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Self-consistent models of uniform universes are provided by coupling Einstein s equations to the one-particle
Liouville equation. Correlations between the "particles" of the cosmic gas are thus neglected. As a conse-
quence, an equation of state is not needed in the theory but is, rather, provided from these statistical con-
siderations. It is shown that an expanding self-consistent uniform universe behaves asymptotically as the
relativistic polytrope p~p, '~', and 6nally, as an expanding Friedmann universe. Near the possible singularity
g =0 (E.=scale factor), self-consistent models are hot models. Friedmann models are shown to be a particular
case of self-consistent models.

was coupled to Einstein's equations

g~gisv ~gatv
— ~pv

through the de6nition of the momentum-energy tensor

T~"(x~) =m(gg)
d3N

K(x~ N~)N~N"
n'

(1.3)

In the followwing the metric tensor g&" is of signature

(+———) and g=—
~
det(g&") ~. We also use c= 1, where

c is the velocity of light in a vacuum. In Eq. (1.2), R„,
is the Ricci tensor, R is the scalar curvature, and X is
the cosmological constant. x denotes the gravitational
constant. The I' p&'s are the well-known ChristofI'el

symbols of the second kind. In Eqs. (1.1) and (1.3),
K(x~,N') is the invariant distribution function de-
scribing the gas. In Eq. (1.3), m is the mass ot a typical
particle and the integral is extended to the hyperboloid

g„,(x&)N&N"=1, I'&0 (1.4)

except when dealing with particles of vanishing mass. In

*Laboratoire assoc' au Centre National de la Recherche
Scienti6que.' Ph, Droz-Uincent and R. Hakim, Ann. Inst. H. Poincard (to be
published).

1. INTRODUCTION
' "N a preceding paper we studied some simple proper-
t ~ ties of the self-gravitating relativistic gas. I Essen-
tially, we used a Vlasov approximation. In other words,
the relativistic one-particle Liouville equation

8
m&B„X(x",I")—F p" (x")u us K(x",u") =0 (1.1)

BN"

this latter case the integral is extended to the light cone

g„„(xi')N~N"=0, u'~) 0.

Finally, we will use the Einstein summation convention,
Greek indices running from 0 to 3 and Latin ones from 1
to 3.

Since no explicit solution of Einsteig. 's equations is
known in terms of an arbitrary momentum-energy
tensor T„„,it was of course impossible to get a Vlasov
equation as is commonly done in the case of electro-
magnetic interactions (i.e., the electromagnetic Geld is
expressed as a functional of the distribution function
and next eliminated in the one-particle Liouville equa-
tion). Accordingly, we obtained a linearised kinetic
equation by considering only small deviations of given
"background quantities" (i.e., g„„and K). It then
foll.ows that our previous paper can. be mainly applied
to problems of stability. We also stressed that the only
known relativistic self-gravitating system where collecfi~e
eBects are dominant is constituted by the universe as a
whole. '

In this paper we deal with homogeneous, isotropic
cosmological models. It is indeed well known that, in
this particular case, Einstein s equations reduce to two
differential equations' for the pressure p, the mass

~ See, e.g., S. Gartenhaus, Flements of Plasma Einetic Theory
(Holt, Rinehart and Winston, Inc. , New York, 1964).

'This is not completely true since theist stuges of the gravi-
tational collapse of a massive star is another such example. How-
ever, as the star collapses, the neglect of correlations is less and
less valid.

4 See, e.g., H. Bondi, Cosmology (Cambridge University Press,
Cambridge, 1961), 2nd ed. ; G. C. McUittie, General Relativity and
Cosmology (Chapman and Hall Ltd. , London, 1965); R. C.
Tolman, Relativity, Thermodynamics und Cosmology (Clarendon
Press, Oxford, 1958).
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density y, and a scale factor E(t), sometimes called the
"radius of the universe. " The problem is fully de-
termined when an equation of state connecting p and p
is known. Here we reverse the procedure used previ-
ously'. Instead of eliminating the 6eld (or rather the
perturbation of the gravitational field), we rather
eliminate the distribution function involved in T„,;
then T„„becomes a functional of g„„rather than of X.
This is possible only because, for a uniform model
universe, the one-particle Liouville equation is easily
solved. In other words, p and p are expressed as fun. c-
tions of the scale factor E(t) and an equation of state is
not needed. Furthermore, p and y depend on an initial
distribution function which characterizes the state of
the universe at time t=0. Doing so, we obtain more
general cosmological models than the usual ones. When
they represent an expanding universe, all these models
tend asymptotically towards expanding Friedmann
models, 4 i.e., asymptotically describe dust-filled uni-
verses (p 0).

