(1967); C. J. Marcinkowski and L. B. Filsen, J. Res. Natl. Bur.
Std. 66D, 699 (1962); 66D, 707 (1962).

13 C. Yeh, Phys. Rev. 135, A1193 (1964).

14 C. Yeh, J. Math. Phys. 6, 2008 (1964).

15 In this connection, it should also be noted that the paper of
Yeh (Ref. 13) contains errors of sign and normalization. Thus, Eq.
(8) of Ref. 13 is incorrect in sign; this error persists throughout all
subsequent equations derived therefrom, and presumably also
affects the validity of the numerical results presented. We may
also point out that the integrals given in the Appendix of Ref. 13,
which are there evaluated by numerical machine computation,
can very readily be evaluated analytically.
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metry. The analytical solution obtained here is exact to
all orders of the perturbation parameter, and is valid at
all points of space (both near and far zone), and for any
arbitrary frequency of the incident wave.

The problem to be treated and the method of ap-
proach are formulated in Sec. II. In Sec. III we obtain
the general analytic series solution, valid to @l orders in
the perturbation parameter. Section IV is devoted to
the consideration of some special cases of the general
solution. Thus, to begin with, we obtain the solution for
a sphere of radius a(1+¢) (considered as a perturbation
of a sphere of radius ¢) and show that it agrees with the
known exact solution for this case. As an illustration of
the basic simplicity of the formalism, the special case of
the first-order solution is presented explicitly, and ap-
plied to the calculation of the scattering from an oblate
spheriod. Finally, Sec. V encompasses various conclud-
ing remarks, as well as indications of future work.

II. FORMULATION OF THE PROBLEM

The problem we shall consider here consists of the
scattering of an electromagnetic plane wave, incident
along the axis of symmetry on a cylindrically symmetric
perfect conductor. Specifically, we shall consider con-
ductors, whose boundary surface can be described in
spherical coordinates by an equation of the form

r=r,(6)=da[1+¢f(6)]. (1)

Here @ is a constant, representing the radius of the
“unperturbed sphere,” € is a constant ‘‘smallness pa-
rameter,” and f(6) is a function which must obey the
restriction

lef(0)] <1, 0<6<w (2)

but is otherwise arbitrary.

Two remarks should be made concerning the repre-
sentation of arbitrary boundary surfaces by means of
Egs. (1) and (2). To begin with, it would appear at first
sight that, in view of restriction (2), Eq. (1) is capable
only of describing irregular surfaces which do not devi-
ate excessively from a spherical shape. However, we
must recall that both the value a of the radius of the
unperturbed sphere, and the location of the center of
the spherical coordinate system may be chosen arbi-
tarily. Hence, it is clear that all cylindrically symmetric
irregular shapes, for which it is possible to locate the
center of the coordinate system in such a way that the
radius vector to all points on the surface is single-
valued,’® can be described by Egs. (1) and (2). For
example, all simply connected, convex shapes fall into
this class. The question of the optimum choice of the
unperturbed sphere for any given conductorisconsidered
in more detail in Appendix A.

Secondly, the above analytic form for the equation of
the irregular surface, considered as a perturbation of

16 These are known in mathematical parlance as surfaces which
admit of a “radial single-valued explicit representation.”
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a sphere, differs from that used earlier by the author,®
as well as by Yeh.!® In both cases, the irregular surface
was expressed in the form

r=r,(0)=a[ 14 ef1(0)+e2f2(6)+- - -],
lefi(0)+e2fu(8)+ - - - | <1, 0<0<.

It is clear, however, that any surface which can be de-
scribed by Eq. (3) can also be expressed in the simpler
form (1), with a suitable choice of e and f(8). While form
(3) was particularly well suited to the scalar-electro-
static problem,’ it leads to needless complications in
the vector problem of electromagnetic scattering, and,
in fact, makes it impossible to obtain a single analytic
expression valid to all orders in the perturbation.

Assuming a time dependence of e~%¢ for the electro-
magnetic fields, the scattering problem is then defined
by the boundary-value problem consisting of the vector
Helmbholtz equation for the fields outside the scatterer,
and the boundary condition that the total tangential
electric field must vanish on the surface of the conductor.

This boundary-value problem will here be attacked by
means of a perturbation technique. Unlike in the more
familiar perturbation methods of quantum mechanics,
where the partial differential equation is perturbed, we
are here dealing with perturbed boundaries. Since in this
case the partial differential equation remains unchanged,
it is not necessary to solve the vector Helmholtz equa-
tion anew for each particular shape. Instead, we must
match boundary conditions at the perturbed boundary.
As in the scalar case,'® this may be accomplished by
expanding the boundary condition in a Taylor series,
which in effect transforms the boundary conditions at
the perturbed boundary into a succession of boundary
conditions at the unperturbed boundary. This is tanta-
mount to replacing the single “necessary’ boundary
condition by an infinite set of “sufficient” boundary
conditions. That this is indeed a consistent procedure
may be demonstrated by means of the uniqueness
theorem for the solutions of the relevant partial differ-
ential equation.

The point of departure for the solution for an irregular
shape is provided by the known exact solution for the
problem of the scattering of a plane wave from a per-
fectly conducting sphere. For later reference, we briefly
review some of the well-known results'? in connection
with this problem. For the case of a cylindrically sym-
metric scatterer with the incident plane wave along the
axis of symmetry (chosen to be the z axis), the general
solution of the vector Helmholtz equation can be ex-
panded in terms of two so-called ‘“‘unit fields” M, and
N.., which are given by (the time dependence e¢~%* has
been suppressed ab initio)

M., = (sin) 'z, (p) Px!(x) cose es—2zn(p)
X (@Pa'(x)/df) sing e,, (4)

17 See, for example, J. A. Stratton, Electromagnetic Theory
(McGraw-Hill Book Co., New York, 1941).
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No=n(n+1)p"2.(p) Pnl(x) cose e,
+p7(d/dp)[pzn(p) (AP A1 (x)/dB) cose €4
— (p sind)~*(d/dp)[pz.(p) J1Pa'(%) sing e,. (5)

Here e,, eo, and e, are unit vectors along the directions
of the increasing spherical coordinates 7, 6, and ¢, re-
spectively; p=Fkr (k=w/c); x=cosf; z.(p) is an appro-
priate spherical cylinder function; P,!(x) is an associ-
ated Legendre function; and # is a summation index:
n=1,2,3 ---.

If we choose the incident wave to be a plane-polarized
plane wave travelling in the direction of the positive
z axis with its electric vector along the x axis, the inci-
dent electric field E¢ of this wave can be expanded in the
form

Ei: eikzez_—-_— Z Vn[Mnj— iNnj], (6)
n=1
where
va=1"2n+1)/n(n+1), ?=-—1, (7
and the superscript 7 on the unit fields denotes the
choice 2,(p)= 7.(p) for the spherical Bessel function.
Finally, we have taken the incident field to be of unit
magnitude.

