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In a previous paper, we calculated the equation of state of a Fermi gas at arbitrary temperature in a
uniform and constant magnetic field of arbitrary strength. (Such a gas is now referred to as a magnetized
Fermi gas.) In the present paper, we have studied the properties of the equation of state and have obtained
simplified expressions for the normal stresses and the energy and particle densities. These expressions can
be used in astrophysical applications. We have found that under suitable conditions of degeneracy (the
temperature approaching 0), a magnetized Fermi gas behaves exactly as a one-dimensional gas, which has
been studied extensively as a theoretical problem. We have also obtained expressions for the grand partition

function.

I. INTRODUCTION

N a previous paper,! we calculated the equation of
state of a noninteracting Fermi gas in a constant
and uniform magnetic field of arbitrary strengths and
at arbitrary gas temperatures. This kind of gas will be
referred to hereafter as a magnetized noninteracting
Fermi gas or a magnetized Fermi gas. The temperature
and the chemical potential are well-defined quantities
as well as being isotropic, as expected from thermo-
dynamic considerations. We obtained the macroscopic
energy-momentum tensor of a magnetized Fermi gas
as a function of the chemical potential x4 and the
temperature 7. Detailed calculations of the equation of
state have been discussed in Paper I. In this paper, we
shall deal mainly with the thermodynamic properties of
a magnetized Fermi gas.

One of the most fundamental properties of a magnet-
ized Fermi gas is exhibited in the anisotropy of the
normal stresses. (The normal stresses become the
pressure in the case of an isotropic medium.) In our
case, the normal stresses (the diagonal spatial element
of the energy-momentum tensor) are different in the
directions parallel and perpendicular to the magnetic
field. This anisotropy is directly associated with the
quantization of energy levels by the presence of a
magnetic field. Classically, the electron orbits are
helixes or circles with axes parallel to the field. The
motions in the plane perpendicular to the field are
circles of constant angular velocity, and can be de-
composed into the motions of two correlated simple
harmonic oscillators. Let the direction of the field be
taken in the z direction. When these simple harmonic
oscillators are quantized, the energy levels are?
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where p, is the momentum in the 2z direction, H is the
magnetic field strength, m is the electron mass, ¢ is the
velocity of light, and H.=m?%/eh=4.414X10" G.
The + and — signs refer to electrons and positrons,
respectively, r=1, 2 and #'=0, 1, 2, ---. 7 and »’ are
two quantum numbers characterizing the spin and
orbits of the electron. The energy levels are thus
strongly quantized when p./mc is small compared to
2H/H,. In the limit of large #’, the correspondence
between #’ and the x and y linear momentum is

p=\* P\ H
<—> +<—f-> =2—(n'4+r—1).
mce me H,
We have shown that in this limit (large #’) the gas

becomes an ordinary Fermi gas. In other words, the
parameter that characterizes a classical noninteracting

Fermi gas is

(2)

(p» s H
= / 2

The magnetic properties of a gas are quantized if
£<1, and classical if £>1. This condition gives the fol-
lowing criteria for a magnetized Fermi gas (see Paper I):

kT/mc*<2H/H., [ (nonrelativistic, nondegenerate)
T<K5.9X10° °K]
(RT/mc*)*<S2H/H,, [ (relativistic, nondegenerate)

T>>5.9%10° °K ]
3 (er/me*) =~ (p/107)PS2H/H.e,
(nonrelativistic, degenerate)

$(ex/me*)*=~ (p/107)** S 2H/H .,
(relativistic, degenerate)

)

where ep is the Fermi energy [er=mc?(u—1) in the
limit ¢ — 0]. The temperature encountered during
and before gravitational collapse is in the range T
=1-100 [Ty=17/10° °K]. Hence the field strength
of interest is of the order of 10'* G and beyond. Such a
strong field may be present during gravitational
collapse or in gravitationally collapsed objects (e.g.,
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the collapsed star in the center of Crab Nebula).
Figure 1 shows the regions of a magnetized gas.

The nonrelativistic properties of a magnetized Fermi
gas have been extensively discussed in conjunction with
solid-state physics. The most important properties of a
nonrelativistic magnetized Fermi gas are associated
with the Landau diamagnetism and the Pauli para-
magnetism. In addition to these nonrelativistic proper-
ties, in the relativistic case we are also interested in the
thermodynamic behavior (the relation between temper-
ature and energy density, etc.). In the following, we
shall study various thermodynamic properties of a
magnetized Fermi gas.

