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Magnetic Moment of a Magnetized Fermi Gas
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In this paper we have calculated the exact expression for the magnetic moment of a Fermi gas in a mag-
netic 6eld (magnetized Fermi gas). The susceptibility obtained from our result becomes the classical Curie-
I.angevin law in the weak-6eld bmit for a nondegenerate and nonrelativistic gas. The induced magnetic
moment BR was found to be proportional to the square of the electro~ density, but at higher densities Bg
passes through a maximum and eventually becomes negative; hence a magnetized gas is first paramagnetic
but later becomes diamagnetic. %e have also shown that spontaneous magnetization cannot take place in
a noninteracting electron gas.

I. INTRODUCTION
' "N two previous papers, "we derived a general ex-
' ~ pression for the equation of state for a system of non-
interacting Fermi particles in a magnetic field (a mag-
netized Fermi gas), and studied the thermodynamic
properties of such a gas. %C found that in the limit of
1RI'gc quantum numbersq R magnetized Fcrml gRs lc-
duces to an ordinary Fermi gas, . whose properties have
been described elsewhere. "In the case of small quan-
tum numbers, the properties of R magnetized gas axe

quite diferent from a Fermi gas. The lowest magnetized.
state is characterized by the alignIQent of all electron
spins with the Geld, and in this limit a magnetized gas
behaves exactly as a one-dimensional gas, which has
been studied extensively clsewhexe as a theoretical
problem. ' As the density or temperature increases,
higher magnetized states are excited. The gas behaves
more like an ordinary Fermi gas Rnd eventually ap-
proRchcs lt ln thc classlcRl llIQlt. In pl evlous papers] '

clltcx'1R werc glvcn for R gRs to bc consldclcd Rs R Dlag-

netlzcd gas, Rnd will not bc discussed hclc.
In this paper we are interested in the magnetic prop-

erties of a xnagnetized Fermi gas. 6 The magnetic prop-
cI'tlcs of R system RI'c lntlDlately x'elated to the IQRclo-

scopic magnetic moment of the system, which wc will

calculate in the sections that follow. %C are also inter-
ested in an important question: Can magnetization
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Misc spontancoUsly ln RQ clcctIon gasP Answers to this
question will be found through a study of the total mag-
netic moment of thc system.

»&= Z ~.(»L1+exp(—8@i.—r))1
+ t Pg

+»L1+exp(—P(~s.—t ))3, (2)

whcI'c M„ is thc statlstlcal wclght fox' stRtcs of qURntuD1
number e for a system with volume 0:

&e =0'tscH/2srl'tc (33

Z„,= +srtc' 1+i —+2—(tt+r —1)
&tttc a, (4)

f—i)2) 6—0) I)2,

p, is the s component of the momentum of the electron,
II is the magnetic 6eld which is in the s direction, E„,
is the quantized energy of the electron in the magnetic
field, and

II =ttt'c'/cIt=4414&10" 6
The symbols e, fs, m, c, and k all have their usual
IQCaning

Carrying out the sum over p. in the usual mariner, we
have the following expression for in8 (see Paper II for

7 K. Huang, Statistical Mechanics (John Wiley R Sons, Inc. ,
New York, 1963), Chap. 11., pp. 237-243.
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II. GRAND PARTITION FUNCTION

Thc grand pRltltlon 'functloQ d ls de6ned by

1ns=ln Tr expLk —P(—ttP)j,

where p= (kT)-', fC is the Hamiltonian operator for the
system, p is the chemical potential plus the rest energy
in cgs units, and P is the particle occupation-number
operator. From Eq. (1) we have derived' the following
CXPI'CSSlon foX' 5:
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details): Using Eq. (6), we find that, explicitly, OR is given by