The electric field E® of the scattered wave can likewise
be expanded in an infinite series of the unit fields M,
and N,, with undetermined coefficients. In order to
satisfy the boundary condition at infinity, we must
choose 2,(p) =%,V (p). If we let the superscript s denote
this particular choice for the spherical Bessel function,
the scattered field may then be written in the form

Es= i Vn[anns— ibnan] ) (8)

n=1

where @, and b, are the undetermined “scattering
coefficients.”

The boundary condition to be satisfied for a perfect
conductor is that the total tangential electric field must
vanish at every point of the surface. For a sphere, the
two independent tangential components may be chosen
along the mutually perpendicular unit vectors ey and
e,, so that the boundary condition may be written in
the form

E0i+E0s| re=a— 0 5 (9)

Ej+E| ,—.=0. (10)
If we then substitute Egs. (6) and (8), with the unit
fields obtained from Egs. (4) and (5), into the boundary
conditions (9) and (10), it may readily be verified that
the latter are satisfied if, and only if,

tr=— 160} V),
///{éé[phn‘“(p)]} ,

p=p0

(11)

m=~{%&ﬁ@ﬂ} (12)

p=p0
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where po=ka. Expressions (11) and (12) for the scatter-
ing coefficients a, and b, complete the solution for the
case of a perfectly conducting sphere. As is well known,
all physical quantitites of interest, such as the various
scattering and absorption cross sections, can be calcu-
lated in terms of these coefficients.

We now turn to the problem of obtaining the corre-
sponding solution for irregular conductors whose surface
shape is described by Egs. (1) and (2). We note that Eq.
(1), with 7 and 6 reinterpreted as plane polar coordinates,
also represents the equation of the boundary curve of
the cross section of the surface (1) in any plane passing
through the symmetry axis.

As before, we shall assume that the incident wave is
a plane wave traveling along the positive 2 axis, with
its electric field polarized along the x axis. The incident
electric field E? (of unit magnitude) is then again given
by Eq. (6). Similarly, the scattered field E¢ is again
represented by the general expansion (8), with @, and
b» as unknown coefficients. We must now formulate
the boundary condition that the total tangential electric
field vanishes at each point on the surface of the irregular
conductor. To do this, we must first find two mutually
perpendicular tangent vectors at each point of the sur-
face of the irregular conductor described by Eq. (1).
One of these is clearly e,. Another vector, tangent to the
surface (1) and perpendicular to e,, is provided by

e=dr/dd, (13)

where r=7.e,. We note that the tangent vector = de-
fined in this manner is not a unit vector; however, in-
asmuch as the corresponding tangential component of
the electric field vanishes, only the direction of the
tangent vector is of significance. Noting that de,/df
= ey, and substituting from Eq. (1) for 7, we find that
the tangent vector « is given explicitly by

e=r.e5tacf (0)e,. (14)

The boundary condition that the total tangential elec-
tric field vanishes at each point of the surface may then
be represented by the equations

Ey| rmr,=0, (18)
7sEgtaef (6) E,| rmr, =0, (16)

where E= E*+ E¢ represents the total electric field which
enters into Egs. (15) and (16). The problem now con-
sists of employing the above boundary conditions in
order to determine the unknown scattering coefficients
@, and d,. This problem will be solved for the general
case in Sec. III.

III. GENERAL SOLUTION

We now turn to the problem of determining the scat-
tering coefficients @, and &, for the case of an irregular
conductor whose surface is described by Eq. (1). As
noted earlier, the incident and scattered electric fields
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are given by Egs. (6) and (8), respectively, and the ap-
propriate boundary conditions by means of which we
hope to determine the coefficients @, and b, are pro-
vided by Egs. (15) and (16).

Thus, if we substitute Egs. (6) and (8), together with
Egs. (4) and (5), into the boundary conditions (15) and
(16), the latter take the explicit form!®

1

PR B
= Vn sJn\Ps 20 sing

1
n

X [Pjn(P)]lmPnI"‘ an[ﬂshn m(P:)]

af
by
+—.’—‘D’hn(l)(9)],pgpnl =0, (17)
sind
w 1 .
Z Vni~ Eps]n@s)]Pnl
n=1 sind
. dP,t  a.
_i[ﬁ]n(P)]lﬂc——‘*'_,‘“[Pshn(1)(Ps):an1
df sinf ;
. nt in(n+1)
—'Lbn[Phnu)(p)]/ps 20 '“epOf,(o)[”———]n(Ps)Pnl
ps

1bn(n+1)
+__.______.

Ps

hn (l)(Ps)Pnl]} =0, (18)

where the subscript p, denotes that the function in
question is to be evaluated at p=p,=Fkr,, a prime de-
notes differentiation with respect to p, and the argument
of the modified Legendre functions P,! is understood to
be x=cosf. Equations (17) and (18) represent the final
form of the boundary conditions which must now be
used to determine the scattering coefficients.

At this stage it becomes necessary to introduce the
perturbation technique which forms the basis of our
method for determining the coefficients @, and b,. Ac-
cordingly, following the basic principle of any pertur-
bation method, we write the coefficients @, and 4, in the
form

An= Z Epanp7 (19)
»=0

ba=7Y, €?b,?, (20)
p=0

where ¢,? and b,? represent the pth-order corrections to
the unperturbed scattering coefficients @,° and 8,9,
given by Egs. (11) and (12), respectively.

The next step is to expand each of the terms occurring
in the boundary conditions (17) and (18) as a power
series in e. This may be accomplished by expanding each

18 For the sake of analytical convenience, the boundary condi-
tion (15) was multiplied by the factor k7, prior to substitution.
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function containing p, in a Taylor series about the point
p=po=ka. Thus, for example, let us consider the first
term of Eq. (18). In view of Eq. (1), the function
[osjn(ps)] may be expanded in a Taylor series of the
form

Cooip1= 5~ emi 1, (2)

where we have defined

dr
an?=[pjn(p) JosP=1—Losnl@)Ip , (22)
¢ {dp” }

P=p0

and where p=kr, p;=kr,, po=Fka. Accordmgly, the first
term of Eq. (18) can be written in the expanded form

Vn Popfpainnl

i’i; (23)

Tst

0

sing p!

