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Self-consistent models of uniform universes are provided by coupling Einstein’s equations to the one-particle
Liouville equation. Correlations between the “particles” of the cosmic gas are thus neglected. As a conse-
quence, an equation of state is not needed in the theory but is, rather, provided from these statistical con-
siderations. It is shown that an expanding self-consistent uniform universe behaves asymptotically as the
relativistic polytrope p~ub/, and finally, as an expanding Friedmann universe. Near the possible singularity
R=0 (R=scale factor), self-consistent models are hot models. Friedmann models are shown to be a particular

case of self-consistent models.

1. INTRODUCTION

N a preceding paper we studied some simple proper-

ties of the self-gravitating relativistic gas.! Essen-

tially, we used a Vlasov approximation. In other words,
the relativistic one-particle Liouville equation

(V]
9,9 (x”,u”) — Tag* (") uouf— (x*,*) =0 (1.1)
out

was coupled to Einstein’s equations

RHV—%RguV—)\guv=XTuv (1.2)

through the definition of the momentum-energy tensor

d:;u
T"V(x/’)=m(\/g)/ —z—‘o—f)‘c (wP uP)uru (1.3)

In the following the metric tensor g is of signature
(+———) and g=|det(g*)|. We also use c=1, where
¢ is the velocity of light in a vacuum. In Eq. (1.2), R,,
is the Ricci tensor, R is the scalar curvature, and \ is
the cosmological constant. X denotes the gravitational
constant. The T',s*’s are the well-known Christoffel
symbols of the second kind. In Egs. (1.1) and (1.3),
9N (xP,up) is the invariant distribution function de-
scribing the gas. In Eq. (1.3), m is the mass of a typical
particle and the integral is extended to the hyperboloid

w>0 (1.4)

except when dealing with particles of vanishing mass. In

guw(@)urur=1,

* Laboratoire associé au Centre National de la Recherche
Scientifique.

1 Ph, Droz-Vincent and R. Hakim, Ann. Inst. H. Poincaré (to be
published).

this latter case the integral is extended to the light cone
u20. (1.4

Finally, we will use the Einstein summation convention,
Greek indices running from 0 to 3 and Latin ones from 1
to 3.

Since no explicit solution of Einstein’s equations is
known in terms of an arbitrary momentum-energy
tensor T, it was of course impossible to get a Vlasov
equation as is commonly done in the case of electro-
magnetic interactions? (i.e., the electromagnetic field is
expressed as a functional of the distribution function
and next eliminated in the one-particle Liouville equa-
tion). Accordingly, we obtained a linearized kinetic
equation by considering only small deviations of given
“background quantities” (i.e., g,» and 9). It then
follows that our previous paper can be mainly applied
to problems of stability. We also stressed that the only
known relativistic self-gravitating system where collective
effects are dominant is constituted by the universe as a
whole.?

In this paper we deal with homogeneous, isotropic
cosmological models. It is indeed well known that, in
this particular case, Einstein’s equations reduce to two
differential equations* for the pressure p, the mass

gur(@P)uru’=0,

2 See, e.g., S. Gartenhaus, Elements of Plasma Kinetic Theory
(Holt, Rinehart and Winston, Inc., New York, 1964).

3 This is not completely true since the first stages of the gravi-
tational collapse of a massive star is another such example. How-
ever, as the star collapses, the neglect of correlations is less and
less valid.

4 See, e.g., H. Bondi, Cosmology (Cambridge University Press,
Cambridge, 1961), 2nd ed.; G. C. McVittie, General Relativity and
Cosmology (Chapman and Hall Ltd., London, 1965); R. C.
Tolman, Relativity, Thermodynamics and Cosmology (Clarendon
Press, Oxford, 1958).
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density u, and a scale factor R(¢), sometimes called the
“radius of the universe.” The problem is fully de-
termined when an equation of state connecting p and u
is known. Here we reverse the procedure used previ-
ously!: Instead of eliminating the field (or rather the
perturbation of the gravitational field), we rather
eliminate the distribution function involved in 7,,;
then 7', becomes a functional of g,, rather than of 9t.
This is possible only because, for a uniform model
universe, the one-particle Liouville equation is easily
solved. In other words, p and p are expressed as func-
tions of the scale factor R(¢) and an equation of state is
not needed. Furthermore, $ and u depend on an initial
distribution function which characterizes the state of
the universe at time {=0. Doing so, we obtain more
general cosmological models than the usual ones. When
they represent an expanding universe, all these models
tend asymptotically towards expanding Friedmann
models,* i.e., asymptotically describe dust-filled uni-
verses (p~0).