II. EQUATIONS OF STATE OF A MAGNETIZED
FERMI GAS

The equations of state of a magnetized Fermi gas,
as given by Eqs. (88)-(91) of Paper I, can be rewritten
in a more convenient form if we first perform the sum-
mation over the index 7, and then shift the summation
index from # to #+1, and the integration on x (from
— o to + ) to a new one (from 0 to «). This last
step gives only a factor of 2. The normalization volume
can be taken equal to 1. The result is

17 H\*mc? = * dx
sz=Pyll=_(——> X3 Zn F(x’n)___—__‘—’ (4)
7|'2 H,; 7\3 n=1 0 E(x;naH)
1/H\mc1 = w’dw
P,z=—<——>-—[* f F(2,0)—
7('2 Hc Rc3 2 0 E(xy())H)
2 [ ren—"1, )
-+ x,n ——:] ’
n=1 /o E(x,n,H)
1/ H\mc1
U=_<_)_[_ [ P (,0)E(x,0,H)dx
w2 \H/ AL2 J,
+3 F(x,n)E(x,n,If)dx], (6)
n=1 [g

e e Y RCCE
+ né wF(x,n)dx], %)

0
where

lf?(a«c,n,H)——u)"1

F(xn)= <1+exp (8)

and
E(wnH)=[1+x+2(H/H)n]"*, n=0,1,2,---
x=p,/mc, ¢=kT/mc*=T/5903X10°°K, (9)
Ae=h/mc=3.86X107 cm.

Here U is the energy density and 91 is the particle energy
density, and u is the chemical potential plus the rest
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Fic. 1. Approximate regions of a magnetized Fermi gas for
several field strengths, as indicated by the solid lines, marked by
“MF.” H,=4.414X 108 G. The logarithms are to the base 10.

energy (in units of mc?).? The macroscopic energy-

momentum tensor T, is related to P,,, Py, and P,,

as follows:

P, 0 0 O
o P, 0 O
0 0 P. O
0 0 0 Ty

Equation (10) is valid only in the frame of reference
comoving with the gas. The energy-momentum tensor
components are related to each other and to the
temperature T and density 9 through Egs. (5)-(8).
The equations of state are therefore expressed as
infinite series which generally cannot be approximated
by an integration over ». When we approximate the
sum over n by an integral over dr, we obtain the
expression of the equations of state of classical non-
magnetized Fermi gas, as we have shown in Paper I.
Introducing the following transformation in the

integrands:
® H \2
V=— @p= <1—|—2——n) R
Gn H,

Tw= (10)

(11)
H 1/2
<1+x2+2?> = an(142)12,

the integrals in Eqgs. (5)-(8) can be expressed in terms
of the following functions:

w dv
Ci(pm)= /0 (122 14-exp[ ((1+2%)¥2— ) /6 T} ’(12)
Ca(op)= / ) ' -
g o (o) 2{1exp[((1+12)2—p) /¢ T}
=Cs(pu)—Ci(pn), (13)

3 H. Y. Chiu, Stellar Physics (Blaisdell Publishing Co., Waltham,
Mass., 1968), Vol. I, Chap. III.
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TasLE L. Values of Cx(¢,u), listed in the order [Ci(gp,u), Ca(p,u), Cs(b,u), Ca(é,x)], for a number of values of ¢ and p.
¢=kT/mc*=T/(5.903X10? °K), and u is the (chemical potential+rest mass) /mc2.