The second term of Eq. (18) may be similarly expanded
and yields

© 0 popfp dPnl
—i Y € Y va——an?t (24)
p=0  n=1 p! do
The third term of Eq. (18), to wit,
Z B )(Ps)]Pn ) (25)
n=1 sing

is more complicated in nature. The function containing
ps may again be expanded in a Taylor series, as follows:

o fBnPelpo? f7
Loshtn®(ps) 1= Z ) (26)
=0 p!
where we have defined
Ba?=[phn D (p) 10 ™. (27)

On the other hand, according to the ansatz (19), the
parameter e is also involved in the coefficient @,. We
thus have

w  BnPpoPfP
an[Psh ()(Ps>:| (Z epan”)(Z €P ;' f > (28)

=0

However, this expression may be written as a single
power series in e by making use of the following well-
known theorem for the product of two infinite power
series:

(3 (3 emB)=3 <§ abpd).  (29)

=0 =0 =0

When this theorem is applied to term (28), expression
(25) which represents the third term of the boundary
condition (18), may be written in the form

2 Bu%po?fian?Pn!
z . (30)
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If the remaining terms of Eq. (18) are treated in a
similar fashion, the expanded form of Eq. (18) may be
written as

© © a,,”po?’f” Pnl ianp-H d-Pnl
ey Vn{ - PP fP
p=0  a=l p! sinf  pl ae
» a9 Pt p B, dP,!
+ Z _poqfqanp—q_.._¢ Z poqfqbﬂnp—q
a=0 q! sinf  ¢=0 gl do
Yn?
—in(n+1)epof 'l:—*lpo”f 2Pyl
p!
p 8,9
+ Z —Poqfqbnp-qpn :I} =0, (31)
a=0 ¢!
where we have introduced the additional abbreviations
va?=[7a(0)/010s?, (32)
0pP= [hn(l)(P)/P]po(p) . (33)

Following the same procedure, Eq. (17) may be ex-
panded in the form

£ o 5 o
&P Va| ——po? [P
p=0  n=1 p! ’ do
a, Pt Pl » B,9 dP,!
+3 popfp._._._ Z _._.poqfqanp—q
p! sin ¢=0 ¢! d
» Bt Pt
-+ Z poqf‘-’bn”—q—:—>=0. (34)
=0 ¢! sinf

Equations (31) and (34) represent the two basic bound-
ary conditions, expanded as power series in e.

The critical step now consists of requiring that the
coefficients of each power of ¢ in Egs. (31) and (34)
vanish individually. This in effect replaces the two
necessary boundary conditions by an infinite set of
“sufficient” boundary conditions. The consistency of
this procedure is easily demonstrated. Thus, if the co-
efficients ¢, and b, are determined by this method, the
resulting fields will @ fortiori satisfy the boundary con-
ditions at the surface of the conductor. Moreover, the
choice z.(p) =k, (p) in the expression for the scattered
field guarantees that the boundary condition at infinity
is likewise satisfied. Finally, regardless of what values
we finally obtain for the scattering coefficients @, and
bn, Eq. (8) shows that the resulting field is a solution of
the vector Helmholtz equation. We may thus appeal to
the applicable general uniqueness theorem to demon-
strate that the solution obtained in this manner repre-
sents indeed the unique solution to the problem.

Accordingly, we now set the coefficient of € (J arbi-
trary) in each of Egs. (31) and (34) equal to zero. This
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yields :
f Vn {anlpolfl Pnl ;xnHIPOJJFZdPn1 } Zl @fpoqfqanl—q_lii_izl ﬁ"ﬁlpoqfqbnl—qdpnl
n=1 /! sind I a9 =0 g! sind  ¢=0 ¢! de
1 -1 8,9
—in(n—i—l)pof’[ pot LIP3 Lpoqfqbnl“l‘anl]} =0, (35)
(l“‘ 1)’ =0 q!
» a! dP,} _0an+1 Pl 1 8,9 dP,! L B,ett Pl
Z ”"( " e T e BT T g, a2 qb"l—qgrfé) -0 (36)

Our task is now to extract analytic expressions for the perturbation scattering coefficients .}, ,! from the set of
Eqgs. (35) and (36). Toward this end, we shall first isolate the highest-order perturbation coefficients occurring in
Egs. (35) and (36). These correspond to the terms ¢= 0 in the summation over the index ¢. (Note that the remaining
terms in the ¢ summation involve perturbation coefficients only up to order /—1.) Thus, we may rewrite Eqgs.

(35) and (36) in the form

» Pnl dPnl 0 anl Pnl anH-l dPnl
Z Vn<ﬂnoanl"f—"_ iﬁnlbnl )+ Z Vn {_polfl 7 polfl
n=1 sinf n=1 ! sinf ! de
1 f3,9 P, A Gngﬂ dP,!
+ 2 —polflant i 3 P02 %t
=1 q! sind  ¢=1 ¢! do
. 'Ynl_l -1 anq
~in(n+ I)Pof/[ po LIP30 —poqfqbn’“l"”Pnl]} =0, (37)
(-1 =0 ¢!
w dp,t Pt © ) AP} a,tt Pt
Vn('—ﬁnoanl +7/,Bn1bnl-‘—'—)+ Z Vn<_"—POZfl +'L polfl—-*——
n=1 do sing/ n=t ! do I sind
! Bt dpP,! 1 B, P,
— s e Y poqfqbnz-q~)=o. (38)
e=1 ¢! de =1 ¢! sing

We observe that the highest-order coefficients a,' and b, occur only in the first sum of each of the Egs. (37) and
(38); all remaining perturbation coefficients are of lower order in the perturbation. Unfortunately, the coefficients
a,! and b, still occur under a summation sign and cannot be extracted immediately, inasmuch as the series as they
stand do not have the form of orthogonal series. However, this may be achieved by making use of more complicated
orthogonalities. In particular, we may employ the following easily verified integral properties of the associated

Legendre functions:

T PP AP, AP 2n%(n-+1)2
/ ( N } ) sin0d0=—-—~——~5nla y ' (39)
o \ sinf de deé 2n+1
/ ) (P L~—de1+P ldP"l)d
n & =0,
0 dé dé (40)

where 8, represents the usual Kronecker 4.
We observe that by taking suitable linear combinations of Eqs. (37) and (38), we may make use of the orthog-

onality properties (39) and (40) in order to extract the desired coefficients a,' and &,%
Thus, in order to obtain @}, we multiply Eq. (37) by P}, Eq. (38) by —(dP}!/df) sin, and add the two resulting

equations. Introducing the abbreviations
PPl dPpdPit
]

E n=

* sin% ] do ao’ (4
dP! dPy!

nanPnL'—-"Pkl ) (42}

do do
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the result is

)
> vu(Bnlanttrn Sinf—iB,10, k)
n=1
at l+1 Bl at+l1
+ Z Vn —"Polflskn Slno—"i T f 77kn+ Z ___poqfqa"l qun sinf—1 Z POqfqbnl_ann

n=1 7=1 ¢! a=1 q!