At this point we have to emphasize strongly that, in
spite of the fact that no equation of state is needed,
there is still an arbitrariness in our models: the initial
distribution function. At first sight, it could appear that
this latter arbitrariness balances one of the equations of
state to be chosen in the usual models. However, this is
not so since the self-consistent models restrict the class
of admissible equations of state, although we are not
yet able to specify them more precisely.

In Paper IT a more detailed analysis of self-consistent
models will be studied and some refinements given.
Section 2 is devoted to the basic assumptions and
definitions used throughout this paper. In Sec. 3 the
main general features of consistent models are studied.
In Sec. 4 we discuss our results.

2. BASIC ASSUMPTIONS AND EQUATIONS

In order to show the manner in which the present
formalism differs from the traditional one for uniform
cosmological models, we have to be very careful while
explicating our basic postulates. Accordingly, we first
recall the usual assumptions, their implications here,
and the hypotheses added.

(1) The universe may be considered as a relativistic
gas whose molecules are galaxies (or clusters of galaxies).
Therefore we shall describe this gas in a statistical way
using methods developed elsewhere.®6

(2) Correlations between “molecules” of the cosmic
gas are neglected ; the cosmic gas is sufficiently diluted.
Hence only collective motions are considered. This
amounts to describing the universe with a kinetic
equation in the Vlasov approximation; i.e., the cosmic
gas is described by Eq. (1.1) coupled to Egs. (1.2) and

5 See the general bibliography given in R. Hakim, Ann. Inst. H.
Poincaré 3, 225 (1967).
( 6S‘;E)e also R. Hakim, J. Math. Phys. 8, 1315 (1967); 8, 1379
1967).
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(1.3). Of course, near a possible singularity this is not
very accurate.

(3) In the space-time manifold there exists a con-
gruence of timelike, rotational, and shear-free geodesics
denoted by %# which corresponds to the average motions
of the galaxies (i.e., when one neglects their random
motions). This is Weyl’s hypothesis. More precisely,
besides @*i,=1, u* satisfies

dut/ds+T gruaif=0, (2.1)
Wup= (V,,?Z,,—V.,’IZ,,)A“"A,,"=0, (2.2)
ouv= (Vo Vil ,)APA, —304,,=0,  (2.3)

where A,, is the projector in the space orthogonal to %*,

A= gu—0uU,, (2’4)
and where 6 is the scalar of expansion,
6=V, a*. (2.5)

These postulates and assumptions immediately lead to
the existence of a cosmic time, say, f, such that the
spacelike hypersurfaces ¢=const are orthogonal to the
congruence defined by %*. Possibly the “congruence”
intersects at a given point in the far past.

(4) The gas representing the universe is a perfect fluid
whose stream lines are defined by @*. Equivalently, the
distribution function 9t(x*,#*) depends only on one 4-
vector (besides #”) which we have already chosen to be
@*, Consequently, it follows that the momentum-energy
tensor T# is a linear combination of the only two
tensors at our disposal: g#” and @*a@*. Hence it is of the
usual form

Twr= (k- pisir— pg»”. (2.6)
This means that our gas is free from transport phe-
nomena, such as heat conduction or viscosity.

(5) The universe is isotropic and spatially homo-
geneous. The spatial homogeneity implies that, in
comoving coordinates, the two scalars u and p do not
depend on the spatial coordinates x% although they
generally depend on x°=t. Note that the isotropy
property is partially included in the form of 7#* given by
Eq. (2.6) since the pressure is isotropic and @* is shear-
free. Furthermore, isotropy requires that 9 (x”,u*) de-
pend on %’ only through the combination % u,, i.e., in
comoving coordinates that 9 depend on #iu; (or ).