)
k 0.1 0.2 0.5 1.0 2.0 5.0 8.0 10.0

1.0 0.23617 0.32946 0.50279 0.61738 0.67824 0.89346 1.23319 1.42745 1.52348
0.03157 0.09265 0.40242 0.88018 1.28702 4.34605 23.53205 57.59191 88.53946
0.26774 0.42210 0.90520 1.49756 1.96525 5.23951 24.76525 59.01936 90.06294
0.25074 0.36927 0.64714 0.89004 1.04446 1.78164 3.90504 6.00065 7.39328
1.5 0.94123 0.89063 0.84340 0.87085 0.89778 1.03252 1.30710 1.48009 1.56813
0.38003 0.44944 0.84332 1.42454 1.90207 5.31564 25.55397 60.65912 92.30214
1.32126 1.34007 1.68672 2.29538 2.79985 6.34816 26.86107 62.13922 93.87026
1.10315 1.07314 1.13567 1.30050 1.42638 2.10203 4.18472 6.26952 7.65846
2.0 1.31029 1.28645 1.18230 1.13651 1.12924 1.17749 1.38242 1.53336 1.61319
1.09265 1.15112 1.54949 2.19135 2.72269 6.45322 27.71887 63.86273 96.19897
2.40294 2.43756 2.73179 3.32786 3.85194 7.63071 29.10129 65.39610 97.81216
1.72862 1.71548 1.69364 1.77487 1.86393 2.45321 4.47694 6.54622 7.92991
3.0 1.76054 1.75353 1.69453 1.61250 1.56765 1.47335 1.53627 1.64147 1.70441
3.37872 3.43123 3.80365 4.47762 5.06590 9.28964 32.50237 70.69472 104.40760
5.13926 5.18477 5.49818 6.09012 6.63355 10.76299 34.03864 72.33619 106.11202
2.82768 2.82521 2.80509 2.80677 2.83736 3.23601 5.09811 7.12289 8.49148
4.0 2.06230 2.05880 2.02978 1.97074 1.92502 1.75942 1.69256 1.75117 1.79681
6.73124 6.78225 7.14127 7.80872 8.41276 12.95316 37.93076 78.11869 113.19015
8.79354 8.84105 9.17105 9.77946 10.33777 14.71258 39.62332 79.86986 114.98696
3.87270 3.87180 3.86351 3.85378 3.89178 4.10259 5.76626 7.73008 9.07769
5.0 2.29173 2.28960 2.27302 2.23587 2.20100 2.02100 1.84914 1.86182 1.89003
11.11802 11.16840 11.52180 12.18046 12.78546 17.51365 44.04953 86.16480 122.57105
13.40975 13.45800 13.79482 14.41633 1498646 19.53465 45.89867 88.02661 124.46108
4.89884 4.89841 4.89469 4.88737 4.88562 5.02584 6.47832 8.36700 9.68811
6.0 247741 2.47597 2.46518 2.44134 2.41685 2.25176 2.00400 1.97281 1.98373
16.52598 16.57603 16.92673 17.57959 18.18209 23.01654 50.90085 94.86227 132.57426
19.00339 19.05200 19.39190 20.02093 20.59893 25.26830 52.90485 96.83508 134.55800
5.91600 5.91576 5.91381 5.90937 5.90659 5.98442 7.23072 9.03264 10.32222
7.0 2.63357 2.63252 2.62488 2.60865 2.59154 2.45156 2.15536 2.08353 2.07758
22.94837 22.99824 23.34743 23.99682 24.59674 29.48934 58.52311 104.23926 143.22318
25.58194 25.63076 25.97231 26.60547 27.18828 31.94090 60.67847 106.32279 145.30075
6.92815 6.92800 6.92685 6.92419 6.92190 6.96375 8.01953 9.72583 10.97939
8.0 2.76840 2.76760 2.76187 2.75014 2.73787 2.62355 2.30177 2.19341 2.17124
30.28127 30.43101 30.77927 31.42655 32.02451 36.94787 66.95069 114.32269 154.54049
22.14966 33.19861 33.54114 34.17668 34.76238 39.57142 69.25247 116.51609 156.71173
7.93772 7.93712 7.93638 7.93471 7.93307 7.95471 8.84070 10.44528 11.65891
10.0 2.99306 2.99255 2.98897 2.98194 2.97489 2.90128 2.57563 2.40858 2.35674
48.26929 48.31889 48.66610 49.31111 49.90674 54.85283 86.33941 136.70959 179.26736
51.26235 51.31144 51.65507 52.29305 52.88163 57.75410 88.91504 139.11817 181.62410
9.94986 9.94981 9.94944 9.94868 9.94788 9.95240 10.56443 11.95720 13.08176