], eH ~ +
—Inb=
0 2~4 n-0

Ch(lnL1+exP( —P(Er —P))j 2 p~
5K

4Q E(x,O,H) —p
ln 1+exp — — Cx

which can be written as

+h [I+exp(—P(E2.—P))]},
00 E(x,n,H) —p

+P Q In 1+exp ——
n~l 0

eH 1—in&=
n ~A 2

Ch ln(1+ expL —P(E(x,O,H) —p))} ——Qn
+cn 1 0

E-i(x nH),

n=l
Ch In(1+expt —P(E(x,n,H) —p)]} ~, (6) E(x,n,H) p—

X 1+exp — Ch, (13)

where
P=gmc', p=P/mc', x=P,/mc,

E(x,n,H) = (1+x'+ 2nH/H, ) ')'.
(6')

III. MAGNETIC MOMENT

The magnetic moment operator 5K is dehned by'

OR= —c)Se/c)H, (&)

where OC is the Hamiltonian for a Dirac particle (see
Paper I). The statistical average of OR then gives the
total magnetic moment of the system, 5K:

OR= Tr(p)OR/Trp,

where &=kT/mc', prr=eA/2mc is the Bohr magneton,
and It,= h/mc is the Compton wavelength of the
electron.

Equation (13) is the most general expression of the
magnetic moment of a noninteracting Fermi gas in an
external magnetic Qeld. One can use the exact wave
function (discussed in Paper II) to evaluate (12) and
to show that, after taking statistical averages, Eq. (13)
be obtained from Eq. (8) using the Hamiltonian of the
Dirac equation as described in Paper I.

YVe shall now study the classical properties of 5K as
given in Eq. (13).

IV. CLASSICAL LIMIT—CUME-LANGEVIN LAWwhere p is the density matrix, in the grand canonical
ensemble

p= expL —P(X—PN) j.
We now have

Tr( —(ave/aH) expL —p(oc—p&))}
5R= (10)

Tr( expL —p(oc—pIi")]}

If we keep the chemical potential p constant with re-
spect to the magnetic field, " then Eq. (10) becomes

(E(h,n,H) p) — H
exp~ ~))1& E(x,n, H) -+ 1+-',x'+n—(14)) ' ' ' '

H,
'1 8

OR= — In Tr expL —p(OC —pP)],
P BH

(u) &(~,g,rr) —
r

)ln 1+exp—8
- lng,

gBH
E,(x,n, H) —p)= exp — '

~
. (15))where 5 is the grand partition function dered in Eq.

(1) and explicitly given in Eq. (6). Equation (11) is a
generalization to the nonzero-temperature case of the
Pauli-Feynman theorem, ' which states that 2 pi) 1 p —1& ~ p —1)

OR= ——~ exp ~+P P exp
%2'.3-2 e i Q j8

(n /OR(n)= — (n fOe[n)
8H

(12)
nH) H ~ p —1

Xexp —
~

——g n exp
H, a-twhen

~
ri) is the eigenstate of ~.

In Paper I, the classical limit was dined as the
limit in which the sum over n can be replaced by an in-
tegration over n. We shall now show that in the clas-
sica1. limit the nonrelativistic and nondegenerate expres-
sion of Eq. (13) gives the Curie-Langevin law for the
magnetic susceptibility.

The nondegenerate and. nonrelativistic case is given
by the following condition:

C. Kittel, Elementary Statistical Mechanics (John Wiley &
Sons, Inc. , New York, 5958).

W. Pauli, iu Hat)dbuch der Physik, edited by S, @lupine (Sprin-
ger-Verlag, Berlin, 1958); see also Refs. 7 and 8,

nH
Xexp — Ia, (16)

yH,
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where

Let

exp ——dx.
0 2'

X= exp/(y —1)/p] (17)

solutely convergent), we have

lg 1+exp(— ) r, exp( — )
H ( eH—2X—P e exp~ — Io. (18)

and, after rearranging terms in the sum (which is al-
lowed because these series are easily seen to be ab- The following results are apparent:

x'y
exp~ ——(dg = (2s.p) '&'