Postulates (3), (4), and (5) joined to Einstein’s
equations (1.2) lead, as is well known,*7 to the so-called
Robertson-Walker line element?:

ds*= g, dxrdx”
=df— R{ K (r)[ (do")*+ (da?)*+- (da?)*],

written in comoving coordinates. In Eq. (2.7), R(¢) is

2.7)

7J. L. Anderson, Principles of Relativity Physics (Academic
Press Inc., New York, 1967), Chap. 14.

8 H. P. Robertson, Astrophys. J. 82, 284 (1935) ; 83, 257 (1930);
A. G. Walker, Proc. London Math. Soc. (2), 42, 90 (1936).
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the yet unknown scale factor, r=[ («)24 (2224 (x*)?]'/2,
and K (r) is given by

K(r)= 143k, (2.8)

where the spatial scalar curvature % can take the values
0, &1.

Simple Properties of the Distribution Function

In order to express the homogeneity of the model in
the distribution function, we first calculate $ and p as
functional of 91 (x*,%”). Using Eq. (2.6), we find

u=TPg g, (2.9)
p—3p=T42%, (2.10)

from which we obtain
p=3(T*Piaitp—T%). (2.11)

Next, inserting the definition (1.3) of 7'*# into Egs.
(2.9) and (2.11), we get

d3%
u=mly/g) / S @y (210

and

dau
p=im(/g) / “ma[un)=-1. @19)

At this stage we want to emphasize strongly that the
mass density u is different from the numerical density p
defined through the numerical current®

d3u
P @)= /o) [ ). @19

In comoving coordinates 9t (x*,u”) =91 (x*,u°) because
of the assumed isotropy. In order to express the spatial
homogeneity of the system in the distribution function,
we use Eq. (2.12). It is indeed not obvious that 9t (x*,u°)
=9U(f,u’). The spatial homogeneity of the system is
expressed by p=u(f) in comoving coordinates and a
glance at Eq. (2.12) does not @ priori imply 9:91=0
since (a) a factor4/g (depending on x*) is involved in the
right-hand side of Eq. (2.12) and (b) the integration is
extended to a subfiber [ the one defined by Eq. (1.4)] of
the tangent fiber bundle of the space-time manifold. In
other words, the domain of integration is x*-dependent
and hence we have to be careful in expressing homo-
geneity. However, this apparent difficulty can easily be
removed by using a suitable coordinate system in the
subfiber (1.4). Since 9T depends on #° we use this
variable to express Eq. (2.12). Taking the Robertson-

9See, e. g., J. L. Synge, The Relativistic Gas (North-Holland
Publishing Co., Amsterdam, 1957).
10 We are indebted to Dr. Ph. Droz-Vincent for this remark.
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Walker line element into account, we have

1=3

w= g,l @D?=[(")?—1]R2()K2(r) (2.15)

and

dyu=u? sinf dudfd ¢ (2.16)

(in polar coordinates in # space), so that finally we
obtain

w()= /“ drmdu® (u®)?[ (u°)2— 1290 (L,x%; u°)  (2.17)

and in the same way,

p=§1rm/ O ()2 — 1P (s ). (2.18)
1

Then Eq. (2.17) immediately implies that 9U(¢,x?; u")
=9U(t,u?), as we expected. It follows that p=p(f) and
conversely.

Isotropy and homogeneity also simplify considerably
the one-particle Liouville equation (1.1). Indeed, the
only surviving terms are such that (1.1) reads

u*(8/38) I (£,u°) — T og®u°uP (9/du®)I (L,u®) =0, (2.19)

and since the only nonvanishing T'"s are
I'i"=—(8/dt)g:i= ROR(DK2(r),
gu=gn={gu=R(OK*(),
Eq. (2.19) is finally written as

0 (8/9)N (t,u®) — R () R—1(2)
X[ (u0)2—17(8/0u0)T (4,19 =0.  (2.21)

A dot on R(?) in the above equations denotes a time
derivative.

It is interesting to notice that, in this statistical
context, the isotropy of the distribution function implies
its spatial homogeneity. Indeed, isotropy implies Eq.
(2.19) plus a term of the form #79,91 and next it is easy
to realize by examining the resulting Liouville equation
that 9 (#,w?; 4%) = 9(¢; «°). This property is obviously a
consequence of the form of the Christoffel symbols, and
hence of the Robertson-Walker line element which we
used in the one-particle Liouville equation. On the other
hand, this line element is derived on the basis of
isotropy (spatial homogeneity is then a consequence of
isotropy by virtue of Schur’s theorem).