© (1+2)V2dy © E(xn,H)dx W

Ciow= [ — a [ —aic(52), (19
o 14exp[((1+0*)Y2—p)/¢] o 1+exp[(E(xn,H)—p)/¢] an @n
dv ® dx
15) / = dnC4(-, —J}. (19)
0 1+CXP[(E(x,ﬂ,H)'—/.L)/¢] an Cn

cupw= :
o 1+exp[((A+)2—p)/¢]
We find that the use of the Cy functions gives
dx

/o E(x,n,H){1+exp[ (E(x,n,H)—up)/¢1}
¢ K
x2dx

/0 E (x’n;H){ 1+eXPE(E (x:”:H) —F)/¢]}

¢ u
=(Zn2C2(—',—‘ )
an Qpn

an

The equations of state can now be written as
1/ H\*mc* » ¢ u

Pzz:Pw=_(‘_“) — 2 ”Cl(_; ~—) ’
m\H,/ RS2 n=1 @n G

Hc ¢ n=1 An Qn

HJ/A n=1 An Cn

c

(20)

=C1(;-”-, a,,) , (16) P zz:;r{;(£>‘?f;[%cz(¢,u)+ i dni’Cz(j)—, i):' , (21)

U=i(—l?—>'—"§2[%ca<¢,u>+ > a,,zcs(i’i, —“—)] (22)

1 H) 1 [IC w0 ¢ u
—W2<Hc ;0—3- 2 4(¢,ﬂ)+ Z‘:l dnC4(;;, (_z:)] . (23)
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The Cy functions are expectation values of quantities
relevant to a one-dimensional gas. Ci(¢,u) is the
expectation value of (E')~!, where E'=(1+®)2 is
the energy of a one-dimensional particle; Ca(¢,u) is
the expectation value of vdv/dE, and is the pressure
exerted by a one-dimensional particle; and C; and Cs
are the expectation values of energy E’ and particle
number, respectively. We can therefore say that a
magnetized Fermi gas has properties similar to a
combination of one-dimensional gases. Later we shall
show that in one limiting case—degenerate, high field,
and low density—a magnetized gas does behave as a
one-dimensional gas.

The equations of state thus can be written as a sum
over the same function with different arguments.
Table I lists Cy(¢,u) for a number of values of u and ¢.
(Note that in the above sum the ratio of the two
arguments of the Cj functions is a constant.)

III. PROPERTIES OF THE C; FUNCTIONS
A. u<1

In the case u<1, we can expand the denominator in
the definition of C; [Egs. (12)-(15)] into a geometrical
series and we can express Ci(¢,u) as a sum over the
McDonald functions K, (z), which are defined by*

00

Kn(2)=
We find

Ci(e

cosh#8 exp(— z coshé) df.

0

(24)

- dv
* _ﬁ (1+22)V2 1+ exp[ (14 12)2—w)/$]

d 1 i m;.t)
o ey m=leXp<¢

m (1422
X exp(— ———q—s——z>dv

a :;: exp(’”“) / (14222

X exp(— 7l(i::—vj)—l/—z)dv . (25)

(26)

reduces the integral in the last part of Eq. (25) to the
McDonald function Ko(m/¢):

- (m(1+v2)1/2\ &
/oexp PR

= /:Q exp(-—g cosh0)d0= Ko<-Z-L) . @7

4S. Chandrasekhar, An Introduction to the Study of Stellar
Structure (Dover Publications, Inc., New York, 1957), Chap. X.

The transformation
v=sinhf

THERMODYNAMIC PROPERTIES OF MAGNETIZED FERMI GAS

1223

Therefore,

(28)

o ; )K(Z)

This series converges for all values if u<1.
Similarly, using the transformation (26), we have

C3(¢,p’)
e (1402)12dy
‘fo 14exp[((14)2— u) /6]

£l [ vl

m=1

= o) [ en(-

Using the relation cosh?=%(cosh26+1), and the
definition of K,(2) [Eq. (24)], C3(¢,u) becomes

Cs(¢,u)= %élexp<-?>[1< 2(§>+K o<§>] . (30

We also have

Ca(p,1)=Cs(d,1)— C1(,)

2 <G G)] o

Culgm)= mz;»(%)x(f) .