0 E 2y)

NH
E exp — = 1+exp~—

0 =PH, ( yH j
( NH) 8 ~ rIH 8 eo

Z + expl ~= O'H, p exp — = —-'pH. 1+2 g exp~—
QH, ~ BH ~=& PH, BH

8 (v+1)H f NH)- 8 i H i p ~Hst, & exP — +'P exPI —
~

= —2'. 1+expl I E exp~—
aH ( yH. P .-0 E yH,

(19)

(20)

where

We therefore find

IJsH/kT = ,'H/yH. . -

8 1+exp(—H/pH, ) 8 /ysH)= —k4H. ,'yH, coth—
i
-i, (21)

BH 1—exp( —H/qhH, ) BH 4 kT )
A simplified expression for in& can be obtained from

(22) Eqs. (6), (14), (15), and (19)—(21). We have

(2s P) '~9.ps 8
DR= cathy+ g

—cothg ~,
7r 2'.3 as i

(2sy)'12'~ 8
BR= —(g cothri),

x'9, Bg

(23)
Hence

X 2~k
X=—in&=

4m' X,' mc'

(2g)

(29)

(24)

The magnetic susceptibility x is defined by'

x= lim (OR/H). (25)

From Eqs. (23)—(25) we obtain

2 pg2 $ 27rk
X=—

3 kT 4x' mc'
(26)

We shall now eliminate X. The definition of the particle
density X is

(27)

where ri= AH/kT.
Expanding g cothg and retaining terms of the lowest

order, we find

Substituting Eq. (29) into Eq. (26), we obtain

&=-', (ys'/kT)X~ 1/T, (3o)

which is the Curie-Langevin law for a classical gas at
high temperature and low density. 4 ~

This classical result includes both the diamagnetic
part (due to particle motions in a magnetic field) and
the paramagnetic part (due to the spin or the intrinsic
magnetic moment of the particles). One can show that
the paramagnetic contribution to X is ps%/kT and the
diamagnetic contribution is —

3 of the paramagnetic
contribution, so that the resultant is that given in Eq.
(30).

It is dif5cult, however, to separate the general expres-
sion (13) into the corresponding diamagnetic and para-
magnetic parts. Nevertheless, we can still decompose'
(Gordon decomposition) the four-current j„

j.= ~4v A =j."'+j.'"
' J. J. Sakurai, Advanced Quantlm Mechanics (Addison-Wesley

Publishing Co., Inc. , Reading, Mass. , 1967), pp. 107—110.
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s lich t ha t

j„' &A„=(i/:A/2m)t 8„~ gd—„li/]A„(e—'/@ac)A„'~

becomes the Landau Hamiltonian giving rise to diamag-
netism in the nonrelativistic limit.

The other part,

Cl( )=-»m Cl(s/, /) =»lL/+( '—&)'"j,
@~0

C2(/)—= llm C~(4,/)

=i{/ (/' —&)'"—»L/+( '—&)'"j)

(38)

(39)

8h I 8Ap I 8~)/
(0~.4)+- @~A)

25$c-2 Bxy 2 Gap

&7~7~ (/l+/') r

becomes the Pauli Hamiltonian giving rise to spin
paramagnetism in the nonrelativistic limit.

Cl(/) =Cl(/) =0,

VI. DEGENERATE EXPRESSIONS FOR
THE MAGNETIC MOMENT

(40)

As discussed in Paper II, the condition of degeneracy
is expressed by

YVe can apply the same procedure as in Paper II to
reduce 5K into a sum over the same function over differ-
ent arguments. The following transformation, which
has been explMned previously) ls introduced:

(42)8,4pgQ, +y.
l =x/a„,

a.= Pl+2(H/H, )n jl/l,

and the following functions are defined:

(31)
Ke therefore 6nd

(32)
2 p,g p

oR= ———Cg(p)+ p a„'Cl-
7{. Xc -2 "=& gn

From Eq. (40) it can be concluded that the sum over n
in the expression for OR LEq. (36)j terminates at s,
where s satishes the condition