(2.20)

3. SELF-CONSISTENT COSMOLOGICAL MODELS

It is well known that the Robertson-Walker line
element (2.7) implies that Einstein’s equations greatly
simplify and finally yield*?

Xu(t)=3R2(O)[k+R2()]—N\,
Xp(f)=—2R() R () —R2()R2(1)—kR2()+\,

(3.1)
(3.2)
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while the conservation of momentum energy V,T#"=0
provides

i/ (k)= =R ()/R (). (33)
Note that only two of the three equations (3.1)-(3.3)
are independent.

Self-consistent models will now be obtained in the
following manner. First, we solve the Liouville equation
(2.21). Thus we obtain the distribution function 9t (Z,x°)
as a functional of R(f). Next, we calculate u(f) and p(f)
with the help of Egs. (2.17) and (2.18). As a conse-
quence, u(f) and p(f) are also functionals of R(f), which
we introduce in one of the two equations (3.1) or (3.2).
[Equation (3.3) would reduce to an identity.] Finally,
we obtain an equation involving only R(f) end an initial
distribution function.

Solution of One-Particle Liouville Equation

Instead of the variable #° we rather use the new

variable
v?=[(u")*—1] (3.4)
and the new time variable
r=InR(f). (3.5)

In the following we shall choose R(¢) such that R(0)=1;
hence 7=0 when {=0. Furthermore, we will denote by
%) a time such that R({)=0 (when it exists).

Let us also point out that v is neither the modulus of
the spatial components of the 4-velocity (this would be
the case only in Minkowski space-time end using
Lorentzian coordinates) nor is it a usual velocity. We
can only say that v is a velocitylike variable.

With the change of variables (3.4) and (3.5), Eq.
(2.21) reads

(8/87)9(r,v) —2(3/9v)N (,0)=0, (3.6)
whose most general solution is of the form
9 (r,9) =9o(v expr) , (3.7

where 97, the initial distribution function, is of course
an arbitrary function. Equivalently, we have

9 (t0)=9[eR(1)],

which shows that vR(¢) is a first integral of the motion
for homogeneous, isotropic universes,!!

It should be noted that, in spite of the appearance of
20 in the above equations (or of v, which is a function of
#°), all the preceding results are covariant since actually
we use the invariant @*#, which reduces to #° in
comoving coordinates.

Now using the variable v instead of #° and Eq. (3.8),

(3.8)

11 This result is of course not new [see, e.g., L. Landau and E.
Lifshitz, Classical Field Theory (Addison-Wesley Publishing Co.,
Reading, Mass., 19627].
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the expressions for the mass density and pressure read

u(t)=4rm / i do(v2+1)12291, (R (), 3.9

p@)=%rm / i do (1)1, (R (1)), (3.10)

0
or, equivalently,
()= 4emR~() / B[P+ RO @) (3.11)
0
and

p(@)=%rmR4(1) / i [ +R2(1) T %%90(v) . (3.12)

In the same way the numerical density p(f) is easily
computed from Eq. (2.14). It turns out that

p()=4mwR~3(2) / i dv v*9o(v) (3.13)

=R-3(£)p(0). (3.14)
Self-Consistent Models

The equations for self-consistent models are now
readily obtained by inserting expressions (3.11) and
(3.12) into Egs. (3.1)-(3.3). We find

drmXR~4(2) / i Ao+ R2(5) ]2 90 (v) = (R)X

w =3R2W[k+E ()], (3.15)
$TmXR™4(1) / o[+ R () 20900 (n) = p (R)X
0 .
= —2ROR()— R ()R2()—ER(®)+), (3.16)

-;ilR—“(t) /o ) dv[vz+R2(t)]"2v2ﬁlo(v)}

=—3R5() {/” dv v*o(v)
X{[#+R: ) J*— 37"+ R () ]} } N CAY)

It is interesting to note that in an expanding universe
and for large R(¢)’s [i.e., when R(#)>R(0)=1], p(R)
and u(R) behave like

p(R)~const XRS5, (3.18)
u(R)~ (another const) X R, (3.19)