The following recurring formulas for K,(z) may be
useful®:

m cosh@

) cosh? df. (29)

(32)

Ko 1(2)+Kn1(2)=—2K,/(2), (33)
Kn11(8)— K 1(3)= (2n/2)K n(3). (34)

The behavior of K,(2) at large and small values of z are

D, ],

Ku(2)=3(n—1)Y/ (32",
For ¢<1 we have, therefore,

Crlu)= Gy 3 (f:;)/ exp( - (1—:)’") . G

(1—#)7”) (38)
¢ 3

z2—0: Ko(z) > Inz. (36)

w [ p\32
Calo) = ()23 (;) exp(—

m=1



1224 V. CANUTO AND H. Y. CHIU 173
TasLE IL. Ck(p). we find that
M Ci(n) Ca() Cs(u) Ca) G dv , e 16
1 0 0 0 0 Q@=[ 'EE%TMD+M—D], (46)
1.25 0.69315 0.12218 0.81532 0.75000 0
1.5 0.96242 0.35731 1.31974 1.11803 Y
1.75 1.15881 0.67722 1.83603 1.43614 _ 1 _
2,00 131696 107357 2.39053 173205 Csw)= /0 (140 "dv=3 In[u+ (W~ 1)17]
2.5 1.56680 2.08071 3.64509 2.29129
3.0 1.76275 3.36127 5.12401 2.82843 (-1 Fhu(—1)1, (47)
3.5 1.92485 4.90726 6.83210 3.35410 _ _
4.0 2.06344 6.71425 8.77769 387208 CilW)= / dv=(w—1)'"2, (48)
5.0 2.29243 11.10123 13.39366 4.89898 0
6.0 2.47789 16.50930 18.98718 5.91608
7.0 2.63392 2203175 25.56567 eozg20  Cew)=Cs(W)—Ci(w)=3p(u*— 1)1
8.0 2.76866 30.36469 33.13335 7.93725 )
10.0 2.99322 4825276 51.24508 9.04987 — 5 In[u+ (2= 1)"];  (49)
when p>>1, we find
Ci(u)=In2y, (50)
. . ¢ 1/2 (l—u)m 19
Cs(pu)= Gm)2 3 (—) exp —7—” Cs(u)=Ca(u)=13u?, (51)
m=1\m
Colu)=pu; (52)
=C , (39
1(@m), (39) when u—1«<1, we find (u=14%)
Culs)=Colan)- 0) Cilw = QI3+ Q/19)E],  (53)
If (1—pu)/¢>1, we only need to take the first term, and Ca(u) — EQ2E+2)[2— (1/15)E], (54)
thereby have
. Cs(u) — QE+EV 1456+ (1/15)8],  (55)
—u
Ci(o,p) — (3m) 2! exP(‘—) ) (41) Co(w) = (2E+8)12, (56)
¢ Table IT lists Ci(u) as a function of u.
I—u
Co(g,u) — (3m)\2¢t/? eXp< ~———> , (42) IV. THERMODYNAMIC PROPERTIES OF A
¢ NONDEGENERATE MAGNETIC GAS
Ci(¢,u)=Ca(p,u)=C1(p,u) . (43) As we have shown in Paper I, if the sum in the equa-

There is no convenient reduction in the general
case u>1.

B. The Limit (u—1)>>4¢

This case occurs when the gas becomes degenerate.
(The consequence of degeneracy is slightly different
from the usual one, as will be discussed later.) In this
case, the Fermi distribution function can be replaced
by a step function

(1_'_7)2)1/2._”]~—1

,:1+exp =1, o< (u—1)12

=0, o> W-—1)1 (44)
as is usually done for an ordinary Fermi gas. This is
equivalent to replacing the upper limit of integration in
Eqgs. (12)-(15) by (u*—1)"2. Then Ci(¢,u) becomes a

function of u only. Let

Cr(w)= EE&C b (b)) (45)

tions of state (20)—(23) is contributed mainly by terms
with large values of 7, magnetized Fermi gas approaches
a classical Fermi gas. Therefore, we only need to con-
sider cases with small values of #. As an example, let
us consider the case of the lowest term in #, namely,
n=1. In this limit we have