Cl(4,/) = (&+~') '"

p($+ p2)l/0 q
——l

X &+exp~ —
~

dv, (33)

(1+p2) l/2

C2(g,/l)=P ln 1+exp — dr. (34)

By partial integration, we 6nd that

Equation (13) can be written as

2 @gal 00 p
oR= ——-Cg(p, /l)+ Q a„'C2 —,—

X~ 2 &=& G~ C~

——Q r/Cl —,—
I . (36)

e=l a a )

C'(4,/) =
(1+p2) l/2

(]+r/2) 1/2
/ )——l

&( 1+exp i
dv. (35)

H e /l)——inc, —
f

. (43)
H, -l a/

A. The Case s=o. Ground State of a Magnetized Gas

When the density is such that

1(/l(al= (1+2H/H, )'/2, (44)

The first two terms are positive and. the third term is
negative. When s= 0, the only nonvanishing term is the
first tenn. As discussed in Paper II, this corresponds to
the one-dimensional gas limit in which the spin of all
electrons is aligned with the magnetic field. The result-
ing magnetic moment is therefore the magnetic moment
of all electrons. As is well known in nonrelativistic
quantum mechanics, the electron spin gives rise to pa-
ramagnetism, and the electron orbital motions give
rise to diamagnetism. Hence, at the lowest-energy state
there is only paramagnetism.

When quantum states other than the n = 0 states are
excited, the gas gradually becomes diamagnetic and BR

then becomes negative. The nonrelativistic and non-
degenerate limit of large quantum numbers n has been
discussed in Sec. IV.

Numel ically) the only nonvanishing term is the first term 2C2(/l).

ORO~ (2/~2)/l~/$03 —3 2637X $010 G, (37) Tllls corresponds to tile one-dlmenslonal gas»mlt) as
discussed in Paper II. We shall obtain the magnetic

The properties of Clg, /l) and Cm(p, /l) have been exten- moment OR as a function of particle density K for this
sively discussed in Pa,per II. In the degenerate limit case.



MAGNETIC MOMENT OF MAGNETIZED FERMI GAS 1233

The relation between the density K and p is I Eq.
(81), Paper IIj, for the case given by (44),

j. a1 a
&=———2C.(v) =&e—«(r ),

m' H, X,3 e. (45)

j. I
C4(~) = (~'—1)'",

2vr2X. 3
(46)

From Eqs (46) and (39), we find the relation between
Cs(p) and Cs(gs):

Cs(p) = -', Cs(is) LC4'(is)+ 1]' '
—

2 ln jCz(z )+LC4'(~ )+13'") (47)
=!~(@+1)i -!J.B+(v+1) iq,

Therefore,

&=Cs(is) = Ot/(Otzza/H, ) . (48)

ntz+ (z'+ 1)'nj

x(x'+1)'"
(50)

p~ 1.2+(&'+1)'"j
Dlt= ——~(@+1)'~ 1—

2X2X.3 ${/2+1)1/2

1 psz K i' X
+1

x. x,a/a, kx,a/a,
X

Xr,
i i, (49)
EKea/H, &

VII. ABSENCE OP PERMANENT MAGNETISM
IN A DENSE ELECTRON GAS

In solids, it has been discovered that the magnetic
susceptibility X is given by the Curie-Weiss Law"

x= C/(r —e), (56)

where C is a constant, and 8 is the transition tempera-
ture, below which there is ferromagnetism and above
which there is paramagnetism. This may suggest that
an dectron gas mill also possess a transition tempera-
ture so that it will become ferromagnetic at low tem-
peratures. This is not the case in the absence of large-
scale ordered phenomena, as will be shown.

We can now answer the question of whether a dense
electron gas can be self-magnetized. This question has
been raised many times with respect to gravitational-
collapse problems.