Therefore an expanding self-consistent universe behaves
like a relativistic polytrope, i.e., its equation of states
(asymptotically) is

p=const X u¥3. (3.20)
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Furthermore, if R~5%<R3, then p(R)<<u(R) and we re-
cover the expanding Friedmann models* with

w(R)=~mp(R)=mp(0)R?,

i.e., a cold dust-filled universe.
In the neighborhood of {=/, i.e., when R~0, u(R)
and p(R) behave like

p(R)~constX R, (3.22)
w(R)~3 const X R™; - (3.23)

it follows that self-consistent models behave like a
relativistic perfect gas of incoherent radiation (p=3u).
Equivalently, near an “initial singularity’’? the self-
consistent models behave like ultrarelativistic gases,
i.e., like kot models. However, it is important to realize
that our approximations fail long before the time #, is
reached since, for instance, correlations are no longer
negligible near R~0.

Equations (3.11) and (3.12) for p and u exhibit a very
simple dependence on the scale factor R(f) and may be
calculated in a limited number of cases only. However,
the simple dependence on the scale factor permits the
use of approximation methods such as the use of ex-
pansions in powers of R2(f), etc.

A trivial case where p(R) and u(R) are easily calcu-
lated is provided by choosing

(3.21)

p(0)
No(v)= d(v—1vp) (wo=const). (3.24)
47I"Z)02
We then find
u(R) =mp(0)R~*(v+R2)Y2, (3.25)
P (R)=%mp(0)v?R~*(vi2+ R?)~1/2, (3.26)

and, as a consequence, the following equation of states:
1=mp(0) 3p)"*u~"2/vo(u—3p)?, 3.27)

which is very complicated. The choice (3.24) for 9o(v)
means that the invariant

v=[ (G*u,)*— 12 (3.28)

has a given value v,. However, the main interest of
Eq. (3.24) is that it allows us to get another—although
very crude—approximation method by choosing a
superposition of such distributions:

No(v)= E:n o

7=l 41!'7),'

8 (v—1,), (3.29)

and hence to get more and more ‘realistic”’ models.
Finally, let us also note that when v, tends to zero in
Egs. (3.24)-(3.26), i.e., when #'=1 in comoving co-
ordinates (equivalently, when the initial state of the

12Tt is not clear at all whether there exists such an initial

singularity in the self-consistent models. However, a glance at
Egs. (3.1) and (3.2) indicates that this is probable.
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universe is a zero-temperature state), then we find anew
the well-known Friedmann models including the oscil-
lating models as well as the expanding ones.

Another case of initial distribution function has been
considered by Bel, who chose®®

o(ur) « exp(—BA,uPu’) ~exp(—pB1?),
with 3>0.

(3.30)

Equilibrium as Initial State

Equilibrium states deserve a particular discussion
because of their special importance. As is well known,
the equilibrium distribution function is the Jiittner-
Synge density®:

N (a”w’)=[o/4wK ()] exp(—aituy) ,
where K,(a) is the Kelvin function of order 2 and
a=mc%/kT. A question then arises. Does the equilibrium

distribution (3.31) preserve its form in the course of
time? The answer is obviously no, since

N (t) =[a/4nK s (a)] exp{ —a[2R2($)+1]"2}. (3.32)

It has indeed been shown by Chernikov! that (3.31) is
a solution of the one-particle Liouville equation only
when %* is a Killing vector of the space-time manifold:

Vi, +V,id,=0. (3.33)

(3.31)

However, this is not so; it is indeed well known that the
uniform model universes have generally only one con-
formal Killing vector, say, y*, i.e., such that

Vuyv+ Vvyu= ‘P(x”)g,n . (334)

Here y*=R(t)@* and ®(x?)=2R. Therefore @* is not a
Killing vector. However, if we consider a radiation-
dominated universe in equilibrium at ¢=t#o, then it will
remain in equilibrium in the course of time. In this case
the Jittner-Synge distribution function reads®

N (¢,0) = (a®/8n) exp[—avR(2)]. (3.35)

Since the mass of the photon vanishes, #'=v and
9 (,9) may be rewritten as

N (t,u%) ~exp[ —aR (H)atu, . (3.36)

Chernikov has also shown that the Juttner-Synge
distribution function for zero-rest-mass particles is a
solution of the one-particle Liouville equation provided
that @* times a given factor is a conformal Killing
vector. This is precisely the case here. Note that Eq.
(3.35) or (3.36) shows that at time ¢ the system is in
equilibrium at the effective temperature

Tors()=T(O)R(), (3.37)

and hence in an expanding universe T is a decreasing

181, Bel, Astrophys. J. (to be published).
14 N. A. Chernikov, Acta Phys. Polon. 26, 1069 (1964).