At this point we have to emphasize strongly that, in
spite of the fact that no equation of state is needed,
there is still an arbitrariness in our models: the initial
distribution function. At first sight, it could appear that
this latter arbitrariness balances one of the equations of
state to be chosen in the usual models. However, this is
not so since the self-consistent models restrict the class
of admissible equations of state, although we are not
yet able to specify them more precisely.

In Paper II a more detailed analysis of self-consistent
models will be studied and some refinements given.
Section 2 is devoted to the basic assumptions and
definitions used throughout this paper. In Sec. 3 the
main general features of consistent models are studied.
In Sec. 4 we discuss our results.

2. BASIC ASSUMPTIONS AND EQUATIONS

In order to show the manner in which the present
formalism differs from. the traditional one for uniform
cosmological models, we have to be very careful while
explicating our basic postulates. Accordingly, we first
recall the usual assumptions, their implications here,
and the hypotheses added.

(1) The universe may be considered as a relativistic
gas whose molecules are galaxies (or clusters of galaxies).
Therefore we shall describe this gas in a statistical way
using methods developed elsewhere. "' '

(2) Correlations between "molecules" of the cosmic
gas are neglected; the cosmic gas is sufficiently diluted.
Hence only collective motions are considered. This
amounts to describing the universe with a kinetic
equation in the Vlasov approximation; i.e., the cosmic
gas is described by Eq. (1.1) coupled to Eqs. (1.2) and

(1.3). Of course, near a possible singularity this is not
very accurate.

(3) In the space-time manifold there exists a con-

gruence of timelike, rotational, and shear-free geodesics
denoted by u& which corresponds to the average motions
of the galaxies (i.e., when one neglects their random
motions). This is Weyl s hypothesis. More precisely,
besides ut"u„= 1, uI" satisfies

du"/ds+I' p"u ua=0,

co„„=(Vpu, —7 up)A„'A„'=0,

a.„,= (Vpu, +V' up)A„'A„' ——,'8A„,=O,

(2.1)

(2.2)

(2.3)

where 6„„is the projector in the space orthogonal to u&,

~p~= gpv upuv p

and where 8 is the scalar of expansion,

(2 4)

(2 5)

These postulates and assumptions immediately lead to
the existence of a cosmic time, say, t, such that the
spacelike hypersurfaces t= const are orthogonal to the
congruence defined by ul". Possibly the "congruence"
intersects at a given point in the far past.

(4) The gas representing the universe is a perfect fluid

whose stream lines are defined by u&. Equivalently, the
distribution function K(x",u") depends only on one 4-
vector (besides u") which we have already chosen to be
u&. Consequently, it follows that the momentum-energy
tensor TI"" is a linear combination of the only two
tensors at our disposal: g&" and u&u". Hence it is of the
usual form

2'""= (pjp)u "u"—pg&". (2.6)

This means that our gas is free from transport phe-
nomena, such as heat conduction or viscosity.

(5) The universe is isotropic and spatially homo-
geneous. The spatial homogeneity implies that, in
comoving coordinates, the two scalars p and p do not
depend on the spatial coordinates x' although they
generally depend on x'=—t. Note that the isotropy
property is partially included in the form of T&"given by
Eq. (2.6) since the pressure is isotropic and u& is shear-
free. Furthermore, isotropy requires that K(x",u") de-

pend on I" only through the combination u&zs„, i.e., in
comoving coordinates that X depend on u'u; (or u').

Postulates (3), (4), and (5) joined to Einstein's
equations (1.2) lead, as is well known, ' ' to the so-called
Robertson-Walker line element':

ds'= g»dx&dx"
= dt2 —g2())lt2(r)$(dpi)2+ (dg~)2+ (dg3)2], (2.7)

written in comoving coordinates. In Eq. (2.7), R(t) is

See the general bibliography given in R. Hakim, Ann. Inst. H.
Poincare 3, 225 (1967).

