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Thermodynamic Properties of a Magnetized Fermi Gas

Vrrroiuo CANVTO@ AND HONG-YEE CHIUt

Institute for Space Studies, Goldarn Space Ii/ight Center, Ãationa/ Aeronautics
and Space Administration, %ex Fork, Sent Fork NOZ5

(Received 26 April 1968)

In a previous paper, we calculated the equation of state of a Fermi gas at arbitrary temperature in a
uniform and constant magnetic Geld of arbitrary strength. (Such a gas is now referred to as a magnetized
Fermi gas. ) In the present paper, we have studied the properties of the equation of state and have obtained.
simpli6ed expressions for the normal stresses and the energy and particle densities. These expressions can
be used in astrophysical applications. We have found that under suitable conditions of degeneracy (the
temperature approaching 0), a magnetized Fermi gas behaves exactly as a one-dimensional gas, which has
been studied extensively as a theoretical problem. We have also obtained expressions for the grand partition
function.

where p. is the momentum in the z direction, H is the
magnetic Geld strength, m is the electron mass, c is the
velocity of light, and H, = trite%h =4.414X 10's G.
The + and —signs refer to electrons and positrons,
respectively, r= I, 2 Rnd e'=0 I 2 ~ . r and e' are
two quantum numbers characterizing the spin and
orbits of the electron. The energy levels are thus
strongly quantized when p./risc is small compared to
2H/H, . In the limit of large n', the correspondence
between e' and the x and y linear momentum is

I. INTRODUCTION
' 'N a previous paper, ' we calculated the equation of
~ ~ state of a nonintcracting Fermi gas in a constant
Rnd uniform magnetic Geld of arbitrary strengths and
at arbitrary gas temperatures. This kind of gas will be
referred to hereafter as a magnetized noninteracting
Fermi gas or a magnetized Fermi gas. The temperature
and the chemical potential are well-defined quantities
as well as being isotropic, as expected from thermo-
dynamic considerations. %c obtained the macroscopic
energy-momentum tensor of a magnetized Fermi gas
as a function of the chemical potential p and the
temperature T. Detailed calculations of the equation of
state have been discussed in Paper I. In this paper, we
shall deR1 mainly %'1th thc thermodynamic propcltics of
R magnetized Fermi gas.

One of the most fundamental properties of a magnet-
ized Fermi gas is exhibited in the anisotropy of the
normal stresses. (The normal stresses become the
pressure in the case of an isotropic medium. ) In our
case, the normal stresses (the diagonal spatial element
of the energy-momentum tensor) are different in the
dircctlons parallel Rnd pcrpcndlculR1 to thc mRgIlct1c

Geld. This anisotropy is directly associated with the
quantization of energy levels by the presence of a
magnetic Geld. Classically, the electron orbi
helixes or circles with axes parallel to the 6el
motions in the plane perpendicular to the Ge

circles of constant angular velocity, and can
composed into the motions of two correlated
harmonic oscillators. I et the direction of the fi

taken in the s direction. |Athen these simple har
oscillators are quantized, the energy levels are'

=2 I' r—1 .

We have shown that in this limit (large n, ') the gas
becomes an ordinary Fermi gas. In other words, the
parameter that characterizes a classical noninteracting
Fermi gRS Is

The magnetic properties of a gas are quantized if
)&1, and classical if $))1.This condition gives the fol-
lowing criteria for a magnetized Fermi gas (see Paper I):

p s

E(p„rs', r) = arrrc' 1+ +2 (rr'+r —1)
gg& Bc

k T/risc'& 2H/H„L(nonrelativistic, nondegenerate)
tS R1C

d. The
T&&5.9X10' 'Kj

be de- (kT/fisc')'&2H/H„L(relativistic, nondegenerate)

T»S.9X10' 'K.]
eld be

—,
' (ep/mc') = (p/10') sl'& 2H/H. ,

(3)

(nonrelativistic, degenerate)

l ( p/roc')'= (p/10')"'&2H/H
(1) (relativistic, degenerate)
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where es is the Fermi energy Les=me'(p —1) in the
limit p —+0). The temperature encountered during
and before gravitational collapse is in the range T9=1~ 100 LTs—= T/10' 'Kj. Hence the field strength
of interest is of the order of 1013 G- and beyond. Such a
strong field may be present during gravitational
collapse or in gravitationally collapsed objects (e.g.,
1220
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the collapsed star in the center of Crab Nebula).
Figure 1 shows the regions of a magnetized gas.