1/ H\Nme /o u
sz:Pyy:—'<—> —*C1<—y —> )
m\H,/ X3 \a1 a1

1 s H\mc? ¢ u
P..= —‘(—>_[%C2 (p.u)+as’C 2(*: —>:! , (58)
7[_2 Hc x3 ay ay

c

1 7 H\mc? o
U= —;<—>—[%C3 (¢yu)+al2c3(_1 ->:| ’ (59)
w2 \H,/ A3 a1 @y

4

: H)l[lc*( o “’“) 60)
N=—(— )—| 1Cu(s, = =).
1T2<Hc 7\53 o ¢” “ 4(01 ay :I (

The C; functions are decreasing functions of ¢. If we
consider only terms small in %, we must have

1K1K KL+ <KL o

(7

(61)
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Therefore, we can also drop Ci(¢/a1, u/a1) with respect
to Ci(ew) in Eqgs. (58)-(60). In the nondegenerate
approximation, the factor 1 in the denominator in the
Fermi distribution function may be neglected. This is
equivalent to taking the first term in the series for
Ci(¢,u) [Egs. (28) and (30)-(32)]. We have

Pou=P,,= %(g)z’:-—cj expG)KO(%) , (62)
).
I L
e ) 2

We find, from Eqs. (63) and (65), that
Poi=Fmcg= T (66)

This means that Boyle’s law is valid along the z axis,
i.e., the gas behaves as a normal gas along the z axis.
The anisotropy factor 7 may be defined as

-PIZ
P

2H Ko (dl/¢)
oH, K1(1/¢)

From Egs. (35) and (36) we find that, when ¢>>1 and
¢<<dl,

2H ‘IT'¢ 2 —Q
Y (22
Hc 2 ay (;b
H\ 27w\ V? —a
@) =) @
Hc ax ¢

[The case ¢>>a; corresponds to a classical Fermi gas.
See Eq. (3).] For the case ¢<<1 (nonrelativistic case),

we have
H 2 [— (al—— 1):|
T=— exp .
Hc d)\/al ¢

The relation between P,, and U is worked out as
follows: For the relativistic case ¢>>1, we find, from
Egs. (35) and (36),

Pzz 2¢K1(1/¢) 2¢2

= —
U K:(1/¢)+Ko(1/¢) 2¢*+Ing
but P../U<1 if ¢< . The velocity of sound in the z

T=

(67)

(69)
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direction is given by®

AP\ 2 1z
v,:c( ) =c<—————~—> o)
av 2+ (1/2¢%) Ing

which approaches the velocity of light as ¢ — . In a
nonmagnetized Fermi gas the limiting velocity of
sound is ¢/V3 only.

For the nonrelativistic case $<<1, and from Eqgs. (35)
and (36) we find that (¢<<1)

= — = (72)
U K:(1/¢)+Ko(1/¢) mc*
However, U also includes the rest energy mc?, so that
in the limit kT/mc=>1 Eq. (72) is identical with
Eq. (66). We are really interested in the ratio of

P../(U—mc?), which is the thermodynamic energy.
We find

1 7 H\mc? 1
e )
20\ H /A3 ")
1 1 I
wm)-x () |eal7) 09
) ¢ ¢
1 (H mc2 ( T \? u—1
=" 2 > exp(——),
2 H) A \2/¢ ¢

which gives

P../(U—9me*) — 2. (74)
Equation (74) again differs from the classical result
that P/(U—9Umc?) — % by a factor of 3. The velocity of
sound is accordingly greater by a factor of V3.

The velocity of sound in the direction perpendicular
to the field is

d(TPzz) 2 szz 1/2
711=c< ) ~011/2< > <v,.
au aU

(@5)

The ratio U/ or (U—9Umc?)/IN in the nonrelativistic
case is

U K(1/9)+Ko(1/9)

—=5mc — mc?p=kT, (76)
an K1(1/9)
and using Eq. (73), we find
(U—9me?) /9= smcp= kT w)

which are to be compared with the corresponding value
of a nonmagnetized gas of 3kT (¢ — ) and kT

6 The sound velocity is not the Alfvén velocity. The Alfvén
velocity is the velocity of transverse electromagnetic waves. To
compute the Alfvén velocity one needs to know the dielectric
constant,
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Fic. 2. The dependence of U, Pizy P.., U—Nmc®, and N as
functions of u in the degenerate limit of the case H/H .=1.

(¢ — 0), respectively.® We can thus conclude that only
one out of the three degrees of freedom is excited in a
strongly magnetized gas.