6 See also R. Hakim, J. Math. Phys. 8, 1315 (1967); 8, 1379
(1967).

J. L. Anderson, Princip/es of Relativity Physics (Academic
Press Inc. , New York, 1967), Chap. 14.' H. P. Robertson, Astrophys. J. 82, 284 (1935);83, 257 (1936);
A. G. Walker, Proc. London Math. Soc. (2), 42, 90 (1936).
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the yet unknown scale factor, r = [(x')'+ (x')'+ (x')']'", Walker line eleinent into account, we have
and K(r) is given by

3

Z(r) = (1+-,'kr') ', (2 g)

where the spatial scalar curvature k can tate the values and
0, +1. dgN= I sino dN(IR+ (2.16)

Simyle Proyerties of the Distribution Function

In order to express the homogeneity of the model in
the distribution function, we first calculate p and p as
functional of BY(x",I").Using Eq. (2.6), we find

(in polar coordinates in n space), so that 6naiiy we
obtain

4 ~d~" (~')'[(No)2 —1ji~2BY(~ &' No) (2.17)

p 3p=T

from which we obtain

(2 9) and in the same way,

(2.10)
P = -"m.m du'[(u")' —1g"2BY {f~ u") {2 18)

P = ,'(T~&u.u-p T) . — (2.11)

Next, inserting the de6nition (1.3) of T~& into Eqs.
(2.9) and (2.11),we get

43@
Bt(x"I")(n u )'I' (2.12)

P = 3~(v'g)
d3N

BY(x",u")[(u I )'—1j. (2.13)I'

At this stage we want to emphasize strongly that the
mass density p is diferent from the iilmerical density p
dehned through the numerical current'

— u"BY(x",u") . (2.14)
n'

9 See, e. g., J. L. Synge, The Relakvjsk'c Gus (North-Holland
Publishing Co., Amsterdam, 1957).' We are indebted to Dr. Ph. Droz-Vincent for this remark.

In comoving coordinates BY(x",u") =BY(x",I') because
of the assumed isotropy. In order to express the spatial
homogeneity of the system in the distribution function,
we use Kq. (2.12).It is indeed not obvious that BY(x",I')
=BY(1,N'). The spatial homogeneity of the system is
expressed by p=p(/) in comoving coordinates ancl a
glance at Eq. (2.12) does not u priori imply B,X=O
since (a) a

factoring

(depending on x") is involved in the
right-hand side of Eq. (2.12) and (b) the integration is
extended to a subfiber [the one defined by Kq. (1.4)] of
the tangent 6ber bundle of the space-time manifold. "In
other words, the d.omain of integration is x"-dependent
and hence we have to be careful in expressing homo-
geneity. However, this apparent de.culty can easily be
removed by using a suitable coordinate system in the
subfiber (1.4). Since BY depends on I', we use this
variable to express Eq. (2.12). Taking the Robertson-

and since the only nonvanishing I' p"s are

I'; 0= —(a/W) g;;=R(t)B(~)E'(r),
g»= g2i= g33= R'(~%'(r),

(2.20)

Eq. (2.19) is finally written as

I'(a/a~)BY(~, ~ )—R(~)R- (t)

X[(I,')'—1j(8/Bu') X(t,u') =0. (2.21)

A dot on R(t) in the above equations denotes a time
derivative.

It is interesting to notice that, in this statistical
context, the isotropy of the distribution function implies
its spatial homogeneity. Indeed, isotropy implies Eq.
(2.19) P/Ns a term of the form u'8;BY and next it is easy
to realize by examining the resulting Liouville equation
that Bi,(t,x'; I') = BY(t; I'). This property is obviously a
consequence of the form of the Christoffel symbols, and
hence of the Robertson-Walker line element which we
used in the one-particle Liouville equation. On the other
hand, this line element is derived on the basis of
isotropy (spatial homogeneity is then a consequence of
isotropy by virtue of Schur's theorem).

3. SELF-CONSISTENT COSMOLOGICAL MODELS

It is well known that the Robertson-Talker line
element (2.7) implies that Einstein's equations greatly
simplify and 6nally yield'7

xp (t) =3R-'(t) [k+R'(t)]—X, (3 1)

xp(&) = —28(t)R-'(t) —8'(t)R-'(t) —kR-'(t)+l~, (3.2)

Then Eq. (2.17) immediately implies that BY(t,x'; u )
=BY(t,u'), as we expected. It follows that P=P(t) and
conversely.