The relation between the resulting 6eld J3, the im-
pressed 6eld H, and the induced magnetic moment BR is

jJ=po(a+Dlr), (57)

B. The Case s&0
In the case s&0, the higher magnetic states are oc-

cupied and the gas gradually becomes diamagnetic. At
a given 6eld strength, 5R increases with density until
reaching a maximum given by Eq. (55), then decreases
with density, eventually becoming negative. Figures 1
and 2 show the relation between OR and H/H„and OK

and X. The undulating behavior of 5K is due to the
peculiar behavior of the density of states shown in Fig.
4 of Paper II.

5:,(x) ~ x2/(1+as)»', xg&1

Sr(x) ~1,
(»)
(52)

where po is a constant which takes care of dimensions.
Consider a small cavity in a magnetized body (Fig. 3).
The 6eld felt by a sample in the cavity is 8; hence if

From Eq. (49) it may be concluded that OR increases
as X' at a given 6eld strength. However, when X is
too large, higher magnetic states with s&0 will enter,
causing 5R to decrease. Hence, there is a combination
of the 6eld strength and the density such that 5K is a
maximum. This maximum value of BR can be estimated
as follows:

The value of p, should be close to the upper limit
given in Eq. (44), and for large values of H/H, it is

i =(2a/a. ) ris.

This gives the following relat:ion between OE and H/H,
for the maximum value of 5K:

x=&ex,(a/a, ) ~ . (s4)

0.8

0.5-

0.2-

O. I

0.0
O, lSubstituting Eq. (54) into Eq. (49), we obtain the

maximum value of 5R as a function of II for X»KO
xa/a, :

0.2. 0.3 0.4 0.6 0.8
N/Np

I p~H
C)T('~ ~ go- 3/1

X' X.,3 B,

Fxo. i. The relation bet&men BR and E/Eo for II/H, =1.~=~/~o„rvhere ~0= (2/w )pa/~ 8 and Eo =
I,'1/m~) (j /'Ap )

(55) "A. H. Morrish, P/zyszea/ PrzzzezP/es of zzzIagzzeizsm (John Wiley
8z Sons, Inc. , New York, 1965).
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Fxa. 2. The relation between 3f=K/BI@ and &PE,.

for the magnetic moment was obtained. The properties
of thc IDagnctic moMent ln R dcgcncI'Rtc IQRgnctized gRs
vrere also studied. We obtained the following results:

(i) At a given field strength, the magnetization OR

(magnetic moment per unit volume) increases more
than linearly with particle density, and for hig e
strengths BR IQRy cvcn lncrcRsc quadratlcally &1th thc
particle density K. However, if the density is too hing,
BR %vill dccrcRsc with thc cxcltRtlon of higher Inagnctlc
states. The maximum value of m Rt a given Geld
strength is roughly

Equation (55) shows that OR«H. Hence, there is No

ossibi/ity for Permanent raagnetisra fo exist il a delse
elecfroa gas.

Higher-order electromagnetic corrections will change
the value ot 5K computed here, but the magnitude o
these corrections will be 1/137 of the computed va ue
of 5R, unless some collective phenomena take place.
These collective phenomena may include the presence

t
bod ma bc- of RQ clcctrlc current or solid structure Rt high cnsltythc vRluc of lnduccd BR mRtchcs 8, thc body may c- o RQ c c

coIDc self-Inagnctlzc t 1ough 4 thc interaction RIQoQg RQ|I lovf tclnpcrature,
rmanent ma netism may result. Q

II. SUMMARY AND CONCLUSIONorder that this may occur, it is necessary t at t e ln- VIII.
duccd magnetic fleM bc gI'cater than thc impressed
field~ that ls)

ment of a magnetized Ferlnl gas. A general expressio
(5g)

FieId sff'engfh

(ii) Permanent magnetism will take place when the
following condltlon lsful6Hcd:

EXTERNAL FIELD H ~ 0

F|IG. 3. T5c coDE4tloH. foI' pcx'maI1QIlt YHRgHctl5YQ.