1240

function of time, as is obvious from elementary physical
considerations.

An apparently more “realistic” distribution function
for radiation is provided by the “quantum’ one:

N (t,) < {explaR(B)v]—1}7, (3.38)

but, actually, this last distribution function does not
change anything concerning the R dependence of p and
. Since in any case T',*=0 for radiation and because of
the assumption that we deal with a perfect fluid, then
p=3u. It then follows from Eq. (3.3) that

u=puoR™*

p="%mR™.

(3.39)
and
(3.40)

Entropy of the Cosmic Gas

In relativistic kinetic theory®? the total entropy is
obtained through the 4-vector entropy density

dau
SH(x)=— (\/g)/ —;;i)‘c(x",u”) In9t(x”,u)ur.  (3.41)

In comoving coordinates, the only surviving component
of S*is SY i.e., the entropy density. We have

So(t)= —4#/00 dv 90 (4,p) Ind (),  (3.42)
0

and, finally,

SO(8)=S°(0)R(2). (3.43)

The entropy of a given volume of cosmic gas is now

SO)=VS'()~R({)S°(0)R3(?)
=5(0).

Therefore, in this model the entropy of the universe is
constant. This result was, of course, expected since the
Vlasov approximation is reversible; irreversibility occurs
when dealing with correlations between particles or
when dealing with radiation emission.®' It would be
particularly interesting to derive the equations of
motion of a test particle embedded in the cosmological
space-time, taking gravitational radiation reaction into
account. This would probably give rise to an intrinsic
irreversibility of the universe; it is indeed the case for
electromagnetic interactions. %1%

(3.44)

4. DISCUSSION
We now discuss briefly the above results.

(1) In the preceding sections the cosmic gas was as-
sumed to be constituted of particles of only one mass,
while in nature this is obviously not so. Therefore we
have to generalize our equations slightly by considering
the cosmic gas as constituted of different species of

15 R, Hakim and A. Mangeney, J. Math. Phys. 9, 116 (1968).
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particles, i.e., by considering a several-fluids model.
This generalization is rather trivial. We have indecd n
distribution functions 9t; (i=1, - - -, n)—one per species
—which satisfy # one-particle Liouville equations of the
type (1.1) coupled to Einstein’s equations through the
total momentum-energy tensor

Tw= Y T, (4.1)

=1

Each 7 is related to 91; by an expression of the form
(1.3). Furthermore, if we assume that there is only one
vector field, say, @*, at our disposal, then the stream
lines of the various subgases are alike and each T';*” has
the form (2.6). It then follows that

=X i *2)
and
y= Z:u .3)

as expected. The only (little) problem concerns homo-
geneity. However, if we assume—and this is in agree-
ment with observation—that each kind of fluid is
isotropic, then repeating the argument given at the end
of Sec. 2, it follows that 9T;(x”,%”)=:(4,u?), in comoving
coordinates.

(2) Furthermore, we neglected radiation. However, it
is easy to see that radiation may be taken into account
by simply adding a term of the form

p=poR™() (4.4)
and/or

p=3moR(0) (4.5)

to pand (or) p, respectively. Indeed, if we assume that
the radiation fluid is a perfect fluid, the vanishing of the
trace of its momentum-energy tensor provides the
equation of state p=1%u. As a consequence of Eq. (3.3),
Egs. (4.4) and (4.5) follow. Accordingly, there is no
need for a kinetic theory of the radiation fluid. However,
such a kinetic theory is really needed if one seriously
wants to consider transport phenomena which occur
near the initial singularity when our approximations
fail.

(3) Near a possible initial singularity the considera-
tion of only collective motions is no longer adequate and
some refinements are necessary. First, we no longer have
galaxies but only elementary particles, radiation, and
neutrinos. Secondly, mutual transformations, nuclear
reactions must be dealt with. Third, correlations must
be properly taken into account.!® We shall come back to
these refinements in Paper II.