Isotropy and homogeneity also simplify considerably
the one-particle Liouville equation (1.1). Indeed, the
only surviving terms are such that (1.1) reads

I,'(8/Bt) Bt (t,e') I' p'I, u—&(8/Bn')X(t I') = 0 (2.19)



while the conservation of momentum energy V„T'~"=0 the expressio» f« thc ma» de»ity»d pre»«e r«d
provldcs

p/(II+ p) = —3R(t)/R(/) . p(/) =4Irm ds(v'+1)'"s'Xo{ItE(t)), (3.9)

Note that only two of the three equations (3.1)-(3.3)
arc Qldcpendent.

Self-consistmt models will now bc obtained in the
following manner. First, we solve the Liouville equation
(2.21).Thus we obtain the distribution function X(t,e )
as a functional of E(t). Next, we calculate p(&) and p(&)
with the help of Kqs. (2.17) and (2.18). As a conse-
quence, p{t) and p {/) are also functionals of E(t), which
we introduce in one of the two equations (3.1) or (3.2).
fKquation (3.3) would reduce to an identity. J Finally,
wc obtain an equation 1nvolvlng only R(f) old all lnltlal
distribution function.

Solution of One-h'ticle Lioeville Equation

p{i)='SWI dI (8+1)-I~'s'X {SE(t)), (3.10)

or, equivalently,

p(t) =43mR (t) deft'+E'(t) j'"s'Zo(s) (3.11)

P (t) = 3IrrrIE '(t-) dsfe'+E'(I') $ I"s'Ko(e) . (3 12)

In 'tllc saIIlc way thc sg5$8ricsl dcIlslty p(f) Is caslly
computed from Kq. (2.14). It turns out that

Instead of the variable I' we rather use the new
varlablc

~=f(~')'—13

and 'tbc nc%' tlDlc variable

p(/) =4IrR '(i) dII S'Ko(S)

=E '(i)p(0).

Self-Consistent ModeIs

(3.13)

(3.14)

In tllc followIng wc shall clloosc R(t) sucll that R(0)= 1;
hence v=0 when 1=0. Furthermore, vs wiH denote by
to a time such that E(i0)=0 (when it exists).

Let us also point out that e is neither the modulus of
the spatial components of the 4-velocity (this would be
the case only in Minkowski space-time ewd using
Lorentzian coordinates) nor is it a usual velocity. We
can only say that e is a velocityHkc variable.

With the change of variables (3.4) and (3.5), Kq.
(2.21) reads

(8/8r)St(r p) e(8/Bs)X(r,—v) =0,

whose most general solution is of the form

X(r,s) =ato(e expr),

(3.6)

(3."I)

"ThIs resuh is of course not nev I see, e.g., L. Landau and E.
Lifshitz, C4ssgcal Iliad Theory (Addison-%esley Publishing Co.,
Reading, Mass. , I962$.

where %0, the initial distribution function, is of course
an ct'5$&'Sf' function. Equlvalcntlyz wc have

X(~,~)=X,fvE(~)j,
which shows that sE(f) is a first integral of the motion
fo1 homogeneous, lsotroplc unlvclscs.

It should be noted that, in spite of the appearance of
I' in the above equations (or of e, which is a function of
I ), all t11c preceding results ale covarIant SIIlcc actually
vie use the invariant QI'N„which reduces to I' in
coIQovlng coordinates.

Now using the variable s instead of I and Kq. (3.8),

Thc equations for self-consistent models are nova

readily obtained. by inserting expressions (3.11) and
(3.12) into Kqs. (3.1)—(3.3). We find

4nINXR~{/) defs'+E'{1)1II'PX0(I)—=p(E)X

=3R-&(~)P+R2(~)j—X, {3.15)

—;xmxR-'(i) IEI fs'+E'(/) j "'s'xo(v)=—P(E)x

= -2R(~)E-'(~)—Ji2(i)E-2(i)—kE-2(~)+X, {3.16)

E-'(i) dufe'+E'(/)g'I's'Ã0(s)
dE 0

= —3E '(/)

x{f"+E'{&)j'"—3S'f~+E'(&)j '") {31&)

It ls interesting to note that ln an expanding Universe
and for large R(i)'s pi. e., when E(t)))E(0)=1j, p(R)
and p(E) behave like

p(R) constXR ', (3.18)

p{E) (another const) &&E '. (3.19)

Therefore Ml cxpandlllg self-conslstcIlt unlvclsc bchavcs
like a relativistic polytrope, i.e., its equation of states
(asymptotically) is

(3.20)