The nonrelativistic properties of a magnetized Fermi
gas have been extensively discussed in conjunction with
solid-state physics. The most important properties of a
nonrelativistic magnetized Fermi gas are associated
with the Landau diamagnetism and the Pauli para-
magnetism. In addition to these nonrelativistic proper-
ties, in the relativistic case we are also interested in the
thermodynamic behavior (the relation between temper-
ature and energy density, etc.). In the following, we

shall study various thermodynamic properties of a
magnetized Fermi gas.
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Fro. 1. Approximate regions of a magnetized Fermi gas for
several 6eld strengths, as indicated by the solid lines, marked by
'MF."H. =4.414X1013 G. The logarithms are to the base 10.

The equations of state of a magnetized Fermi gas,
as given by Eqs. (88)—(91) of Paper I, can be rewritten
in a more convenient form if we first perform the sum-

mation over the index r, and then shift the summation
index from rs to v+1, and the integration on x (from
—pp to + pp) to a new one (from 0 to pp). This last
step gives only a factor of 2. The normalization volume
can be taken equal to i. The result is

energy (in units of mc'). ' The macroscopic energy-
momentum tensor T„„is related to P„, P», and P„
as follows:

0 0 0
P„„O 0
0 P„O
0 0 T44.

p*.
0
0

„01 H 'mc' ~ dS
F.,=F,„= —P e F (x,m), (4)

H, X,' ~=j. p F(x,N, H)
Equation (10) is valid only in the frame of reference
comoving with the gas. The energy-momentum tensor
components are related to each other and to the
temperature T and density X through Eqs. (5)-(8).
The equations of state are therefore expressed as
infinite series which generally cannot be approximated
by an integration over n. When we approximate the
sum over e by an integral over de, we obtain the
expression of the equations of state of classical non-
magnetized Fermi gas, as we have shown. in Paper I.

Introducing the following transformation in the
integrands:

F(x 0)
E(x,O,H)

F(x,e), (5)
F.(x,e,,H)n=1 p

1 H mc' 1
U= — — F(x,0)Ei:(x,O,H) dx

+c Ac 2

F(x,e)Ii'(x, e,H)dx, (6) x p H
s=—,a„=~ 1+2

a. 4 H,
n=l

1 H 1
F(*,0)dx

H, X,'2 p 1+x'+2 e
~

=a„(1ypP)&&P
H, )

F(x,n)dx, (7)
n=l

where
F.(x,e,,H) p—

P(x,m) = (1+exp (8)
~i(4,~) —=

(1+v')'~'{ 1+exp/((1+ s')'~' —p)/y j)
(12)

5 dgI (xeH)=[1+x'+2(H/H )ej'" m=0 1 2

x=p,/mc, p=kT/mc'=2'/5. 903X10' 'K, (9)

X,=h/me=3. 86X10 "cm.
(1+p')"' f &+exp(((1+v')'~' —p)/d j)

=L (~,~)-~(d,~), (»)
3 H. Y. Chiu, Stel4r Physics (Blaisdell Publishing Co., Waltham,

Mass. , 1968), Vol. I, Chap. DI.
Here U is the energy density and X is the particle energy
density, and p is the chemical potential plus the rest

the integrals in Eqs. (5)—(8) can be expressed in terms
of the following functions:
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gABLE

1.0

2.0

3.0

5.0

6.0

7.0

8.0

10.0

0.1

0.23617
0.03157
0.26774
0.25074
0.94123
0.38003
1.32126
1.10315
1.31029
1.09265
2.40294
1.72862
1.76054
3.37872
5.13926
2.82768
2.06230
6.73124
8.79354
3.87270
2.29173

11.11802
13.40975
4.89884
2.4j741

16.52598
19.00339
5.91600
2.633S7

22.94837
25.58194
6.92815
2.76840

30.28127
22.14966
7.93772
2.99306

48.26929
51.26235
9.94986

0.32946
Q.09265
0.42210
0.36927
0.89063
0.44944
1.34007
1.07314
1.28645
1.15112
2.43756
1.71548
1.75353
3.43123
5.18477
2.82521
2.05880
6.78225
8.84105
3.87180
2.28960