—1 1 5 q
—into- Oonf | Y P g ppi] =0 (19
- g=0 q

If we now integrate this equation with respect to 6 between the limits 0 and m, we find that because of the orthog-
onality properties (39) and (40), the first infinite sum contains only a single nonvanishing term, namely, v18:%a;'2k?
X (k+1)2/(2k+1). We have thus succeeded in isolating the /th-order perturbation coefficient a4, which may be

written as

(2k+1) T

al= = / Ryde, (44)
2k2(k+1)8i%s

where Ry, represents the second sum (over #) of Eq. (43). It is important to note that Ry; contains only known con-
stants and perturbation coefficients of lower order.

In order to isolate b.!, we proceed in an analogous manner. Thus, if we multiply Eq. (37) by — (dP}!/d0) siné,
Eq. (38) by P;!, and add the two resulting equations, we obtain

L]

Z Vn(—-ﬁnoanlr]kn""'iﬂnlbnlgkn sinB)
n=1
w a,t apitl 0t
+x V”{— I Polflmm—l—z polflg’“” sinf— Z "_Poqfqdnl Mint1 Z P02 %ty sind
i - =1 g! q!

yall AP
+in(n—|—1)pof'|: pot L f1+4 Z ——poqfqb =1-g ijnl Sinﬁ} =0. (45)
(I— ) a=0 ¢! de

If we again integrate with respect to § between the limits 0 and 7, and make use of the orthogonality properties

(39) and (40), we obtain

(2k+1) w

—— / Sude, (46)
22(B+ 1) %81t J o

where Sy; represents the second sum (over ) of Eq. (45). Again, Sy contains perturbation coefficients only of orders
lower than /.

Finally, for reasons of maximum clarity, we shall rewrite the analytic solutions obtained here for the scattering
coefficients in explicit form. Introducing the integral notations

Ern'= / [ &xn sinfdo, (47)
0

nk'nlz/ flﬂkndag (48)
0

Uknl=/ 1 fiPa\Pi1d0, (49)
0

dP!
& ’—/ I ftPn ’———— sinfdf , (50)
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the solutions (44) and (46) for a;! and &' may be written in the form

axt=—[(2k+1)/2k*(k+1)*8:%v: Rk, (51)
bit="[i(2k+1)/2k*(k+1)8x w1 ]Sk, (52)
where
~ * anl ! Bn? 1 B,ett
Ru= / Rudd=3" v {——po’ékn —i———po mm’—f-z —~po“an’ %en?—1 2 P0% " Mien?
0 n=1 Al 1 =1 g! =1 ¢!
. ¥ab -1 0,9
—m(n-i—l)po[ o0 Lo, Y ——poqbn’ 1=agy, :” , (53)
(—-1n! =0 ¢!
) ,, at jor, 1 B2 1 Bet
Skl’:f Srdf= Z Vn{-——po Men'+ potbint— 20 “‘"Poqlln’ Min 4 20 P0%Ekn 01
0 n=1 I I e=1 ¢! =1 q!
Ya -1 -1 6nq
Finto+of - T g, J |
—1)! =0 q!

Equations (51) and (52), together with (53) and (54),
represent our final analytic solution for the perturbation
scattering coefficients. As noted earlier, the right-hand
sides of Egs. (51) and (52) involve only known constants
and perturbation scattering coefficients of lower order.
Accordingly, inasmuch as the zero-order (}=0) coeffi-
cients corresponding to the case of a perfect sphere are
known, these equations may be used to successively
compute the perturbation scattering coefficients up to
any arbitrary order. The nature of the analytic expres-
sions is such that this may be accomplished in a com-
pletely systematic manner which is well suited to
machine calculation. The over-all scattering coefficients
are then obtained by means of Egs. (19) and (20). All
scattering quantities of interest may be calculated in
terms of these coefficients; in particular, the actual
scattered field is given by Eq. (8).

We have thus accomplished what we set out to do,
i.e., we have found an explicit analytical solution to the
scattering problem under consideration, which is ca-
pable of yielding numerical results to any desired degree
of accuracy. Although this solution was arrived at by
means of a perturbation technique, this technique was
used only as an analytic tool and it should be emphasized
that the solution obtained is exact, inasmuch as no ap-
proximations of any kind, either mathematical or
physical, were introduced. Moreover, the solution is
general, i.e., it is equally valid in the near and far zones,
as well as over the entire frequency range.

Finally, we should like to point out that although the
final expressions (53) and (54) appear complicated, in-
asmuch as they involve infinite series, for most “rea-
sonable” shapes these series will terminate after a
moderate number of terms, due to orthogonality prop-
erties inherent in the associated Legendre functions.

In order to illustrate the analytic nature and basic
simplicity of the general solution obtained above, we
shall next consider some special cases in more detail.

IV. SPECIAL CASES OF GENERAL SOLUTION

A. Verification of the General Perturbation Solution
and its Convergence for the Case of a Sphere

It would be interesting to verify the validity of the
analytic perturbation solution by checking it against
a known analytic solution for some special irregularly
shaped object. This is impossible, however, for the sim-
ple reason that no exact analytic solution is known,
other than that for the case of the sphere.

Accordingly, we shall here obtain the perturbation
solution for a sphere of radius 7,=a(14¢), considered
as a perturbation of a sphere of radius e, and compare it
with the known exact result. This comparison is not
trivial, inasmuch as the general perturbation solution
and the known exact solution have entirely different
analytic forms.

In terms of our formalism, the sphere of radius
re=a(1-€) is characterized by f(6)=1, f'(6)=0. With
this function f(6), the integrals (47)~(50) become

T ) 2n¥(n—+1)2

E;ml=f kn SIN0d0=—————0bp1, (55)
0 (2n+1)

mml=/ Nend0=0, (56)
0

G'knl=/1knl=0- (57)

The second equalities of Eqgs. (55) and (56) are true by
virtue of Eqs. (39) and (40).

Substituting these values into Egs. (53) and (54) for
R and Sy, we immediately obtain

= 2k2(k+ 1)2(a—kp Iy Zl: Elfpoqakl—q> R (58)
C k1) =t gl
-kz=iﬂkw(ak - I+ é ﬂkﬁlpoqbkl"q> . (39
(2k+1) =t gl
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When these expressions are substituted into Egs. (51)
and (52), we obtain the following expressions for the
perturbation scattering coefficients:

1 sailpet 1 Brpolart—?

axi= ——( +y ) (60)
BxO\ 1! g=1 qY
1 akl'i‘lpol lqu+l

bk’=-——< + 32 potdii?).  (61)
B\ Ul & gl

It is immediately verified that these expressions repro-
duce the correct zero-order results for an unperturbed
sphere, corresponding to the case /=0. For the “per-
turbed” sphere of radius a(1+e¢), the solution for the
scattering coefficients given by our method is provided
by Egs. (19) and (20), with a and b, given by Egs.
(60) and (61). On the other hand, the known exact
solutions for the same scattering coefficients are pro-
vided by Eqgs. (11) and (12), which for this case take the
form

I WLoo(14 )]
d
b= — {3;[”’"(”)]} o
///{:i[phn‘”(p)]} . (63)
dp p=po (1+€)

The question before us is whether or not the solutions
(62) and (63) are identical with the solutions given by
Egs. (19) and (20), together with (60) and (61). In order
to answer this question for the coefficient ay, for ex-
ample, we must expand expression (62) in a power series
in ¢, and compare the result with the perturbation ex-
pansion (19) and (60). In order to facilitate the com-
parison, we multiply both the numerator and denomi-
nator of expression (62) by po(14€) and expand the
resulting expressions in the form of Taylor series about
po. In this manner, we obtain

(64)

ar=—

w  €Pa,Ppo? / f €BaPpo”
=0 Pl =0 pl .