16 A simplified description of the initial fireball is being per-
formed by H. Y. Chiu and A. Salmona on the basis of the Boltzmann
equation (A. Salmona, private communication).
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(4) In Sec. 3 we found that Friedmann models are
particular cases of the self-consistent models. At first
sight this might be surprising since Friedmann models
are such that u~ R~3(f), whereas self-consistent models
are such that u~R™*(f) near the singularity. In fact, we
must point out that this last evaluation was not derived
rigorously but rather on the basis of implicit regularity
hypotheses. Actually, the choice 91o(v)~8(v) /12, which
leads to Friedmann models, amounts to choosing a
rather ““irregular” initial distribution. [ Note that §(v)
=§(v){2n? sinf ?} ]

(5) The usual red-shift formula has been generalized
by Bel®® to the case of an arbitrary source-observer
relative motion, and he gave an interesting application
of the above ideas which is shown to be valid in more
general cases than the one he considered.

With our notations, Bel’s formula reads

14z=v/vo=a(t,v)/ao(to,v0), (4.6)
where

a(t,v)=R1(1)[ (v*+1)"2—1v cosf]. 4.7

In Egs. (4.6) and (4.7), » is the proper frequency, v is
the observed frequency, and 6 is the angle between the
spatial velocity of the source and the emission direction.

The quantity a,is defined in the same way as a except
thatitreferstothe observer’s arrival time, the observer’s
g, and the angle between the observer’s motion and the
direction of the signal 6,.

Therefore, we shall be able to calculate the average red
shift and its dispersion for a typical galaxy at time ¢. To
do that we need a conditional distribution function (x”
being fixed; x, is the space-time position of the typical
galaxy). Elsewhere! we have shown that such a con-
ditional distribution is provided by

N (" | ) = ura, I (2"yw) /[ g# (") ju (@) M2, (4.8)
Here we have!”
9 (t|u?) = [R(8) /p (0) Jud9 (¢,°) (4.9)
and finally, we get
Rl = 1) =2 o R e]. (4.10)
v)= )= 0 v]. .
p(0) p(0)
It follows that {(a(¢,v)) and {(a?(,9)) are given by
R=(@)
= (lg 2 ol?
= JEEexe
X ([ R () ]2 —v cosf)  (4.11)
and ()
=" X0
XA+ R2(£) J2—wv cosf}2. (4.12)

17x does not appear because of homogeneity. Note also that all
average values calculated with the help of this conditional proba-
bility depend implicitly on the hypersurface /= const. In Ref. 15

COSMOLOGICAL MODELS. I

1241

From Egs. (4.11) and (4.12) we see that, in an expanding
universe and for large R’s, we generally have

(a(tp))~R(D),
(Latn) P~ R2(Q).

As a consequence, the dispersion!8 of a(t,v) behaves as
R~2(?) and hence there exists a dispersion in red shift
(due to proper motion) which decreases in an expanding
universe as a function of the emission time. It is inter-
esting to note that the behavior (4.13) and (4.14) of (@)
and (a?) is the same as that given by Bel,*® using a
Gaussian distribution. Equations (4.11) and (4.12) may
be simplified by using polar coordinates, the polar axis
being chosen as the axis of the emission direction. We

(4.13)
(4.14)

find

(a(t))=RO[u()/mp(®)]. (4.15)
It follows that the red-shift formula now is

. <Z>=<a(t,v)>_R(to) r(0) (.16)

@  RQ) mp(t)’

where we have chosen v,=0. Equation (4.16) shows
that, in an expanding universe and when R(#)>>1 [i.e.,
when wu()~mp(t)], we recover the usual red-shift
formula.