11.16840
13.45800
4.89841
2.47597

16.57603
19.05200
5.91576
2.63252

22.99824
25.63076
6.92800
2.76760

30.43101
33.19861
7.93712
2.99255

48.31889
51.31144
9.94981

0.5

0.502 j9
0.40242
0.90520
0.64714
0.84340
0.84332
1.68672
1.13567
1.18230
1.54949
2.73179
1.69364
1.69453
3.80365
5.49818
2.80509
2.02978
7,14127
9.17105
3.86351
2.27302

11.52180
13.79482
4.89469
2.46518

16.92673
19.39190
5.91381
2.62488

23.34743
25.97231
6.92685
2.76187

30.7792j
33.54114
7.93638
2.98897

48.66610
51.6550j
9.94944

0.61738
0.88018
1.49756
0.89004
0.87085
1.42454
2.29538
1.30050
1.13651
2.19135
3.32786
1.77487

. 1.61250
4.47762
6.09012
2.80677
1.97074
7.80872
9.77946
3.8537g
2.23587

12.18046
14.41633
4.88737
2.44134

17.57959
20.02093
5.90937
2.60865

23.99682
26.60547
6.92419
2.75014

31.42655
34.17668
7.93471
2.98194

49.31111
52.29305
9.94868

0.67824
1.28702
1.96525
1.04446
0.89778
1.90207
2.79985
1.42638
1.12924
2.72269
3.85194
1.86393
1.56765
5.06590
6.63355
2.83736
1.92502
8.41276

10.33777
3.89178
2.20100

12.78546
14.98646
4.88562
2.41685

18.18209
20.59893
5.90659
2.59154

24.S9674
27.18828
6.92190
2.73787

32.02451
34.76238
7.93307
2.97489

49.90674
52.88163
9.94788

1.23319
3.53205
4.76525
3.90504
1.30710

25.55397
26.86107
4.18472
1.38242

27.71887
29.10129
4.47694
1.53627

32.S0237
34.03864
5.09811
1.69256

37.93076
39.62332
5.76626
1.84914

44.04953
45.89867
6.47832
2.00400

50.90085
52.90485
7.23072
2.15536

58.52311
60.67847
8.01953
2.301/7

66.95069
69.25247
8.84070
2.57563

86.33941
88.91504
10.56443

0.89346
4.34605 2
5.23951 2
1.78164
1.03252
5.31564
6.34816
2.10203
1.17749
6.45322
7.63071
2.45321
1.47335
9.28964

10.76299
3.23601
1.75942

12.95316
14.71258
4.10259
2.02100

17.51365
19.53465
5.02584
2.25176

23.01654
25.26830
5.98442
2.45156

29.48934
31.94090
6.96375
2.62355

36.94787
39.57142
7.95471
2.90128

54.85283
57.75410
9.95240

8.0

1.42745
57.59191
59.01936
6.00065
1.48009

60.65912
62.13922
6.26952
1.53336

63.86273
65.39610
6.54622
1.64147

70.69472
72.33619
7.12289
1.75117

78.11869
79.86986
7.73008
1.86182

86.16480
88.02661
8.36700
1.97281

94.86227
96.83508
9.03264
2.0g353

104.23926
106.32279

9.72583
2.1934$

114.32269
116.51609
10.44528
2.40858

136.70959
139.1i817
11.95720

10.0

1.52348
88 53946
90.06294

7.39328
1.56813

92.30214
93.g7026

7.65846
1 61319

96.19g97
97.g j216
7.92991
1 70441

104.40760
106.11.202

g.49148
1.79681

11.3.19015
114.98696

9.07769
i.g9003

122.57105
124.46108

9.68811
1.98373

132.57426
134.55800

1Q.32222
2.07758

143.223i 8
145.30075
10.97939
2.17124

154.54049
156.71173
11.65891
2.35674

179.26736
181.62410
13.08176

cs(4w) =—

o 1+ xpL((1+~)'"—~)A j
of thc CI, functions gives%e 6nd that the use o c

dx p

o 1+expt (E(x,n,B)—p)/yj a. a

c can now be written asThe equations of state can

ka„ a„
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The C& functions are expectation values of quantities
relevant to a one-dimensional gas. Ci((f),/i) is the
expectation value of (E') ', where E'=(1+v')'" is
the energy of a one-dimensional particle; Cp(g, /i) is
the expectation value of vdv/dE, and is the pressure
exerted by a one-dimensional particle; and C3 and C4
are the expectation values of energy E' and particle
number, respectively. We can therefore say that a
magnetized Fermi gas has properties similar to a
combination of one-dimensional gases. Later we shall
show that in one limiting cas- degenerate, high field,
and low density —a magnetized gas does behave as a
one-dimensional gas.