When terms other than #=0 are considered in P,,,
U, 9%, and P,,, respectively, the anisotropy decreases
and eventually U/ — 3kT, or (U—9umc®)/N— kT
in the limit of # — . The speed of sound also decreases.
The gas eventually becomes a three-dimensional gas.

In reality, when ¢ is not zero, states other than the
lowest one are always excited to some extent. Hence
considerations made here are only of limited interest.
The general case can be studied by resorting to more
complicated formulas (20)-(23) and applying numerical
methods.

V. DEGENERATE MAGNETIZED FERMI GAS.
(u—1)/¢>1

In this limit the equations of state become

1/ H\*mc? s u
P"=Py,,=——<———> — > uC 1(—) s (78)
T \H,/ A3 n=1 an
1 7 H \mc* s U
Pu='—<—>—[%c2(u)+ Z an2C2(‘_>] ) (79)
7!'2 Hc 7\03 n=l1 An

6 L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Addison-Wesley Publishing Co., Inc., Reading, Mass.,
1962), 2nd ed., pp. 87-99.
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U%(_gz)g[%caw-r P> ac(;"-)] . (50)

c

m:%(gz)gg[%a(m 2 ac(ai)] (81)

It can very easily be shown that if u/e,<1,

mck(d):ﬂ) —0, k=1,2,34.

Thus the sum over »# does not extend to infinity but
terminates at s such that

@ Su<asya, (82)
where s is an integer.

N, U, Pyy, and P,, have now discontinuous deriva-
tives with respect to u. The curves of N, U, P,,, and
P., versus u and 9T will contain kinks, as is shown in
Figs. 2 and 3. However, these kinks disappear at large
values of s and also when one regards U as a function of
9N, etc. These kinks signify the fact that the energy
states are one by one excited as u increases.

These kinks, maxima, and minima in the thermo-
dynamic variables can be understood in terms of the

T

I.IL e e

o - -—-— - — - —
F ‘_"l’;ﬂ for a Fermi Gos
2z
09+ ___p . —
—— ftor a Fermi Gas
LT Fermi G
0.8 e or a Fermi as —
0.7 —

0.6

0.5

0.4

0.3

0.2

(N/Ny )

Fi1c. 3. Functional dependence of Pie/P:z, P../N, Pry/N, and
P,./N or N for the degenerate case with H/H.=1. The corre-
sponding functions for a Fermi gas are also shown for comparison.
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behavior of the density of states n(E). n(E) is given by
dN(E) dot(w)

where NV (E) is the number of states with energy below
energy E. N(E) coincides with 9t(u) if we set E=p.
Figure 4 shows 7 (E) as a function of E. 7(E) shows sharp
peaks as each magnetic state is excited.”

As before, we now consider the case s=0. This case
represents a physical example of a one-dimensional gas
which has been discussed extensively in the literature.?

Pzz:Pyy=0’ (83)
P 1 7 H \mc? ) "
= Wz( )—a(u, (84)
1 7 H \mc?
U=—(~—)——C3(u), (85)
2m2\H./ A3
1 /H
o= ( )— o). (86)
2w\ H, /X3

In this case there is no lateral stress. A gas with no
lateral stress is unstable against collapse. However, a
small amount of pressure will always be present due to
the finiteness of the temperature. Since

Cl(d)’”) - K0(1/¢)exp(ﬂ/¢) )
Ko(1/¢) — (3m)"°¢'* exp(—¢) (¢—0),

we find the residual lateral pressure to be

o) e )
X exp(—gﬂg&) . (88)

This residual pressure can, under suitable conditions,
prevent collapse in the direction perpendicular to the
field.

Since Ca(u), Cs(u), Cs(u) are proportional to the
pressure, energy, and densities of a one-dimensional gas,
we conclude that a degenerate electron gas in an
intense magnetic field can behave almost exactly as a
one-dimensional gas. The critical density corresponding
to the one-dimensional behavior is such that

S (A+2H/H. )2, (89)

At H/H.=1, Eq. (89) gives a critical density of the
order of 10% g/cm?® for a composition of helium.

(87)

Pzz:Pyu"’

7D. C. Mattis, The Theory of Magnetism (Harper and Row,
New York, 1965).

8E. H. Lieb and D. C. Mattis, Mathematical Physics of One
Dimension (Academic Press Inc., New York, 1966).
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Fic. 4. The density of states #(E) as a function of E for the
nonrelativistic case (from Reference 7).