We observe that the analytic form of (64) is quite differ-
ent from that of our perturbation solution, given by
Egs. (19) and (60). The former is in the form of a
quotient of two infinite power series in €, each of whose
coefficients are known explicitly. On the other hand,
the perturbation solution is in the form of a single power
series in €, where each expansion coefficient a,’ is given
by a sort of “recursion” relation involving all lower
coefficients ax” with »<l.

The equivalence of the two solutions to low order of
e may easily be verified by means of direct expansion.
In order to demonstrate that the two expressions are
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indeed equivalent to all orders in ¢, we must make use
of the following theorem concerning the quotient of two
power series:

If we write

0 0 0
2 anx"/ Y bak"= 3 cpxn,

n=0 n=0 n=0

(65)
then the coefficients ¢, may be written in the form

1 n
Cn= —b—(a,.— > Cnpbp). (66)

0 p=1

This theorem is easily proved. If we now apply this
theorem to expression (64) by making the appropriate
identifications, the analytical equivalence of the solution
(64) for ax with the perturbation solution (19) and (60)
is easily established. In an exactly analogous manner we
can also demonstrate the equivalence of the correspond-
ing solutions for &y.

We have thus shown that for the special case con-
sisting of the perturbation of a given sphere to a larger
sphere, the solution obtained by our perturbation
method actually agrees analytically with the exact result.
While no other exact solutions are available for com-
parison purposes, we believe it is justified to assume that
the analytical solution developed in the previous sec-
tion represents the exact solution in all cases for which
the series converges.

B. First-Order Solution

For reasons of increased insight into the nature of the
perturbation solution and comparison with previous
results, we shall here present the special case of the first-
order solution explicitly. This is obtained simply by
substituting /=1 into the expressions (51)~(54), which
yields

o= [(2k+1)/2k2(k+1)2ﬂkovk:|Rk1 ,

bit=[i(2k+1)/2k2(k+1)284 ;1S 1

(67)

(68)
where

0

Rk1=po Z Vn[anlglmlhianznknl','ﬂnlano{:knl

n=1

- iﬂnzbno”lknl—' m(n+ 1) ('Yﬂ0+ 67106"0)070"0] 1) (69)

L]

Sp1= Po Z Vn['—Ulnlnkn1+ian2gkn1-ﬁnldnoﬂknl

n=1

+B0’Ern0n"+in (1) (a4 822002 in®].  (70)

Expressions (67) and (68), in conjunction with (69) and
(70), give the first-order perturbation corrections to the
zero-order scattering coefficients @, 8;°, for any value
of k. These results may be shown to be in agreement with
those of Yeh,’ once the latter are modified to apply to
conductors and the analytical errors occurring therein
are corrected (cf. Ref. 15).
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C. Example: First-Order Scattering from an
Oblate Spheroid

As a specific example of the application of the preced-
ing general solution, we shall here calculate the first-
order corrections to the scattering coefficients for the
case of scattering from an oblate spheroid with semi-
major axes of length e(1+4¢) (along the x and ¥ axes),
and semi-minor axis of length ¢ (along the z axis). The
equation of this oblate spheriod in Cartesian coordinates

is then given by

224 (14 ¢)~2(x2+9?) = a2. (71)
In the present calculation we shall only be concerned
with terms up to the first order in e. To this order, Eq.
(71) may be rewritten in spherical coordinates in the

form

r=a(1-+¢ sin%). (72)
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In terms of our formalism, this shape is thus described
by the perturbation function f(0)= sinf=1—x2.19

Our aim is now to evaluate the first-order expressions
(69) and (70) for Rii and Ski. We shall begin by con-
sidering the integrals £xnl, Minl, 0%s°, and uz,?, with
f(@)=sin%d. These integrals are identical with the in-
tegrals given in the Appendix of Ref. 13, which were
there laboriously evaluated by numerical machine cal-
culation. However, by making use of appropriate recur-
sion relations, they may readily be evaluated analyti-
cally, which is accomplished in Appendix B. Their values
are given respectively by Eqgs. (B19), (B21), (B23), and
(B27) of Appendix B. As may be seen from these ex-
pressions, the various integrals which enter into expres-
sions (69) and (70) for Ry and Sk; are nonvanishing for
only a few values of #. Accordingly, the infinite-series
expressions become finite.?0 If we now substitute the
values (B19), (B21), (B23), and (B27) into expressions
(69) and (70), these take the explicit form:

Ri1/po=vi—s(i—s'+Br-2'0r—2") Er t—2'— i1l (h1?+ 81205 1°) k. 11’
+k(k—1) (Y114 0110117 01 k1 T+ vilr +B1ar®) £l — Wigal (k1 F B 120012 0k g1
+ (1) (k+2) (V14104 8141% 1412 01 11T v iy oo B2 @ 20) Ekppet, (73)

Si1/po= ol (er—o>+Br—2br—2") &, b2+ (= 2)(k— 1) (y 522+ 85— o%b 5ot 12"
= vi1(er-1"+Br-1'0k1") mi k1" i (@i H-B1261") £+ BB+ 1) (7404 8,210 i ]

— i@+ Br11' 1)k kg1 ko (g 22 By 220rs2®) £k oy o

The coefficients a,?, B2, v4Y, 6.%; and @,°, 8," are known
constants which may be calculated by means of their
respective defining equations. Accordingly, Egs. (73)
and (74), in conjunction with Egs. (67) and (68),
represent explicit analytical expressions for the first-
order perturbation corrections for all of the scattering
coefficients a@i°, b:°; k=1, 2, 3---. These expressions
may then be used in appropriate formulas to calculate
the over-all first-order perturbation corrections to any
physical quantity of interest, such as various scattering
cross sections, at any arbitrary frequency.