The equations of state thus can be written as a sum
over the same function with diferent arguments.
Table l lists Cp((t, /() for a number of values of /i and (t.
(Note that in the above sum the ratio of the two
arguments of the Cp functions is a constant. )

We find

E'„(s)= coship8 exp( —s cosh8) d8. (24)

III. PROPERTIES OF THE Cl, FUNCTIONS

A. 8LCI

In the case p, &1, we can expand the denominator in
the definition of C& [Eqs. (12)—(15)] into a geometrical
series and we can express Cp((t, /() as a sum over the
McDonald functions E„(s),which are defined by'

Therefore,

(:,(y,1p= x exp( ~x,(
—). (28)

This series converges for all values if p& i.
Similarly, using the transformation (26), we have

Cp((t, /i)

(1+v')'/'dv

p 1+exp[((1+~)"'—/)/4l

//i/i'() t/p (1+v')'/'
= P exp

~

(1+v')'/' exp dvyj ()

(m/( m (m
Cp(4, /) =-' 2 expl E2 +Ep~ — . (30)

m, i

We also have

Cp (4),p) =Cp (4,/i) Ci((t),/i)—

m/() " m cosh8
= +exp

~
exp cosh'8 d8. (29)

y j
Using the relation cosh'8=-', (cosh28+1), and the
de6nition of E„(s) [Eq. (24)7, C()((f),/i) becomes

Ci(4,/) =
(1+v')"' 1+exp[((1+v')'/' —/i)/P j

1 ~ (my)g exp]
(1+vP)i/P m=1

m (1+v')"
Xexp— dV

(32)

E~i(s)+It~i(s) = —2E„'(z),

E~i(s)—E„ i(s) = (2N/s)K„(s) .
(33)

(34)

The following recurring formulas for E„(s) may be
useful4:

The behavior of K (s) at large and small values of s are
1+vs)i/P

4e' —1

(
s —+ ~: E„(s)= — e ' 1+XexP — ~dv. (25) 2s g

//

The transformation
v= sinh8 (26)

reduces the integral in the last part of Eq. (25) to the
McDonald function Ep(m/P):

I;(1+5')"') dv
exp—

(1+vP) 1/2

tt' SZ (m
exp~ ——cosh8 d8= Xp~ —. (27)

(4e'—1)(4e' —3')+'''
2 (Sz)'

(35)

s~ 0: X (s)= p(e—1)!/(ps) E'p(s) ~ lns. (36)

For (!K(1we have, therefore,

( (1—/i)m
Ci(4,/) = (p~)"'Z

I

— exp~— (37)
=iEsv

4S. Chandrasekhar, An Introduction to the Study of Stellar
Structure (Dover Publications, Inc., New York, 1957), Chap. X.
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1
1.2S
1.5
1.75
2.00
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0

10,0

CI(P,)
0
0.69315
0.96242
1.15881
1.31696
1.56680
1.76275
1.92485
2.06344
2.29243
2.47789
2.63392
2.76866
2.99322

ALE II. Ca(p).

C2(P)

0
0.12218
0.35731
0.67722
1.07357
2.08071
3.36127
4.90726
6.71425

11.10123
16.50930
22.93175
30.36469
48.25276

c,(&)

0
0.81532
1.31974
1.83603
2,39053
3.64509
5.12401
6.83210
8.77769

13.39366
18.98718
25.56567
33.13335
51.24598

C4(p)

0
0.7S000
1.11803
1.43614
1.73205
2.29129
2.82843
3.35410
3.87298
4.89898
5.91608
6,92820
7.93725
9.94987

we find that

(I(/, 2—y) I/t2

Ci(/) =

(W2-&) '~2

=
lent /1+ (/12 —1)"'j

(1+V2) 1/2

(1+v')"'dv= 2' lnL/1+ (/1' —1)"'j

(46)

c (&)=
(V~&)'/2

(~2 1)1/2

+2/ ( '—1)"', (47)

(48)

C2(/) =C2(/)-Ci(/) = 2/ (/'- I)"'
—-' lnLl + (/ '-1)"'j; (49)

when p&&1, we find

(1-.)m
C2(4, / ) = (-', ~)'/'P — exp-

m=l yg

p
C (e,i) (1 )'"/"'~ r&(— (41)

C1(P,/1) =Ci(y, /1) .