where sr e ——1 in Gaussian units (used in this paper). From
Eq. (59), this condition cannot be fulalled for an elec-

g . Th th i p g
Honlnteractlng clcctl oQ gRs.
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Self-consistent models of uniform universes are provided by coupling Einstein s equations to the one-particle
Liouville equation. Correlations between the "particles" of the cosmic gas are thus neglected. As a conse-
quence, an equation of state is not needed in the theory but is, rather, provided from these statistical con-
siderations. It is shown that an expanding self-consistent uniform universe behaves asymptotically as the
relativistic polytrope p~p, '~', and 6nally, as an expanding Friedmann universe. Near the possible singularity
g =0 (E.=scale factor), self-consistent models are hot models. Friedmann models are shown to be a particular
case of self-consistent models.

was coupled to Einstein's equations

g~gisv ~gatv
— ~pv

through the de6nition of the momentum-energy tensor

T~"(x~) =m(gg)
d3N

K(x~ N~)N~N"
n'

(1.3)

In the followwing the metric tensor g&" is of signature

(+———) and g=—
~
det(g&") ~. We also use c= 1, where

c is the velocity of light in a vacuum. In Eq. (1.2), R„,
is the Ricci tensor, R is the scalar curvature, and X is
the cosmological constant. x denotes the gravitational
constant. The I' p&'s are the well-known ChristofI'el

symbols of the second kind. In Eqs. (1.1) and (1.3),
K(x~,N') is the invariant distribution function de-
scribing the gas. In Eq. (1.3), m is the mass ot a typical
particle and the integral is extended to the hyperboloid

g„,(x&)N&N"=1, I'&0 (1.4)

except when dealing with particles of vanishing mass. In

*Laboratoire assoc' au Centre National de la Recherche
Scienti6que.' Ph, Droz-Uincent and R. Hakim, Ann. Inst. H. Poincard (to be
published).

1. INTRODUCTION
' "N a preceding paper we studied some simple proper-
t ~ ties of the self-gravitating relativistic gas. I Essen-
tially, we used a Vlasov approximation. In other words,
the relativistic one-particle Liouville equation

8
m&B„X(x",I")—F p" (x")u us K(x",u") =0 (1.1)

BN"

this latter case the integral is extended to the light cone

g„„(xi')N~N"=0, u'~) 0.

Finally, we will use the Einstein summation convention,
Greek indices running from 0 to 3 and Latin ones from 1
to 3.

Since no explicit solution of Einsteig. 's equations is
known in terms of an arbitrary momentum-energy
tensor T„„,it was of course impossible to get a Vlasov
equation as is commonly done in the case of electro-
magnetic interactions (i.e., the electromagnetic Geld is
expressed as a functional of the distribution function
and next eliminated in the one-particle Liouville equa-
tion). Accordingly, we obtained a linearised kinetic
equation by considering only small deviations of given
"background quantities" (i.e., g„„and K). It then
foll.ows that our previous paper can. be mainly applied
to problems of stability. We also stressed that the only
known relativistic self-gravitating system where collecfi~e
eBects are dominant is constituted by the universe as a
whole. '

In this paper we deal with homogeneous, isotropic
cosmological models. It is indeed well known that, in
this particular case, Einstein s equations reduce to two
differential equations' for the pressure p, the mass

~ See, e.g., S. Gartenhaus, Flements of Plasma Einetic Theory
(Holt, Rinehart and Winston, Inc. , New York, 1964).

'This is not completely true since theist stuges of the gravi-
tational collapse of a massive star is another such example. How-
ever, as the star collapses, the neglect of correlations is less and
less valid.

4 See, e.g., H. Bondi, Cosmology (Cambridge University Press,
Cambridge, 1961), 2nd ed. ; G. C. McUittie, General Relativity and
Cosmology (Chapman and Hall Ltd. , London, 1965); R. C.
Tolman, Relativity, Thermodynamics und Cosmology (Clarendon
Press, Oxford, 1958).