For purposes of even more specific illustration, we
shall now consider the so-called “Rayleigh region” in
more detail. This region corresponds physically to the
case where the wavelength of the incident wave is very
large compared to any characteristic length of the scat-
terer. Analytically, this approximation is equivalent to
keeping only the leading terms in the expansion of all
expressions as power series in the parameter py=*ke
(«<1). As is well known, only the lowest order (n=1)
scattering coefficients @, and b; need to be considered in
the Rayleigh limit. Accordingly, we need only calculate
the leading terms of the first-order correction terms a,},
bt

These are obtained by substituting Z=1 into the gen-
eral expressions (73) and (74). Inasmuch as the summa-
tion of the finite series from which these expressions

+ (B+2) (k+3) (Vir2'+ 01420y opir 1201, (74)

were derived commenced at #=1, we note that for k=1
the terms corresponding to n=%—2 and n=Fk—1 are
absent. Accordingly, substituting =1 into expressions
(73) and (74), these reduce to

R11/po=v1(a1'+B1'01") 1’ — iyl (a?B22020) 1o
+ 6(72°+ 520520)012°]+V3<031+)831030) FSTLN (75)

Su1/po= i (ar*+B8:10) 1+ 2(v10+ 811 s,
—va(as'+B2as%) 12"+ v (s +B35%05°) £151
+12(’Ys°+530b30)ﬂ130:|- (76)
We shall now proceed to evaluate these expressions
numerically. The numerical values of the required in-
tegrals may be obtained by substituting £=1 into ex-
pressions (B19), (B21), (B23), and (B27) of Appendix
B, which yields
5111=8/5y 51312 ""64/35) 77121': "56/5 )
0'120'—“8/5, ,LL110=8/15, ,u13°=32/5.
The remaining constants may be evaluated in the

Rayleigh limit by making use of the expansions of the
spherical Bessel functions 7.(p), 2. (p) as power series

(77

1 It should be emphasized that this is true only to first order in
e. The exact function 7(f) appropriate to the oblate spheroid
described by Eq. (71) is more complex.

* This statement remains true even in higher orders, although
the number of nonvanishing terms will increase.
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in p. The leading terms of these expansions are g i ﬁ <~_i(2n— 1) !!)] (31
n - 3
Jnlo)~p"/(2n+1N, (78) Ldp® p" p=p0
- n—1
D (p)~—i(2n—1)11/p1, (79) [ (P %
e\t 1 ’ (82
where the double factorial is defined by (2n41)!! =apTMan */ =o=po
=1X3X5:--(2n+1). Substituting the expansions (78) mdr i 2n—1)1!
and (79) into the respective defining Egs. (22), (27), (32), S P= ——(—T>] (83)
and (33) for a.?, 8.7, v»?, and 8,7, we obtain Ldp? p p=p0

(80)

ar pn+1
2.
dp\@2n+1)11/ 1,

Making use of these expressions, the coefficients required
in the calculation of R1; and Sy are easily evaluated
to be

ar'=2p0/3, ar’=%; a'=po*/5, @s?=2po/5; as'=4pe?/105, az?=4py?/35;
B1'=—i/po, Bi'=i/ps’, Bi*=—2i/p’; Ba2'=6i/pe®, Bat=—18i/po%;

Bst=45i/po%, Ba?=—180i/pe®; ~v1°—13,

4
v2"=po/15, 3= pe?/105; (84)

610—‘—‘- "“i/pos, 620= —31'/p04, 630= - 151:/[)02.

The leading terms of the required zero-order scat-
tering coefficients @,° b,° are obtained by substituting
expressions (78) and (79) into Egs. (11) and (12). This
yields

. iP02n+1 (85)
o T =D
i(n+1)pentt

b.0= . (86)
n(2n—1)112n+1)1!

From these expressions, the required numerical values
are found to be

a'"=—ipe*/3, as'=—1ipo"/45,
0= —ips7/(15)(105); b:o="3ipe,
630;' 474)()7/(45)(105) .
Finally, the required numerical values for », are ob-
tained from Eq. (7).

We are now ready to evaluate the first-order pertur-
bation corrections @;! and b;! in the Rayleigh limit.
Substitution of the numerical values (77), (84), and

(87) into expressions (75) and (76) yields after some
algebra,

R11= - (84/15)’1,p02, Sn= b (32/5)[)0 . (88)

According to Egs. (67) and (68), the ﬁrs.t-order pertur-
bation coefficients ¢;! and &,! are then given by

bzo’-—" ip05/30 ) (87)

ayl=—(3/881%1) Ru1, bi'=(3i/86:1)Su, (89)
which, together with (88), yields
a:'=(21/15)ipe®, b1'=(8/5)ipe®. (90)

Finally, the complete scattering coefficients which con-
tribute in the Rayleigh limit are obtained by

1= a1°+ 6(111, b1—‘= 61°+ 6611

1)

and are numerically equal to

21 12
Q= —%ipo3<1*—*g‘€> ’ b1=~§-ip03<1+‘§6) . (92)

The above results show that in this case the boundary-
shape perturbation, represented by e contributes al-
ready in the lowest order of the expansion in po=ka.
Thus, if the value of € is non-negligible, it would be
meaningless to attempt to calculate the scattering from
an irregularly shaped conductor more accurately by
taking into account terms of higher order in ka, i.e., to
go beyond the Rayleigh limit, while neglecting the
deviation of the conductor from a spherical shape. Yet
this has frequently been the case in approximate cal-
culations reported in the literature.

As an example of the first-order contribution of the
shape perturbation to a cross section, we may consider
the total scattering cross section which is defined by

dr »
o'scatzﬁ lgl (l+%)(lali2+ lbll2)' <93>

For our present purpose we need only keep the first
term corresponding to /= 1. If we then substitute expres-
sion (91) for @; and by, the result is

Tseat/ 0= (10/3)po*(14(4/25)¢) (94)

where the scattering cross section has been normalized
to the geometric cross section seen by the incident wave,
which for our geometry is given by o,=wa%(1+4¢)?
~71a*(1+2¢).

In carrying out the above calculation, we have made
no effort to choose an “optimum” radius for the unper-
turbed sphere. As will be discussed more fully in Ap-
pendix A, an optimum choice for the unperturbed
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sphere would serve to improve the convergence of the
general perturbation series.

The chief purpose of the illustrative example calcu-
lated in this section has been to demonstrate that while
the general series expressions obtained in Sec. III may
at first sight appear forbiddingly complex, they are in
fact basically simple to evaluate. Thus, for the case of
an oblate spheroid, we were readily able to obtain ex-
plicit finite analytic expressions for the first-order per-
turbation corrections to all scattering coefficients ay,
by, (k=1, 2, 3,---), and to evaluate these numerically
in the Rayleigh limit without having to resort to
machine calculation.

V. DISCUSSION

The only electromagnetic scattering problems which
have so far been solved exactly by analytical means have
been the scattering from perfect spheres and infinite
right circular cylinders. The present work greatly ex-
tends the class of bodies for which exact analytical solu-
tions may be obtained. In particular, in the work re-
ported here we have been able to obtain an exact
analytic solution to the scattering problem for the case
where the scatterer is a cylindrically symmetric perfect
conductor, with the incident plane wave traveling along
the axis of symmetry.