If (1—/1)/)f))&1, we only need to take the first term, and
thereby have

Ci (/1) = ln2/1,

C2( )=C2(/)=2/'

C (.)=.;
when /1

—1((1,we find (/1= 1+()
C.(.) =(2~+v) E1—:~+(2/»)ej
C2(/ ) ~ k(2k+ t')'"L-' —(1/15)Ej

C (/) (25+8)"'F1+it+(1/15)Pj,
C (~) (2~+8)'/'.

Table II lists C2(/1) as a function of /1.

(51)

(52)

(53)

(54)

(55)

(56)

1 p,c (e,i) (1 )'"s"'~*@(— (42) IV. THERMODYNAMIC PROPERTIES OF A
NONDEGENERATE MAGNETIC GAS

C2(e,/) = Ci(4,/)= Ci(e,/)

There is no convenient reduction in the general
case @%1.

B. The Limit (p —1)))ii
1

This case occurs when the gas becomes degenerate.
(The consequence of degeneracy is slightly different
from the usual one, as will be discussed later. ) In this
case, the Fermi distribution function can be replaced
by a step function

(1+V2)1/2 p- —1

1+exp v( (/12 1)1/2

= 0, v) (/12 —1)'" (44)

as is usually done for an ordinary Fermi gas. This is
equivalent to replacing the upper limit of integration in
Eqs. (12)—(15) by (/12 —1)'/2. Then C2((f. ,/1) becomes a
function of p, only. Let

(57)

1 II mc2 /y /1

2C2(4, / )+ai'C2~ —,—,(5&)

1 II ))mc /(2/) /1 )
2C2(0, / )+gi'C2~ ——

I (59)
~2 e.& Z.2

'
&g,

'
g,&

(»l-
X=— ——',C (@,/1)+a,C,

i
—,—

i'II. P.
'

Ea, a,i
(60)

The C~ functions are decreasing functions of @. If we
consider only terms small in e, we must h'&ve

As we have shown in Paper I, if the sum in the equa-
tions of state (20)—(23) is contributed mainly by terms
with large values of e, magnetized Fermi gas approaches
a classical Fermi gas. Therefore, we only need to con-
sider cases with small values of n. As an example, let
us consider the case of the lowest term in m, namely,
n= I. In this limit we have

C2 (/1) = limC2 (y, /1);~0 (45)
1«a~&&a2&& - &&a„, (61)
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Therefore, we can also drop Cs Q/ui, p/ai) with respect
to Cs(p, p) in Eqs. (58) -(60). 1n the nondegenerate
approximation, the factor 1 in the denominator in the
Fermi distribution function may be neglected. This is
equivalent to taking the 6rst term in the series for
C&(g,p) LEqs. (28) and (30)—(32)g. We have

P =I y~= — exp —Kp

direction is given by'

dU 2 1 2qP in/
(71)

which approaches the velocity of light as p —+ ~. In a
nonmagnetized Fermi gas the limiting velocity of
sound is c/v3 only.

For the nonrelativistic case P«1, and from Eqs. (35)
and (36) we find that (P«1)

P„= — exp —QE~— (63) 2yE, (1/y) kT

U Ks(1/P)+Kp(1/$) mes
(72)

1 H mes t' p t'1) /1
U — exp( Ks( —[+Kp( —,(64) However, U also includes the rest energy mc', so that

4~s H. X,s Eq in the limit kT/ icis)s)1 Eq. (72) is identical with
Eq. (66). We are really interested in the ratio of
P../(U mc'), w—hich is the thermodynamic energy.
We find

We find, from Eqs. (63) and (65), that

P,.= %mes&= XkT. (66)

U—Xmc'= ~E&—

This means that Boyle's law is valid along the s axis,
i.e., the gas behaves as a normal gas along the s axis.