Furthermore, if R-'«R-', then p(R)«p, (R) and we re-
cover the exPOIIdiIIg Friedmann models4 with

p(R) mp{R) =mp(0)R ', (3.21)

i.c., a cold dust-ulled universe.
In the neighborhood of t= fo, i.e., when R 0, p(R)

and p(R) behave like

11111vclsc1s a zero-temperature stRtc), thc11 wc fInd R11cw

the well-known Friedmann models including the oscil-

lating models as well as the expa.nding ones.
Another case of initia, l distribution function has been

considered. by Bcl, who chose"

Xo(u&) ~ exp( —Ph„,u&u") exp( —Pe'), (3.30)

p(R) const&(R '„ (3.22)
with P&0.

p (R)~3 const+R (3.23) EquiHbrium as Initial State

it follows that self-consistent models behave like R

relativistic perfect gas of incoherent radiation (P= 3II).
Equivalently, near an "lnltlal slngularlty'"' the self-
consistent models behave like ultrarelativistic gases,
i.e., like hot models. However, it is important to realize
that our approximations fail long before the time to is
reached since, for instance, correlations are no longer
negligible near E 0.

Equations (3.11)and {3.12) for p and II exhibit a very
simple dependence on the scale factor R(t) and may be
calculated in a limited number of cases only. However,
the slIQplc depcndcncc on thc SCRlc fRctox' permits thc
use of approximation methods such as the use of ex-
pansions in powers of R—'(/), etc.

A trivial case where p(R) and p(R) are easily calcu-
lated ls px'ovldcd by choosing

p(o)
mo(c) = 8(n —eo) (co

——const).
4meo'

(3.24)

and hence to get more and more "realistic" models.
Finally, let us also note that when eo tends to zero in
Eqs. (3.24)—(3.26), i.e., when u0=1 in comoving co-
ordinates (equivalently, when the initial state of the

"It is not clear at all whether there exists such an initial
singularity in the self-consistent models. Hovrever, a glance at
Kqs. (3.I) and (3.2) indicates that this is probable.

%e then 6nd

II(R) =IIIp(0)R '(vp'+R')I", (3.25)

P(R) =-,'mp(0)vo'R '(IOP+R') '", (3.26)

and, as a consequence, the following equation of states:

1=~p(0)(3p)"'p "'/co(p —3p)', (3 27)

which is very complicated. The choice (3.24) for Ko(e)
means thRt thc 1DVRIlRnt

I =—[(u&u„)'—1]'I' (3.28)

has a given value ~0. However, the main interest of
Eq. (3.24) is that it allows us to get another —although
very crude —a,pproximation method by choosing a,

supcx'posltlon of such distributions:

v„y„+v„y„=c(~ )g„„. (3.34)

H«e y"=R(&)u" and. C(x~)=28. Therefore u~ is Not a
KllllDg vcctOI'. However& lf wc coDsldcl' R 1adlRtloIl-
dominated universe in equilibrium at t= to, then it will
remain in equilibrium in the course of time. In this case
the Juttncr-Synge distribution function reads9

X(t,e) = (n'/SIr) exp[—nvR(t)]. (335)

SlDcc thc mass of thc photoll vanlshcsq I =8 Rnd

K(f 'v) Inay lM 1cwllttcI1 as

X(t,u')-exp[ —o R(t)ut'u„g. (3.36)

Chernikov has also shown" that the Juttner-Synge
dlstrlbutlon functloD fox' zero-rest-mass pRI'tlclcs 18 R

solution of the one-particle Liouville equation provided
that 6& times a given factor is a conformal Killing
vcctoI'. This 18 plcclscly thc CRsc heI'c. Note thRt Eq.
(3.35) or (3.36) shows that at time t the system is in
equilibrium at the cgccticc temperature

T.II(t) =T(0)R—I(t), (3.37)

and hence in RD expanding universe T,qq is a decreasing

"L.Bel, Astrophys. J. (to be published).
I4 N. A. Chernikov, Acta Phys. Polon. 26, I069 (1N4).

Kqulllbrlum states dcscrvc R
' particular dlscussloD

because of thcll spcclR1 lIDpoltRDcc. As ls well known,
the equilibrium distribution function is the Juttner-
Syngc density:

X(x",u")= [a/4IIR2(n) j exp{—nu&u„), (3.31)

wllcl'c E1{II) 1s thc Kelvin fllIlctloI1 of order 2 alld

n =mc'/kT. A question then arises. Does the equilibrium
distribution (3.31) preserve its form in the course of
timeP The answer is obviously no, since

X(tp) =Pu/4IrZ2(u)J exp( —a[a'R'(t)+ 1/II'}. (3.32)

It has indeed. been shown by Chernikov" that {3.31) is
R solutloD of thc onc-particle Llouvlllc cquatlon only
when u& is a Killing vector of the space-time manifold:

(3.33)

However, this is not so; it is indeed well known tha, t the
uniform model universes have generally only one con-
formal Killing vector, say, y&, i.e., such that
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function of time, as is obvious from elementary physical
consldcra tlons.

An appa, rently more "realistic" distribution function
for radiation is provided by the "quantum" one:

K(f,v) ~ {expLuE(t) v]—1)-', (3.38)

but, actua, lly, this last distribution function does not
change anything concerning the R dependence of p and
p. Slncc ln Rny case Tp~= 0 foI' I'RdlRtlon arid because of
thc Rssumptlon that we dcRl with R pcI'fcct Quldq then
p=-', p. It then follows from Eq. (3.3) that

p = —',poR-'.

s=n
7 pl —Q 2 pp

i=«
(4.1)

Each T;&' is related. to Ki by an expression. of the form

(1.3). Furthermore, if we assume that there is only one

vector Field, say, 6&, at our disposal, then the stream
lines of the various subgases are alike and ea,ch T,&" has

the form (2.6). It then follows that

particles, i.e., by considering a several-fluids rnocM.

l.his gcncrallzatloB ls rather trlvlal. %c have indeed s
dlstrlbutlon functions K,' (l= 1i ' '~ N)'one per species—which satisfy e one-particle Liouville equations of the

type (1.1) coupled to Einstein s equations through 'the

iota/ momentum-energy tensor

In relativistic kinetic theory' ' the total entropy is
obtained through the 4-vector entropy density

(4.2)

s"(~")= —(v'g)
AN

K (x",u") In97, (x",u")u'. (3.+ )
N,'

z=n

i=«
(4.3)

So(8)= —4v. dv v'Kp, v} in%(t, v), (3.42)

So(t)=So(0)R o(f). (3.43)

The entropy of a given volume of cosmic gas is now

l

In cornoving coordinates, the only surviving component
of 5& is 5', i.e., the entropy density. 7VC have

as expected. The only (little) problem concerns homo-

geneity. However, if we assum" and this is in agree-

rnent with observation —that each kind of Quid is

isotropic, then repeating the argument given at the end.

of Sec.2, it follows that X;(x",u")=—K;(t,uo), in corno»ng
coordinates.

(2) Furthermore, we neglected radiation. However, it
is easy to see tha, t radiation may be taken into account

by simply adding a term of the folan

s(~)= vso(~)-z (~)so(0)z-'(~}
=s(o) (3.44)

p=o~& '(t) (4.5)
Therefore, in this model the entropy of the universe is
constant. This result was, of course, expected since the
Vlasov approximation is reversible; irreversibility occurs
when dealing with correlations between particles or

when dealiH. g with radiation emission. '«' lt would be
particularly interesting to derive the equations of
motion of a test particle embedded in the cosmological
space-time, taking gravitational radiation reaction. into
account. This would probably give rise to an intrinsic
irreversibility of the universe; it is indeed the case for
electromagnetic interactions. 6 «5

4. DISCUSSION

Kc now discuss briefly the above results.

(1) In the preceding sections the cosmic gas was as-

sumed to be constituted of particles of only one mass,
while in nature this is obviously not so. Therefore we

have to generalize our cquRtlons slightly by considering
the cosmic gas as constituted of diGcrent species of

I5 R. Hakim and A. Mangeney, J. Math. Phys. 9, 116 (1968).

to p and (or) p, respectively. Indeed, if we assume that
the radiation Quid is a perfect Quid, the vanishing of the
trace of its momentum-energy tensor provides the
equation of sta, te p= —',p. As a consequence of Eq. (3.3),
Eqs. (4.4) and (4.5) follow. Accordingly, there is no

need for a kinetic theory of the radiation Quid. However,

such R kinetic theory is rca, lly needed if one seriously

wRnts to consider tx'RHspolt phenomena which occuI'

near the initial singularity when our approximations
fail.

(3) Near a possible initia, l singula, rity the considera-

tion of oH.ly coHcctlvc motions ls no longer' adequate Rnd

some refinements are necessary. First, we no longer have

galaxies but only elementary particles, radiation, and

neutrinos. Secondly, mutual transformations, nuclear

xeRctlorls must bc dealt with. Third, correlations must

be properly taken into account. ' %c shaH come back to
these refinements in Paper II.

'6A simpli6ed description of the initial 6reball is being per-
formed by H. Y. Chiu and A. Salmona on the basis of the BoltzmanTI
equation (A, Salmona, private communication).
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(4) In Sec. 3 we found that Friedmann models are
particular cases of the self-consistent models. At first
sight this might be surprising since Friedmann models
are such that u R '(t), whereas self-consistent models
are such that u R '(t) near the singularity. In fact, we
must point out that this last evaluation was not derived
rigorously but rather on the basis of implicit regularity
hypotheses. Actually, the choice Ko(v) 8(v)/v', which
leads to Friedmann models, amounts to choosing a
rather "irregular" initial distribution. [Note that 8(v)
=8(v)(2v' sin8 v') —'.]

(5) The usual red-shift formula has been generalized
by Bel" to the case of an arbitrary source-observer
relative motion, and he gave an interesting application
of the above ideas which is shown to be valid in more
general cases than the one he considered.

With our notations, Bel's formula reads

1+8=v/pa= a(t, v)/ao(to, vo),
where

a(t, v) =R—'(t)[(v'+1)'t' —v cos8]. (4.7)

In Eqs. (4.6) and (4.7), v is the proper frequency, vo is
the observed frequency, and 0 is the angle between the
spatial velocity of the source and the emission direction.

The quantity ap is defined in the same way as a except
that it refers to the observer's arrival time, the observer's
vp and the angle between the observer's motion and the
direction of the signal Hp.

Therefore, we shall be able to calculate the average red
shift and its disperse'ou for a typical galaxy at time t To.
do that we need a conditional distribution function (x"
being fixed; x„ is the space-time position of the typical
galaxy). Elsewhere" we have shown that such a con-
ditional distribution is provided by

X(x"
~

u") =u"u K(x" u")/[j&(x")j„(x")]~2. (4 8)

From Eqs. (4.11)and (4.12) we see that, in an expanding
universe and for large R's, we generally have

(a(t,v)) R '(t),

(La(t,v)]')-R '(t)

(4.13)

(4.14)

As a consequence, the dispersion'8 of a(t, v) behaves as
R '(t) and hence there exists a dispersion in red shift
(due to proper motion) which decreases in an expanding
universe as a function of the ensissioe time. It is inter-
esting to note that the behavior (4.13) and (4.14) of (a)
and (a') is the same as that given by Bel," using a
Gaussian distribution. Equations (4.11) and (4.12) may
be simplified by using polar coordinates, the polar axis

being chosen as the axis of the eInission direction. We
find

&a(t,v) )=R '(t) [p(t)/mp(t)]

It follows that the red-shift formula now is

(4.15)

&a(t,v)) R(to) p(t)
1+&s) =

ao R(t) mp(t)
(4.16)

with
(a'(t, v) )=R '(t)+—XR 4(t), —

16m
X= p '(0) dv v4Kp(v).

3

(4.17)

(4.18)

The red-shift dispersion is then

'= « '((a') —&a)')

where we have chosen vo-=0. Equation (4.16) shows

that, in an expanding universe and when R(t)))1 [i.e.,
when p(t) mp(t)], we recover the usual red-shift
formula.

In the same way we find

Here we have"

K (t
~

uo) = [R3(t)/p (0)]u K (t,u ), (4 9)

R'(to) —
u (t) R'(t)

1— +X-
R'(t) mp(t) R4(t)

(4.19)

alld

&&a(t,v))')=

X &[v'+R'(t)]"'—v cos8) (4.11)

R-'(t)
d,,v v'Ot, (v)

p (0)

X & [ '+R'(t)]'"— o 8)'. (4.12)
"x does not appear because of homogeneity. Note also that all

average values calculated with the help of this conditional proba-
bility depend implicitly on the hypersurface )=const. In Ref. 15

and fiilally, we get

R'(t) R3(t)
X(t~v)= Z(t, v)= X,[R(t)v]. (4.10)

p(0) p(0)

It follows that (a(t,v)) and (a'(t, v)) are given by

R—'(t)
(a(t, v)) =——d, v v'KD(v)

p (0)

Or

p(t)
—

(1+&v)) mp(t) '
a'= (1+&v))' 1— +X . (4.20)

mp(t) R'(tp) u(t)

Similar considerations led Bel to the conclusion that
"the dispersion of the red shift is an increasing function
of the source-observer distance provided this distance
is large enough. ""This conclusion is still valid here
for more general distribution functions than Gaussian
densities. However, more accurate evaluations are
necessary before convincing conclusions may be drawn
as to the observed red-shift dispersion of quasars. In
the same way, we can obtMin the dispersion of other

we pointed out that the definition of such a conditional distribution
function is generally ambiguous excep& in the case where we know
only one 4-vector. This is the case here."It is clear that, since the choice of X0{&)~&{8)leads to
Friedmann models, these models cannot present a dispersion of
red shift {absence of random motions).
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observable quantities. This is studied in detail in and
Paper II. g[vi jR2(t)gl/2

= [vR(t)/n](Hi[nR(t)g —Xi[nR(t)]}, (A6)ACKNOWLEDGMENTS

%e are indebted to Dr. L. Bel, Dr. ph. Droz-vincent, where Eo and E~ are Neumann functions of order 0 and

and Dr. D. Gerbal for discussions. i and where Ho and H~ are Struve functions of order 0
and 1.

T rr= TR i(t)»rric' (A2)

Now, using Eqs. (3.9) and (3.10), we obtain

p(R) =p(0) (ni/Sir)R 4(t) (it2/itni)2[vi jR (t)~1'» (A3)

p(R) =p(0) (n'/S~)R-'8'/Bn42[v'jR'(t)] —'». (A4)

In Eqs. (A3) and (A4), 2 denotes the Laplace transform.
These Laplace transforms are found to be"

g[v' jR'(t)g '»= i~ir(HO[nR(t)) —So[QR(t)]} (As)

"Here, in the initial state, the particles of the cosmic gas are not
galaxies —which are not yet formed —but rather elementary
particles.' W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of
IrItegral Transforms, edited by A. Erdelyi (McGraw-Hill Book
Co. , New York, 1954).

APPENDIX A

The calculations of ti(R) and p(R) can be performed
only with a limited number of physically meaningful
initial distributions. One of them is

Xo(v) =p(0) (n'/Sir) exp( —nv), n) 0. (A1)

Equation (A1) would correspond to pure radiation if
the expressions which give p and ti in terms of Kp would
be modified (for radiation u" is isotropic, ui'u„=0, and
the various formu1as given previous1y would no longer
be valid). However, if we consider that the initial state
is extremely hot and in equilibrium, i.e., that the parti-
cles of the universe" are ultrarelativistic, then Eq. (A1)
is a good approximation for one species of particles.
Indeed, taking e instead of I' amounts to neglecting the
rest-mass energy with respect to thermal energy. Note
that n=mc'/kT. This approximation will be valid as
long as the cosmic gas may be considered as ultra-
relativistic, i.e., as long as

nR(t)»1.

In other words, this approximation will be valid as long
as the effective temperature

APPENDIX 3
It may be of interest to obtain a true Vlasov equation

for K(t,v). This may be easily effected if we notice that
we have to couple the following equations:
Liouville equation:

(a/at)X(t, v) —R(t)R-'(t)v(a/av)X(t, v) =0 (81)
and

Einstein equation: Xti(R) =3R '(t) (k jR') —X (82)

through Eq. (3.9) for ti(R). Finally, we obtain

8 00

—XW 4irmX dv v'(v'+1)"'Xjh
8$

d 00 2

—-'k 4irm dv v'(v' j1)i»K
dE

00 —2- 1/2

dp p2 @2+] 1/2 1p2 p2+ ] —1l2

&& v(it/itv)% =0, (83)

which is highly nonlinear, as expected. In Paper II we
shall use a modi6ed form of this equation to study
problems of stability of the self-consistent models
against an inhomogeneous perturbation.

APPENDIX C

From the one-particle Liouville equation (3.6),
hydrodynamical equations may easily be obtained.

(a) Multiplying Eq. (3.6) by 4irv' and integrating
over v, we find an equation for p(t). Once integrated we
obtain p(t) =p(0)R '(t), as expected.

(b) Multiplying Eq. (3.6) by 4rv'(v'j1)'"m and
integrating over v, we are 6nally led to Eq. (3.3). This is
not surprising since in both cases we express the
momentum-energy conservation law.

(c) Other equations may be obtained in a similar
way, such as equations for rj(s)/Bt or it(&ri)/Bt, etc.