In the same way we find

(a2(t,0))=R2()+XR(t), (4.17)
with
167 0
X:T ‘1(0)/ dv v*9o(v) . (4.18)
The red-shift dispersion is then
t=a (@)= (@)
Ko, »0 J+XR2@ (4.19)
rROL mp)d R
or
u() (1) (mo(1)) *
o= 21— . (420
(1) [1 mp(t)]+X R2(4y) {u(t) } (+.20)

Similar considerations led Bel to the conclusion that
“the dispersion of the red shift is an increasing function
of the source-observer distance provided this distance
is large enough.”’ This conclusion is still valid here
for more general distribution functions than Gaussian
densities. However, more accurate evaluations are
necessary before convincing conclusions may be drawn
as to the observed red-shift dispersion of quasars. In
the same way, we can obtain the dispersion of other

we pointed out that the definition of such a conditional distribution
function is generally ambiguous except in the case where we know
only one 4-vector. This is the case here.

BTt is clear that, since the choice of 9o(v)~5(v) leads to
Triedmann models, these models cannot present a dispersion of
red shift (absence of random motions).
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observable quantities. This is studied in detail in
Paper II.
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APPENDIX A

The calculations of u(R) and p(R) can be performed
only with a limited number of physically meaningful
initial distributions. One of them is

No(v)=p(0) (c?/87) exp(—av), o>0. (A1)

Equation (A1) would correspond to pure radiation if
the expressions which give p and p in terms of 97, would
be modified (for radiation #* is isotropic, #*#,=0, and
the various formulas given previously would no longer
be valid). However, if we consider that the initial state
is extremely hot and in equilibrium, i.e., that the parti-
cles of the universe!? are ultrarelativistic, then Eq. (A1)
is a good approximation for one species of particles.
Indeed, taking v instead of #° amounts to neglecting the
rest-mass energy with respect to thermal energy. Note
that a=mc?*/kT. This approximation will be valid as
long as the cosmic gas may be considered as ultra-
relativistic, i.e., as long as

aR()>1.

In other words, this approximation will be valid as long
as the effective temperature

Tetr=TR({)>mc. (A2)
Now, using Eqs. (3.9) and (3.10), we obtain
r(R)=p(0)(’/8m)R~*(?) (9*/ de?) L[+ R*(H) ]V*  (A3)
and
p(R)=p(0)(o*/8m)R™9"/da* L[+ R () I, (Ad)

InEqgs. (A3) and (A4), £ denotes the Laplace transform.
These Laplace transforms are found to be®

L[+ R () 2= {r{H[aR(H)]—N[aR(®]} (AS)

19 Here, in the initial state, the particles of the cosmic gas are not
galaxies—which are not yet formed—but rather elementary
particles.

20W. Magnus, F. Oberhettinger, and F. G. Tricomi, T'ables of
Integral Transforms, edited by A. Erdélyi (McGraw-Hill Book
Co., New York, 1954).
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and

L[+ R ()]
=[xR(®)/e{Hi[aR()]-Ni[aR(H)]}, (A6)

where N and V; are Neumann functions of order 0 and
1 and where Hy and H; are Struve functions of order 0
and 1.

APPENDIX B

It may be of interest to obtain a true Vlasov equation
for 9t(t,0). This may be easily effected if we notice that
we have to couple the following equations:

Liouville equation:

(8/30) 3 (t,0)—R(OR()v(8/dv)I(tp)=0 (B1)
and

Einstein equation: Xu(R)=3R2(t)(k+E2)—\ (B2)
through Eq. (3.9) for u(R). Finally, we obtain

a 0
—9F [ drmx / dv (2 1)129T+4\
EY 0

d 0 2
-3 [:<———47rm/ dv v*(v?+ 1)1/29"6)
dR 0

0 —2 1/2
X (41rm/ dv [ (P4 1)12— L2 (224 1)‘”‘{}91) :, }
0

X0(8/80)=0, (B3)

which is highly nonlinear, as expected. In Paper II we
shall use a modified form of this equation to study
problems of stability of the self-consistent models
against an inhomogeneous perturbation.

APPENDIX C

From the one-particle Liouville equation (3.6),
hydrodynamical equations may easily be obtained.

(a) Multiplying Eq. (3.6) by 4w and integrating
over v, we find an equation for p(f). Once integrated we
obtain p(#)=p(0)R3(1), as expected.

(b) Multiplying Eq. (3.6) by 4m?(s®+1)V%n and
integrating over v, we are finally led to Eq. (3.3). This is
not surprising since in both cases we express the
momentum-energy conservation law.

(c) Other equations may be obtained in a similar
way, such as equations for 8(z)/d¢ or 9(a?)/91, etc.