The anisotropy factor 7 may be defined as

+lx (
—
)
—+ (

—
) expll -) (73)

P.. 2H Ep(ai/y)

P„yH, E,(1/y)
(67)

which gives
P../(U —Xmcs) ~ 2. (74)

From Eqs. (35) and (36) we 6nd that, when p))1 and
Equation (74) again differs from the classical result
that P/(U —Kmc') ~ —,

' by a factor of 3. The velocity of

2H z @
'~' —ag sound is accordingly greater by a factor of V3.

exp The velocity of sound in the direction perpendicular
Hc 2uy to the field is

d(rP„)~'~s dP„i '~'

n, =c
I

cps
dU ) dUI

(75)

LThe case p))ai corresponds to a classical Fermi gas. The ratio U/X or (U—Ames)/X in the nonrelativistic
See Eq. (3).] For the case P«1 (nonrelativistic case), case is
we have

U K (1/P)+Ko(1/P)—= gfgc
Ot Ki(1/y)

—~ mcsy=kT, (76)——(ai—1)-
T= exp

H. ygai
and using Eq. (73), we find

The relation between P„and U' is worked out as
follows: For the relativistic case p)&1, we find, from
Eqs. (35) and (36),

(U Otmcs)/X—= ,'mc'y= ', k-T, —

which are to be compared with the corresponding value
of a nonmagnetized gas of 3kT (g~ po) and sskTP„2yE,(1/y) 2ys in'

-+ -+ 1——,(70)
U K (1/y)+ Ko(1/y) 2&P+lny 2qP

'The sound velocity is not the Alfvbn velocity. The Alfvbn
velocity is the velocity of transverse electromagnetic waves. To
compute the Alfven velocity one needs to know the dielectric

but P„/U&1 if p& oo. The velocity of sound in the s constant.
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B m&,
( )~r p ) (&&0)

n=l ~n

&cry easiiy be shown that if I"/o~

10
8
6

Thus the sum over g does n«exextend to infinity but
terminates at s such that

Qg+P( cg+y ~

10
8
6

1

. 2. The depe de c o
functions of p, in the degenerate ims o

2.4

where s is an integer.
d P have now discontinuous eriv-R, O', E„,an „a

andect to p. The curves of K,tives with respec o p.
~ ~

is shown inrsus and X will contain in s, as is s
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be understood in terms of thedynamic varia es can e

f I I (
1I I r

ectivel .6 We can thus conclude that only
f f edom is excited in aone out of the three degrees o ree om

'

h =0 are considered in E„,
l ma netized gas.

and eventual y
limitofn —+ Oo. Thespee o soun a

The gas eventually becomes a ree-
'
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V. DEGENERATE MAGNETIZED FERMI GAS.
1((
—1 jg»1

In this limit the equations of state become

0.3

0.2

1 H 'mc' ~ p
vu (78) 0.1

-'c, (&)+ Z o.'c,(
—), (&t&)zg—

C C

E. M. Lifshitz, The Clussica1 Theory of
Co I R d' MFidds (Addison-Wesley Publishing o., nc. ,

1962), 2nd ed. , pp. 87-99.
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behavior of the density of states g(E). p(E) is given by

dX(E) dK(p)
n(E)= = -=&'(I ),

8E dp

where X(E) is the number of states with energy below
energy E. cV(E) coincides with X(p) if we set E=p.
Figure 4 shows g (E) as a function. of E.g (E) shows sharp
peaks as each magnetic state is excited. ~

As before, we now consider the case s=o. This case
represents a physical example of a one-dimensional gas
which has been discussed extensively in the literature. '

(83)

Pro. 4. The density of states y(E) as a function of 8 for the
nonre1ativistic case (froln Reference 'I).