At the high-density limit (u—1)>>1, we then have

1 H mc
Pzz"‘“""'_—"ﬂ —U“u ) (90)
472 H, X3
1 H1 1)
N=—-——pucp
272 H A3 ’
P92, (92)

Other properties of this gas resemble a noninteracting
one-dimensional Fermi gas. All relevant quantities can
be calculated from the general equation of state. For
example, the specific heat of a degenerate magnetized
Fermi gas can be calculated, using the following
formulat:

* [do(u)/duldu
/; W= o (u0)+2[ 2" (uo)
FcaoT) (uo)+- -], (93)
where
(=)
C=Y . (94)
n=1 n’

Equation (93) is accurate to the order e,

VI. PAIR-CREATION EQUILIBRIUM

One might think that since classically the spin
energy of an electron in a magnetic field is of the order
of —upH, where up=eh/2mc, when H>2H, then the
spin energy will be greater than 2mc?; it might be
possible to create an electron pair with suitable spin
directions at the expense of the field energy. However,
because of the form of energy states [Eq. (1)], the
separation between positive and negative energy states
is always at least 2mc?. This means that pair creation
will take place, not at the expense of the field energy,
but at the expense of other forms of energy (e.g.,
thermodynamic energy). This conclusion is valid only
for the case of a uniform and constant magnetic field.
The question of whether pair creation will take place in
a nonuniform or time-dependent magnetic field can
only be answered by a study of the quantum origin of
magnetic fields.
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The chemical reaction of pair creation is
ve et (99)

where v stands for one or more photons. Equation (95)
leads to the equation

poy= pFpyt2me*, (96)

where p,, u—, and u, refer to the chemical potential of
the photon, electron, and positrons, respectively. (Note
that u=u_+mc® is the chemical potential for the
electron used in previous discussions in this paper.)
Since u,=0, we find that

ptme*=p=— (ur+me). 7)
The charge-conservation law requires that
N _~— f)l+= N ) (()8)

where 91_ (91,) refers to the electron (positron) number
densities and 9T is the number density of excessive
electrons. Equations (97) and (98) are identical to
those equations for pair creation in the absence of a
magnetic field. Equations (97) and (98) together with
Egs. (20)-(23) can be solved to give 9_ and 9, as
functions of 9N and 7.

When the anomalous magnetic moment is taken into
account, the lowest-energy eigenvalue of Dirac equa-
tion for an electron in a magnetic field vanishes for
values of H equal to 4ma™'H,, and therefore pair crea-
tion phenomena can take place. The problem is fully
discussed in Ref. 9.

VII. GRAND PARTITION FUNCTION
The grand partition function 3 is given by

In=In Tr exp(—f@iC), (99)

where Tr means trace, 8= (kT)™, and 4C is the Hamil-

9 H. Y. Chiu, V. Canuto, and L. Fassio-Canuto, Phys. Rev. (to
be published).
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tonian [defined in Eq. (80) of Paper 1]

o= X Lt (n)a(n), (100)
where .
pz 2 H 1/2
E, .= :i:mc{l—l—(—) +2—(n+r— 1)] (101)
mc H,

and a,f(n) and a,(n) are the creation operators for the
state n. Equation (99) is easily reduced to (see Paper I
for techniques used)

Ind=In [ [14+Xexp(—BE.,.) Jomr

7,7, Pz

=3 wn1In[1+\ exp(—BE,1)]
+ X wa o In[14-X exp(—PBE,,5) ],

n,Pz

(102)

where w,,» is the degeneracy factor discussed in Paper I:

wn,»=Q%eH [21hc (103)
and

A= exp(Bp). (104)

VIII. SUMMARY

We have calculated the thermodynamic properties
of a magnetized Fermi gas (a Fermi gas of arbitrary
temperature in a magnetic field of arbitrary strength)
and have obtained convenient expressions for the
energy and normal stresses. We have found that in
the limit of low quantum numbers a magnetized gas
behaves as a one-dimensional gas. In the limit of zero
temperature, the gas behaves exactly as a one-dimen-
sional gas for certain density ranges.

We have also considered the pair-creation phenomena
and calculated the grand partition function for a
magnetized gas.
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