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A calculation of the high-energy nucleon-nucleus optical potential is carried out for a central two-body
force in the energy region 90-310 MeV. We first show that arbitrarily assuming a reduced mass of 0.44m
for the two-body collision in the nucleus improves the fit to experiment. We then present a novel method
for correcting the impulse approximation for terms of second order in the two-body force. Application of
this method indicates that the impulse approximation is reliable at 310 MeV. Considerable corrections are
found below this energy which substantially decrease the discrepancy between theory and experiment. Off-
energy-shell nonlocal effects are of third order in the three-body force and cannot be included with complete
consistency. However, there are indications that they might be small. Pair-correlation effects are ignored
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throughout this work.

I. INTRODUCTION

N this paper, we calculate the high-energy nucleon-

nucleus optical potential for a central two-body force
in the energy range 90-310 MeV. A novel method of
correcting the impulse approximation improves the fit
to the experimental data. Nonlocal off-energy-shell
effects are of third order in the two-body force and
therefore cannot be included with complete consis-
tency. However, there are indications that they might

be small.
The high-energy nucleon-nucleus optical potential

is nonlocal because the two-body ¢ matrix is a nonlocal
operator. Mulligan! calculated an energy-dependent
local potential which took into account the first moment
of this nonlocality. He used a simple central two-body
force, calculated the ¢ matrix in the impulse approxi-
mation, and neglected pair correlations.?~5 Mulligan
found a considerable improvement in the theoretical
fit to the phenomenological optical potential® as com-
pared to a similar calculation by Kerman ef al.,> who
neglected this nonlocality. We have repeated Mulligan’s
calculation with several improvements, the most im-
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portant of which was the fact that we used a two-body
force that fitted the forward scattering amplitude in the
energy region considered. We found the nonlocal cor-
rection to be of opposite sign to that found by Mulligan,
and thus his explanation for the discrepancy between
Watson’s theory and experiment fails for this force.

There is another theory of nucleon-nucleus scatter-
ing at high energies—that due to Glauber.* The main
approximation in this theory is to neglect the excitation
energy of all intermediate nuclear states. We shall call
this the “diabatic approximation.”” Glauber’s theory
solves the infinite set of coupled channels involved in
the problem by using the fact that in the diabatic
picture there is a diagonal representation, i.e., configura-
tion space. The projectile multiply scatters off the
target nucleons which are considered stationary. Be-
cause the struck target nucleon is assumed not to recoil,
the reduced mass p of the two-body collision is m as
opposed to 2 in the impulse approximation. If the two-
body force is such that at the energy being considered
the interaction can be described by the high-energy
approximation,* then the optical potential turns out to
be independent of u. Thus in the high-energy limit the
Watson and Glauber theories should agree. We repeated
our calculation, setting u equal to m. This gave a com-
pletely different result from that when u was Im,
showing that the high-energy approximation could not
be applied at these energies to our force. The diabatic
approximation gave worse agreement with experiment
than did the impulse approximation, and this dis-
crepancy was only worsened by the inclusion of the
nonlocal correction.

However, once one has recognized that the dif-
ference between the impulse and the diabatic approxi-
mations lies in their treatment of the recoil energy of the

7It has been called elsewhere in the literature the “adiabatic
approximation” [T. Tamura, Rev. Mod. Phys. 37, 679 (1965)]
and also the quasi-elastic approximation (see Ref. 5).
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173 SECOND-ORDER CORRECTIONS
struck target nucleon and that the optical potential is
sensitive to this, it is but a short step to treating this
energy as a parameter. A crude but simple way of
doing this is to allow the recoiling nucleon to have an
effective mass m* different from its free mass.>® It is
straightforward to establish limits of uncertainty on this
mass. We allowed u to vary from 0.38# to m. An
improvement in the fit to experiment could be obtained
by setting u equal to 0.44m, a value well within the
estimated limits. The effect of the nonlocality for this
mass was negligibly small.

To eliminate the necessity for this parametrization,
one needs a calculation of the two-body ¢ matrix
appropriate to describing nucleon-nucleon scattering in
a nucleus. We corrected the impulse approximation for
terms of second order in the two-body force. The correc-
tion was small at 310 MeV. It was appreciable at 90
MeV and improved the fit to experiment. The nonlocal
effect is small if we can correctly identify the corrected
¢ matrix with that at 0.44m.

II. IMPULSE APPROXIMATION:
NOTATION AND REVIEW

Nucleon-nucleus scattering at high energies is a
relatively old subject. Several excellent review articles
are available in the literature, and the reader is referred
in particular to Ref. 5. In this section we shall review
only what is essential for the understanding of this work.

The nuclear Hamiltonian H y describes N target nu-
cleons, position vectors £;, and kinetic energy operators
k; interacting through potentials U,;(§,— &), i.e.,

h2
Hy=3% kit32 Uy=—2 —V+3 2 Uy;.
B ¥} i m 63

We designate the antisymmetrized eigenfunctions of
Hy by Xu(%&, -+, &n), or simply by |m), and the
eigenvalues by W,. We shall completely neglect the
c.m. motion of the nucleus, which we will always con-
sider at rest at the origin of our coordinate system .The
ground state |0) has energy W, equal to zero. The
projectile, with position vector r and kinetic energy
operator H,, interacts with the nucleus through a
potential V' :

Ho=—(#2/2m)V,2,
V= Z 7),'(1‘— f,)= