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In this paper we have calculated the exact expression for the magnetic moment of a Fermi gas in a mag-
netic field (magnetized Fermi gas). The susceptibility obtained from our result becomes the classical Curie-
Langevin law in the weak-field limit for a nondegenerate and nonrelativistic gas. The induced magnetic
moment N was found to be proportional to the square of the electron density, but at higher densities 9
passes through a maximum and eventually becomes negative; hence a magnetized gas is first paramagnetic
but later becomes diamagnetic. We have also shown that spontaneous magnetization cannot take place in

a noninteracting electron gas.

I. INTRODUCTION

N two previous papers,’? we derived a general ex-
pression for the equation of state for a system of non-
interacting Fermi particles in a magnetic field (a mag-
netized Fermi gas), and studied the thermodynamic
properties of such a gas. We found that in the limit of
large quantum numbers, a magnetized Fermi gas re-
duces to an ordinary Fermi gas, whose properties have
been described elsewhere.?* In the case of small quan-
tum numbers, the properties of a magnetized gas are
quite different from a Fermi gas. The lowest magnetized
state is characterized by the alignment of all electron
spins with the field, and in this limit a magnetized gas
behaves exactly as a one-dimensional gas, which has
been studied extensively elsewhere as a theoretical
problem.’ As the density or temperature increases,
higher magnetized states are excited. The gas behaves
more like an ordinary Fermi gas and eventually ap-
proaches it in the classical limit. In previous papers,*?
criteria were given for a gas to be considered as a mag-
netized gas, and will not be discussed here.

In this paper we are interested in the magnetic prop-
erties of a magnetized Fermi gas.® The magnetic prop-
erties of a system are intimately related to the macro-
scopic magnetic moment of the system, which we will
calculate in the sections that follow. We are also inter-
ested in an important question: Can magnetization
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arise spontaneously in an electron gas? Answers to this
question will be found through a study of the total mag-
netic moment of the system.

II. GRAND PARTITION FUNCTION
The grand partition function 3 is defined by’

Ing=1In Tr exp[e—B(—aN)], 6))
where §= (kT)1, 3¢ is the Hamiltonian operator for the
system, & is the chemical potential plus the rest energy
in cgs units, and /V is the particle occupation-number
operator. From Eq. (1) we have derived? the following
expression for 3:

Ing= E, wn{In[1+exp(—B(Ewm—p))]
+In[1+exp(—B(E0—m)]}, (2)

where wy, is the statistical weight? for states of quantum
number # for a system with volume Q:

wn=Q2%H /2mhc 3)
and
P’ 2 H 1/2
E,,,=imc2[1+<——-) +2——(n+r-1)] , @
me H,

r=1,2, n=0,1,2, -+ 0,
. is the 2 component of the momentum of the electron,
H is the magnetic field which is in the 2 direction, E,,

is the quantized energy of the electron in the magnetic
field, and

Ho=m?c3/eh=4.414X 108 G. (5)

The symbols e, %, m, ¢, and % all have their usual
meaning.

Carrying out the sum over p.in the usual manner, we
have the following expression for Ina (see Paper II for

7K. Huang, Statistical Mechanics (John Wiley & Sons, Inc.,
New York, 1963), Chap. 11, pp. 237-243.
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details):

1 eH « +o -
—Ing=—3_ da{In[1+exp(—B(E1n—i))]

Q 2wt n=0 J_,

+In[1+exp(—B(Ezn—m))]},
which can be written as

1 eH /1 «
_Ingz—(— f dx In{1+exp[ —B(E(%,0,H)—p)]}
Q Th\2 J_

00

© oo
15 [ i ln{1+eXP[—ﬂ(E(x,n,H)—n)]}>, (©)
where

Bzﬁmcz’ p=p/me*, x=p,/me, (6"
E(xmn,H)= (14+x*+42nH/H )2,
III. MAGNETIC MOMENT
The magnetic moment operator 91T is defined by?
= —age/oH , (7)

where 3¢ is the Hamiltonian for a Dirac particle (see
Paper I). The statistical average of 91t then gives the
total magnetic moment of the system, 91:

9 ="Tr(p)9Mt/ Trp, )
where p is the density matrix, in the grand canonical
ensemble L

p=exp[—B(3—pN)]. ©

We now have
_ Tr{~ (9t/6H) exp[—B(i—al)])
Tr{ exp[:*‘g(ﬂ,é“ﬁ-’\7 )il

If we keep the chemical potential i constant with re-
spect to the magnetic field,” then Eq. (10) becomes

19 o
M=——In Tr exp[ —B(EC—~aN)],
B oH

(10)

(11)
19

M=——1n3,
B oH

where 3 is the grand partition function defined in Eq.
(1) and explicitly given in Eq. (6). Equation (11) is a
generalization to the nonzero-temperature case of the
Pauli-Feynman theorem,®? which states that

<n1sﬁzln>=—5%<nls‘c|n> 12)

when |n) is the eigenstate of e.

8 C. Kittel, Elementary Statistical Mechanics (John Wiley &
Sons, Inc., New York, 1958).

® W. Pauli, in Handbuch der Physik, edited by S, Fliigge (Sprin-
ger-Verlag, Berlin, 1958); see also Refs. 7 and 8, N
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Using Eq. (6), we find that, explicitly, 91 is given by

2 up it E(x,0,H)—p
M=— ——{%dz/ ln[l+exp(——~———-———)]o’x
w2 A3 0 ]

had ° E(x)nyH) —H
+¢ > ln[l + exp( - ~———-—~—>]dx
n=1 Jo ¢
H «»

-—E n§=:1 n /0 i E(x,n,H)
Xl:l—l-exp(——ﬁ-;(—%fflz:ﬁ)]dx, (13)

where ¢=FkT/mc?, up=eh/2mc is the Bohr magneton,
and X,=7#%/mc is the Compton wavelength of the
electron.

Equation (13) is the most general expression of the
magnetic moment of a noninteracting Fermi gas in an
external magnetic field. One can use the exact wave
function (discussed in Paper II) to evaluate (12) and
to show that, after taking statistical averages, Eq. (13)
be obtained from Eq. (8) using the Hamiltonian of the
Dirac equation as described in Paper I.

We shall now study the classical properties of 9 as

given in Eq. (13).

IV. CLASSICAL LIMIT—CURIE-LANGEVIN LAW

In Paper I, the classical limit was defined as the
limit in which the sum over # can be replaced by an in-
tegration over #. We shall now show that in the clas-
sical limit the nonrelativistic and nondegenerate expres-
sion of Eq. (13) gives the Curie-Langevin law for the
magnetic susceptibility.

The nondegenerate and nonrelativistic case is given
by the following condition:

exp (E (x,n;H )— u)

] (20|

H
>1, E(xn,H)— 1+%x2+n§— , (14)

E(.x:”:H) Mm
=exp<— ) (15)
¢
Equation (13) becomes
2 up[1 u—1 w u—1
iﬂl=~———[—¢ exp(———)-{—¢ > exp(————)
2R A2 ¢ n=1 ¢
< nH ) H i < —1)
Xe - —_— n expl{ —
P ¢Hc Ha n=1 P ¢
H
Xexp(-— H):,Io’ (16)
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where solutely convergent), we have
0 x2
L= / exp(-—)dx. 1 s { [ ( H >] - ( nil )
M=——1\¢| 1+4exp| — > exp| —
0 % 2R3 o/ 1= "\,
Let = .
o n
N=exp[(u—1)/6] (17) o5 exp<_ - }Io. (18)
and, after rearranging terms in the sum (which is al- =r il
lowed because these series are easily seen to be ab- The following results are apparent:
00 x2
Io=/ exp(———)dx= (27g)1/2, (19)
0 2¢
® nH H\T7!
> exp(— >=[1+exp(— >] , (20)
n=0 ¢Hc ¢Hc
i ( nH) - Jd = nH L i) o nH
n exp| — =—¢H; exp(——~>=——¢ﬂc |:1+2 ex (— ):l
n=1 oH, 0H n=1 ¢H, : 0H 51 P oH,
o 3 [i < (n+1)H>+i ( nH):I - d [ N H }uj nH
=—3Ql; exp| — exp{ — =—3¢0H.—1| 14ex (——————)] e (-—-—)}
Y7 = oH. n=0 oH, Y { P oH,/ In=o P oH,
9 1+exp(—H/¢H,) ] usH
- ieH— ——po_con(“), (21
O0H 1—exp(—H/¢H,) 0H kT
where A simplified expression for Ind can be obtained from
usH/kT=%H/¢H . (22) Eqgs. (6), (14), (15), and (19)-(21). We have
We therefore find Q N\ /2rhT\32
Ing=—— . (28)
(27¢) "\ g 9 4w3 A 3( mc2T>
W=W(cothn+ 1)5; cothn) R Hence
(23) 1 1 N /2xkT\3"?
(27r¢)1/2)\”3 0 N=-— ln3=———< . (29)
NM=—————(n cothy), Q 4Am3 KA\ mc?
TRSE I
Substituting Eq. (29) into Eq. (26), we obtain
where n=ugH/kT. &= 4 ’
Expanding 7 cothy and retaining terms of the lowest X=3(us?/kT)N < 1/T, (30)

order, we find

J
—(n cothn) —> %1, 2—0. (24)
]
The magnetic susceptibility x is defined by*
X= }Iug (on/H). (25)
From Egs. (23)-(25) we obtain
2u? 1 /2rkTN\2 1
X=- —x[——( —] ) (26)
3 kT L4mw3\ mc? A

We shall now eliminate A. The definition of the particle
density 9 is

19
N=-\—In3.

Q I\

@7

which is the Curie-Langevin law for a classical gas at
high temperature and low density.47?

This classical result includes both the diamagnetic
part (due to particle motions in a magnetic field) and
the paramagnetic part (due to the spin or the intrinsic
magnetic moment of the particles). One can show that
the paramagnetic contribution to X is upd1/kT and the
diamagnetic contribution is —% of the paramagnetic
contribution, so that the resultant is that given in Eq.
(30).

It is difficult, however, to separate the general expres-
sion (13) into the corresponding diamagnetic and para-
magnetic parts. Nevertheless, we can still decompose!®
(Gordon decomposition) the four-current j,

jn= ie‘i")’u‘/’=ju ® +jn(2)

10 7. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley
Publishing Co., Inc., Reading, Mass., 1967), pp. 107-110.
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such that
Ju VA= (iet/2m)| 0,00 —0 1A ,— (e2/mc) A A
becomes the Landau Hamiltonian giving rise to diamag-

netism in the nonrelativistic limit.
The other part,

_ ofi 104, 104,
]#(2)‘4#: —ml:— M(‘/’”#V‘p)“"— —Ql/”w'\b)} ’
2mcl.2 9, 2 dx,
T =—1YY» (#¢V) )

becomes the Pauli Hamiltonian giving rise to spin
paramagnetism in the nonrelativistic limit.

V. REDUCTIONS OF THE EXPRESSION FOR 91

We can apply the same procedure as in Paper II to
reduce 9 into a sum over the same function over differ-
ent arguments. The following transformation, which
has been explained previously, is introduced:

v=x/a,, (31)
an=[1+2(H/H )n ]2, (32)
and the following functions are defined:
Culou)= [ (1o
0
<1+7)2 1/2___M —1
X[l-}—exp(——)—-—):' dv, (33)
¢
- (1) 12—y
Colpu)=0 / ln|:1+exp<“ m)}dv- (34)
0 @
By partial integration, we find that
00 2
cion= [
0 (1+v2)1/2
(1422)12—p\ T
X[l—{—exp(m):l dv. (35)
¢
Equation (13) can be written as
2 pp (1 w ¢ wu
M=—— {—C2(¢;H)+ Z aﬂ2C2<_" y_—)
w2 X312 n=1 On Qn
H » ¢ wu
——Z (=2 o
H,n=1 an Gy
Numerically,
NMo= (2/7%)up/Ro3=3.2637X 10 G. @37

The properties of Ci(¢,u) and Ca(e,u) have been exten-
sively discussed in Paper II. In the degenerate limit
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¢ — 0, we have

Cilw)=lim Co(gyp) =Infput (u*—1)" 4], (38)
Colw)=lim Co(yu)
=3{pu—1)"2=In[p+@W—1)"*]}, (39)
for u>1, and
Ci()=Co(w)=0, u<l. (40)

VI. DEGENERATE EXPRESSIONS FOR
THE MAGNETIC MOMENT

As discussed in Paper II, the condition of degeneracy
is expressed by

p—1>0, ¢—0. 41)
From Eq. (40) it can be concluded that the sum over #
in the expression for 9 [Eq. (36)] terminates at s,
where s satisfies the condition

asSﬂ<as+1- (4-2)

We therefore find

2 pp[1 s 7
== T £ ()
2,3 et

T 2 an

H

. n; ncl(;"—ﬂ . @3)

The first two terms are positive and the third term is
negative. When s=0, the only nonvanishing term is the
first term. As discussed in Paper II, this corresponds to
the one-dimensional gas limit in which the spin of all
electrons is aligned with the magnetic field. The result-
ing magnetic moment is therefore the magnetic moment
of all electrons. As is well known in nonrelativistic
quantum mechanics, the electron spin gives rise to pa-
ramagnetism, and the electron orbital motions give
rise to diamagnetism. Hence, at the lowest-energy state
there is only paramagnetism.

When quantum states other than the #=0 states are
excited, the gas gradually becomes diamagnetic and 91T
then becomes negative. The nonrelativistic and non-
degenerate limit of large quantum numbers # has been
discussed in Sec. IV.

A. The Case s=0. Ground State of a Magnetized Gas

When the density is such that

1<p<ar= (14 2H/H )2, (44)

the only nonvanishing term is the first term 3Cy(p).
This corresponds to the one-dimensional gas limit, as
discussed in Paper II. We shall obtain the magnetic
moment T as a function of particle density 9t for this
case.



173

The relation between the density 9 and g is [Eq.
(81), Paper IT], for the case given by (44),

1H 1 . H
fﬂ—;r—z E;}f@(ﬁ)—fﬂoia(ﬂ), (45)
Cal) = (=112, Fg=——. (46)
2r2R3

From Egs. (46) and (39), we find the relation between
Cy(u) and Cy(n):

Co(w) =3Co(W) [C(w)+ 17112
=3 In{Cy(w)+[C(w)+ 112} (47)
=3EE+ 112 —F In[ #4824+ 1)12],

where
£=Cy(w)=9/(WH/H,). (48)
Therefore,
1 1 + 2+1 1/2
M=— ‘L_Bg(gz_*_l)l/z(l _»ILE_E_M)
2w2 7\03 £(£2+1)1/2

1 us 5N l— €N 2 1/2
- () 1]
2 Re? ToH /H L \IGH/H,

o
xs;l( ) (49)
NoH/H,

where [ (11T
n[x4(x
Fi(x)=1———r, (50)
a(a2--1)1/2
and
Fu(x) — 2?/(1+a1)12, 21 (1)
Fi(x) — 1, >1. (52)

From Eq. (49) it may be concluded that 91 increases
as 9? at a given field strength. However, when 9 is
too large, higher magnetic states with s>0 will enter,
causing M to decrease. Hence, there is a combination
of the field strength and the density such that 9 is a
maximum. This maximum value of 91 can be estimated
as follows:

The value of u should be close to the upper limit
given in Eq. (44), and for large values of H/H, it is

w~ (2H/H )2, (53)

This gives the following relation between 9 and H/H,
for the maximum value of 9:

RNVIT(H/H )2 (54)

Substituting Eq. (54) into Eq. (49), we obtain the
maximum value of 9T as a function of H for >,
XH/H,:
1 up H
Me~— — —=~10730 .
RS H,

(55)
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B. The Case s>0

In the case s>0, the higher magnetic states are oc-
cupied and the gas gradually becomes diamagnetic. At
a given field strength, 9N increases with density until
reaching a maximum given by Eq. (55), then decreases
with density, eventually becoming negative. Figures 1
and 2 show the relation between 9 and H/H,, and 91
and 9. The undulating behavior of 9N is due to the
peculiar behavior of the density of states shown in Fig.
4 of Paper II.

VII. ABSENCE OF PERMANENT MAGNETISM
IN A DENSE ELECTRON GAS

In solids, it has been discovered that the magnetic
susceptibility X is given by the Curie-Weiss Law!!

x=C/(T—-9), (56)

where C is a constant, and 8 is the transition tempera-
ture, below which there is ferromagnetism and above
which there is paramagnetism. This may suggest that
an electron gas will also possess a transition tempera-
ture so that it will become ferromagnetic at low tem-
peratures. This is not the case in the absence of large-
scale ordered phenomena, as will be shown.

We can now answer the question of whether a dense
electron gas can be self-magnetized. This question has
been raised many times with respect to gravitational-
collapse problems.

The relation between the resulting field B, the im-
pressed field H, and the induced magnetic moment 91 is

B=py(H+9M), 7

where uo is a constant which takes care of dimensions.
Consider a small cavity in a magnetized body (Fig. 3).
The field felt by a sample in the cavity is B; hence if

0.8 | St M Sy B B B S e T T T T T T

0.7 - 4

0.6 -

0.5

0.4 -

03

0.0 1 PR SN IS T NI A | U NN SENE SRV U S B S
[eX} 02 03 04 06 081 2 3 4 6 8 10

N/No

Fic. 1. The relation between 9 and N/N, for H/H,=1.
M=3TZ/3TZO, where Moo= (2/#2);13/7\03 and No= (1/7r2) (1/7\:3).

u A. HTi/Iorrish, Physical Principles of Magnetism (John Wiley
& Sons, Inc., New York, 1965).
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F16. 2. The relation between M =93 /M, and H/H,.

the value of induced 91 matches B, the body may be-
come self-magnetized through the interaction among
electrons, and permanent magnetism may result. In
order that this may occur, it is necessary that the in-
duced magnetic field be greater than the impressed
field, that is,

M>H, B=pdN. (58)
Equation (55) shows that 9W<H. Hence, there is no
possibility for permanent magnetism to exist in o dense
electron gas.

Higher-order electromagnetic corrections will change
the value ot 9 computed here, but the magnitude of
these corrections will be 1/137 of the computed value
of 9N, unless some collective phenomena take place.
These collective phenomena may include the presence

B

N PRIl

Field strength R
B=p, T i

EXTERNAL FIELD H=0

Fi16. 3. The condition for permanent magnetism,

of an electric current or solid structure at high density
and low temperature.

VIII. SUMMARY AND CONCLUSION

In this paper, we have computed the magnetic mo-
ment of a magnetized Fermi gas. A general expression
for the magnetic moment was obtained. The properties
of the magnetic moment in a degenerate magnetized gas
were also studied. We obtained the following results:

(i) At a given field strength, the magnetization 91
(magnetic moment per unit volume) increases more
than linearly with particle density, and for high field
strengths 910 may even increase quadratically with the
particle density 9. However, if the density is too high,
o will decrease with the excitation of higher magnetic
states. The maximum value of 91 at a given field
strength is roughly

1up H
Me— — —~ 1103 H<H.

T2R3H,

(59)

(ii) Permanent magnetism will take place when the
following condition isfulfilled:

H=pdN, (60)

where uo=1in Gaussian units (used in this paper). From
Eq. (59), this condition cannot be fulfilled for an elec-
tron gas. Thus there is no permanent magnetism in a
noninteracting electron gas.
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Models. I. Generalities
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Self-consistent models of uniform universes are provided by coupling Einstein’s equations to the one-particle
Liouville equation. Correlations between the “particles” of the cosmic gas are thus neglected. As a conse-
quence, an equation of state is not needed in the theory but is, rather, provided from these statistical con-
siderations. It is shown that an expanding self-consistent uniform universe behaves asymptotically as the
relativistic polytrope p~ub/, and finally, as an expanding Friedmann universe. Near the possible singularity
R=0 (R=scale factor), self-consistent models are hot models. Friedmann models are shown to be a particular

case of self-consistent models.

1. INTRODUCTION

N a preceding paper we studied some simple proper-

ties of the self-gravitating relativistic gas.! Essen-

tially, we used a Vlasov approximation. In other words,
the relativistic one-particle Liouville equation

(V]
9,9 (x”,u”) — Tag* (") uouf— (x*,*) =0 (1.1)
out

was coupled to Einstein’s equations

RHV—%RguV—)\guv=XTuv (1.2)

through the definition of the momentum-energy tensor

d:;u
T"V(x/’)=m(\/g)/ —z—‘o—f)‘c (wP uP)uru (1.3)

In the following the metric tensor g is of signature
(+———) and g=|det(g*)|. We also use c=1, where
¢ is the velocity of light in a vacuum. In Eq. (1.2), R,,
is the Ricci tensor, R is the scalar curvature, and \ is
the cosmological constant. X denotes the gravitational
constant. The T',s*’s are the well-known Christoffel
symbols of the second kind. In Egs. (1.1) and (1.3),
9N (xP,up) is the invariant distribution function de-
scribing the gas. In Eq. (1.3), m is the mass of a typical
particle and the integral is extended to the hyperboloid

w>0 (1.4)

except when dealing with particles of vanishing mass. In

guw(@)urur=1,

* Laboratoire associé au Centre National de la Recherche
Scientifique.

1 Ph, Droz-Vincent and R. Hakim, Ann. Inst. H. Poincaré (to be
published).

this latter case the integral is extended to the light cone
u20. (1.4

Finally, we will use the Einstein summation convention,
Greek indices running from 0 to 3 and Latin ones from 1
to 3.

Since no explicit solution of Einstein’s equations is
known in terms of an arbitrary momentum-energy
tensor T, it was of course impossible to get a Vlasov
equation as is commonly done in the case of electro-
magnetic interactions? (i.e., the electromagnetic field is
expressed as a functional of the distribution function
and next eliminated in the one-particle Liouville equa-
tion). Accordingly, we obtained a linearized kinetic
equation by considering only small deviations of given
“background quantities” (i.e., g,» and 9). It then
follows that our previous paper can be mainly applied
to problems of stability. We also stressed that the only
known relativistic self-gravitating system where collective
effects are dominant is constituted by the universe as a
whole.?

In this paper we deal with homogeneous, isotropic
cosmological models. It is indeed well known that, in
this particular case, Einstein’s equations reduce to two
differential equations* for the pressure p, the mass

gur(@P)uru’=0,

2 See, e.g., S. Gartenhaus, Elements of Plasma Kinetic Theory
(Holt, Rinehart and Winston, Inc., New York, 1964).

3 This is not completely true since the first stages of the gravi-
tational collapse of a massive star is another such example. How-
ever, as the star collapses, the neglect of correlations is less and
less valid.

4 See, e.g., H. Bondi, Cosmology (Cambridge University Press,
Cambridge, 1961), 2nd ed.; G. C. McVittie, General Relativity and
Cosmology (Chapman and Hall Ltd., London, 1965); R. C.
Tolman, Relativity, Thermodynamics and Cosmology (Clarendon
Press, Oxford, 1958).