This was accomplished by developing an appropriate
boundary-perturbation technique for treating the full
boundary-value problem. It should be emphasized that
the perturbation technique was used only as a tool in
obtaining the final solution. The solution itself is exact,
provided that the series converges, inasmuch as no ap-
proximations of any kind, either physical or mathe-
matical, were introduced. It is thus equally valid in the
near and far zones, as well as over all ranges of the
physical parameters of interest.

The general solution is similar in nature to the well-
known Mie series, although it is of course more compli-
cated than the latter, inasmuch as each individual scat-
tering coefficient @, b, is itself expressed in terms of
a perturbation series. However, these perturbation series
differ from the more familiar perturbation series in the
literature, in that in this case we are able to obtain an
exact analytical expression for the contribution of every
order in the perturbation.?! This enables us to obtain
numerical results in a completely routine and systematic
manner to any desired degree of accuracy. The form of
the final solution obtained is thus exceptionally well
suited for numerical evaluation by computer.

The present work was restricted to the cylindrically
symmetric case and to the scattering from perfect con-
ductors. The next stage will be to generalize the method
to the general problem of a completely arbitrarily
shaped conductor, with an arbitrary angle of incidence

21 In fact, for the case of a sphere we were able to demonstrate
the analytic convergence of the perturbation series to the exact

result.
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of the incident wave. This includes such special cases of
practical interest,as the scattering from cylindrically
symmetric shapes at arbitrary angles of incidence. Once
the general solution has been obtained for conductors, it
may subsequently be readily generalized for scatterers
of arbitrary, though constant index of refraction (e.g.,
plasmas). Finally, it should also be possible to apply
similar techniques for arbitrarily shaped plasmas with
a varying refractive index, although in that case the
fundamental spatial solutions would no longer be Bessel
functions.

APPENDIX A: CHOICE OF OPTIMUM
UNPERTURBED SPHERE

The general method based on a perturbation tech-
nique which was developed in this paper is restricted to
perfect conductors whose boundary surface in spherical
coordinates can be described by the equation

re=a[1+¢f(0)]; |ef(0)| <1, 0L6<w, (A1)

where @ is the radius of the “unperturbed sphere”. At
first sight it would appear that Eq. (A1) is capable of
describing only shapes which do not differ too drastically
from the unperturbed sphere. However, this limitation
is largely only apparent. We must keep in mind that for
a particular irregularly shaped body there is no @ priori
given “unperturbed sphere.” What is really given as
part of any particular problem is the shape of the sur-
face of the irregular conductor, which may in general
be described by an equation of the form

r=g(0) (A2)

in spherical coordinates. This irregular conductor is now
to be considered as the perturbation of some “unper-
turbed sphere.” Clearly, we are free to choose the
radius @ of this sphere, as well as the location of its cen-
ter at will. Because of these two degrees of freedom, it
is possible to choose unperturbed spheres for an ex-
tremely large class of shapes in a manner such that
these shapes, given originally by Eq. (A2), fit the re-
quirements of Eq. (A1). For example, any convex body
falls into this class. More generally, any shape which
allows of a radial explicit representation can be de-
scribed by Eq. (A1).

Let us assume for the moment that the center of the
sphere is chosen to be identical with the origin of the
spherical coordinate system to which Eq. (A2) (which
describes the shape of the irregular conductor) refers.
We are then still free to choose the radius ¢ of the un-
perturbed sphere. It may be possible to make this choice
in some optimal manner, in the sense of improving the
convergence of the general series solution. Clearly, we
desire to minimize in some average sense the difference
between the irregular body and the sphere of which it is
to be considered a perturbation. Although there is no
unique prescription for choosing such an “optimum”
unperturbed sphere, a reasonable criterion for the
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choice of ¢ would be to a pick a value which minimizes
the average square deviation between the sphere and
the cross section of the cylindrically symmetric irregular
conductor, i.e., to minimize

1 T
A=~ f [5(6)—aTed0 (A3)

by choosing the optimum value of @ to be the solution
of the equation

9A/da=0. (Ad)

The value of ¢ which minimizes A is easily found to be

1 T
a=~/ 2(6)do,
m™Jo

and we may accordingly pick this as the optimum choice
for a.

In the above development we assumed that the center
of the sphere is coincident with the center of the spheri-
cal coordinate system in terms of which Eq. (A2) is ex-
pressed. In most cases which can be envisaged in
practice, the choice of location for the center of the
unperturbed sphere will be obvious. If this should not
coincide with the center of the spherical coordinate
system of Eq. (A2), the simplest procedure would be to
rewrite Eq. (A2) in terms of spherical coordinates cen-
tered at the center of the sphere, and then to use (A5)
for the choice of optimum radius. If in any circum-
stances the location for the center of the unperturbed
sphere should not be obvious, it may be left arbitrary
and determined by varying Eq. (A3) with respect to
both ¢ and the location of the origin of the unperturbed
sphere. As an illustration of the application of the fore-
going, let us consider the prolate spheroid described by
the first-order equation

7s=a(1+ € sin?f) ,

(AS)

(A6)

which was used as an example in the calculation carried
outin Sec. IV C. No attempt was made there to optimize
the radius of the unperturbed sphere.

In order to avoid confusion in notation, let us denote
the radius of the unperturbed sphere by ¢ and the cor-
responding perturbation parameter by 8. Thus ¢ re-
places @, and & replaces e in all of the equations (A1)-
(AS). In particular, the standard form (A1) for the
oblate spheroid, considered as a perturbation of a sphere
of radius ¢ now takes the form

re=c[1458(6)]. (AT)

The function g(f) describing the actual oblate spheroid
under consideration is given by Eq. (A6). The optimiza-
tion criterion (AS5) thus becomes

1 T
c=—/ a(14€ sin20)do=a(1+1e). (A8)
0

™
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The optimal radius ¢ for the unperturbed sphere corre-
sponding to the oblate spheroid described by Eq. (A6)
is thus not a (as was used in Sec. IV C) but c=a(1+3¢).

If we now equate Egs. (A7) and (A6), with the value
of ¢ given by Eq. (A8), we obtain

re=c[1+(e/(1+3€))(sin’0—3) ], (A9)

which takes the place of the standard form (A6). Ac-
cordingly, the result of optimizing the unperturbed
sphere for the case of the prolate spheroid described by
Eq. (A6) is to change the perturbing function f(6) from
f(@)=sin?0 to f(6)=sin?0—%, while at the same
time changing the perturbation parameter from e to
¢/(141¢), and the unperturbed sphere radius from a to
a(1-+3¢). Inasmuch as in our example e> 0, we will have
6 <, and accordingly the convergence of the correspond-
ing series solution is likely to be improved as a result of
the optimization procedure.