At the high-density limit (p —1)))1,we then have

II ssc
&as= C2(g) q

2x' II. A'3
(84)

(85)

1 8 1x= —pcs p,
2m' H, X,'

(90)

H 1
K= —C4 p,

In this case there is no lateral stress, A gas with no
lateral stress is unstable against collapse. However, a
small amount of pressure will always be present due to
the Gniteness of the temperature. Since

Other properties of this gas resemble a noninteracting
one-dimensional Fermi gas. All relevant quantities can
be calculated from the general equation of state. For
example, the speci6c heat of a degenerate magnetized
Fermi gas can. be calculated, using the following
formula4:

C.(4,~) ~E:o(1/4)exp(I /4),
"pdq(N)/dg5dg

(8t) = ~(NO)+2E~2v "(No)
&o(1/4) (l )'"4"' p( —4) (4 o) o e(" ~~)+1

we 6nd the residual lateral pressure to be

H 'mc' 1/2

(2 ) ~(z) ~ ((ipse/a}~)

g exp—
(1+2H/B, )'"—p

(88)

~ &«(1+2&/&.)'I'. (89)

At H/H, =1, Eq. (89) gives a critical density of the
order of 10' g/cm' for a composition of helium.

7 D. C. Mattis, The Theory of jIIaggetism (Harper and Row,
New York, 1965).

8 E. H. I ieb and D. C. Mattis, j/IathemaHcal I'hysics of One
Dimegszon (Academic Press inc. , New York, 1966).

This lcsldual prcssulc can, under suitable conditions,
prevent collapse in the direction perpendicular to the
field.

Since C2(p), C~(p), C4(p) are proportional to the
pressure, energy, and densities of a one-dimensional gas,
we conclude that a degenerate electron gas in an
intense magnetic 6eld can behave almost exactly as a
Owe-dhmensional gus. The critical density corresponding
to the one-dimensional behavior is such that

+(4'&'v'(Lo)+ .5 (93)

( )++1
C.= Q

Equation (93) is accurate to the order e "'.

VL PAIR-CREATION EQUILIBRIUM

One might think that since classically the spin
energy of an electron in a magnetic 6eld is of the order
of gsH, where ps—=eh/2m', when H)2H, then the
spin energy will be greater than 2mc'; it might be
possible to create an electron pair with suitable spin
directions at the expense of the 6eld energy. However,
because of the form of energy states LEq. (1)5, the
separation between positive and negative energy states
is always at least 2mc'. This means that pair creation
will take place, not at the expense of the Geld energy,
but at the expense of other forms of energy (e.g.,
thermodynamic energy). This conclusion is valid only
for the case of a uniform and constant magnetic Geld.
The question of whether pair creation will take place in
a nonuniform or time-dependent magnetic field can
only be answered by a study of the quantum origin of
magnetic 6elds.
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pp= p +p++2mc (96)

The chemical reaction of pair creation is

'r j:=» e +e+,

where y stands for one or more photons. Equation (95)
leads to the equation

tonian Ldefincd in Eq. (80) of Paper I]
X.=- Q L;...a,'(ts)a, (tt),

P li'
Z„,,=~~c' 1+ ~+2 (~+r—1)

mc) II,

—I/2

(101)

where p7, p, and p+ refer to the chemical potential of
the photon, electron, and positrons, respectively. (Note
that p=p +mc' is the chemical potential for the
electron used in previous discussions in this paper. )
Since p, ~=0, we 6nd that

and u,t(ts) and a„(ts) are the creation operators for the
state ts. Equation (99) is easily reduced to (see Paper I
for techniques used)

In&=in g t 1+Xexp( —PE„,„)]""

p +ttsc'= p= —(p.~+tttc') .

The charge-conservation law requires that

(97)

(98)

= Q ot„,i in/1+X exp( —PE„,i)]
t PZ

+ P ot„,s InL1+X exp( —PE. s)], (102)
fl tPZ

VII. GRAND PARTITION FUNCTION

The grand partition function 3 is given by

1nb=ln Tr exp( —PYC), (99)

where Tr means trace, P= (kT) ', and GC is the Hamil-

where K (K+) refers to the electron (positron) number
densities and X is the number density of excessive
electrons. Equations (97) and (98) are identical to
those equations for pair creation in the absence of a
magnetic field. Equations (97) and (98) together with
Eqs. (20)—(23) can be solved to give X and K+ as
functions of X and T.

When the anomalous magnetic moment is taken into
account, the lowest-energy eigenvalue of Dirac equa-
tion for an electron in a magnetic field vanishes for
values of H equal to 4m.n 'H„and therefore pair crea-
tion phenomena can take place. The problem is fully
discussed in Ref. 9.

where or, „is the degeneracy factor discussed in Paper I:
=0"eII/2trbc

X= exp(Pp) .

VIII. SUMMARY

(103)

(104)
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