APPENDIX B: EVALUATION OF
FIRST-ORDER INTEGRALS

This Appendix is devoted to the analytical evaluation
of the integrals needed to obtain the explicit expressions
for the first-order perturbation coefficients a,!, b;' for
the case of an oblate spheroid. With f(6)=sin?, these
integrals are

Ek,}:/ £y SIN®0d0
0

P, Pyt dP.M(x) dPi'(x)
= / sin30[ 1
0 sin2 dé do

]de, (B1)

kg
Nien' = f Nkn SIN20d0
0

u dP;! dP!
=/ <Pn1 + Pt )sin26’d0, (B2)
0 do do

opnd= 2/ sinf cosfP,'(x)P'(x)do, (B3)
0
T del

Mkn®=2 / sin20 cosfP,'—d9. (B4)
0 ae

These are the same integrals which were evaluated by
means of numerical machine calculation in Ref. 13.
However, as we shall see, through judicious use of ap-
propriate recursion relations they may readily be evalu-
ated analytically.

To begin with, we shall first calculate some prelimi-
nary auxiliary integrals. The first of these is

Apn= / Pii(x)P,(x) sin6df=0, k#n
° 2k(k+1)

—(ZT—[—I)—, k=n (BS)
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which is merely the well-known orthogonality property
of the associated Legendre functions.??
Next, let us consider the integral

1

Bkn=/ cosf PiplP,! sin6d0=/
0 -1

Making use of the recursion relation??
wPu'=[1/(2n+1)][nPui'+ (n+1)Pars'], (B7)

this integral may be rewritten in the form

aPylP,dx. (B6)

1

[%Pn.(_l]Pkl‘f— (%+ I)Pn_11Pk1]d9€

Bkn:

(2n+1)

[nA k,n+1+ (%+ 1)A k,n—l] . (BS)

:(Zn-H)

If we now apply the result (B5) to the second equality
of expression (B8), we find

_ 2(k—D(kA+1)
CQk—1)(2k+1)]

2k(k+1)(k+2)

=, n=k}+1
(2k+1)(2k+3)

=0, otherwise. (B9)

Next, we shall consider the integral

4 dP,'(x)
C;m=/ sin?0 Pyt de
0

1 dP
(32— 1) P! - dx. (B10)

-1 X

Making usc of the recursion relation??

(a2—1)(dP,/dw)= [1/(2n+1)]

X[1*Puir' = (n41)"Par'], (B11)
this integral may be rewritten in the form
Cin=[1/Cn+1)[n*Ax n1— (n+1)*4x,n1]. (B12)

If we now again apply the result (B5) to expression
(B12), we obtain

2(k—1)%(+1)

C Qk—1)(2k+1)
2k(k+-1) (k+2)*

= T a=hkt1
(2k—1)(2k-+1)

=0, otherwise. (B13)

22 See, for example, W. R. Smythe, Static and Dynamic Elec-
tricity (McGraw-Hill Book Co., New York, 1950).
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Finally, we consider the integral

T APyt dPit
Dkn=j sin3@ 0
0 dé

ao

! AP, dPy!
=/ (1—x?)2 dx.
-1

dx dx

(B14)

Applying the recursion relation (B11) twice, we may
write
—1)X(dPn"/dx)(dPy'/dx)=[1/(2n+1)(2k+1)]
X[n2k2Pn+1‘Pk+11+ (n+1)2(k+1)2Pn_11Pk+11
—k*(n41)2P 1 Py —12(k+1)2P 1 Prs']. (B15)

Accordingly, expression (B14) may be written in the
form

Din=[1/2n+1)(2k+1)]
X[k A kg1, np1+ (04+1)2(k+1)2A 41 n1— k2(n+1)?
XA k+1,n_1—n2(k+ 1)2A k—l,n+1:| . (Blé)

Applying the result (BS5) to expression (B16) yields

=20k 22— Dr(k+1)?

, n=k—2
(2k—3)(2k—1)(2k+1)
(DB GRF2)
k1) (2643)
k—1)(k+1)3
+( )kt )]’ s
(2k—1)
—2k*(k+-1) (k+-2) (k+3)*
= . u=k+2
(2k+1)(2k+3) (2k+5)
=0, otherwise. (B17)

W’e are now prepared to evaluate the required integrals
(B1)-(B4). Thus, the integral (B1) may be written in
the form

fral= / P, P! sindd6

dP,'d
—I—/ sin’
dg do

If we then make use of the results (BS) and (B17), we

(B18)
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obtain
—2(k—2)*(k—1)k(k-1)*
Eenl= , n=k—2
(2k—3)(2k—1)(2k+1)
m2k(k+1){1' 1 [EG+2)
@D U el 23
(k—1)(k+1)3
N

2k—1
—2k2(k+1)(k+2) (k+3)? ‘
= s n="k+2
(2k41)(2k4-3)(2R+5)
=0, otherwise. (B19)

In view of Eq. (B10), expression (B2) may be written
in the form

Nn'= Cn+Ch.

Substitution of the expression (B13) immediately yields

 2k(A1)(—1)

(B20)

Nkn
(2k—1)
[(Ie—l) (k-f-l):l
X - , n=k—1
(2k+1) (2k—3)
_273(/6+1)(k+2)
@kt
k (B+2)
l:—————— ], n=rk+1
243 (2B—1)
=0, otherwise. (B21)

We now turn to the integral o1,% given by Eq. (B3)
as

Tend=2 / sind cosfP,'(x)Pi'(x)d0
0

1

=2/ 2P (x)Prldx. (B22)
-1
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In view of Eq. (B6), and the auxiliary result (B9), this
integral is found to be
4(k—1)k(k+1)
" Q= 1) k1)
AR(E+1) (k+2)
QD)
=0,

Tkn =

n=k—1

n=k+1

otherwise. (B23)

Finally, we consider the integral (B4), which may be
rewritten in the form

1 1

k
win®=2[ (x2—1)xP,'—dx. (B24)
—1 d’\

Making use of the recursion relation (B11), the inte-
grand may be written as follows:

dP;! x Pyt
(x2—1) APyl =
dx (2k+1)
X[F2Prsrl— (k+1)2Psa'].  (B25)
In view of Eq. (B6), the integral (B24) thus becomes
wrn®=2/(2k-+1)[k2Brr1,n— (k+1)?Bi1,.]. (B26)

Substitution of the result (B9) into expression (B26)
finally yields:

 —4(k=2) (k= Dh(k+1)?

, n=rk—2
(2k—3)(2k—1)(2k+1)
_4k(k+1)r/a2(k+2)
@+l (2613)
(k——l)(k+1)z:|_ s
r—1) 1
4k2(k+1) (k+2) (k+3)
= , n=k+2
(2k+1)(2k+3) (2k+75)
=0, otherwise. (B27)



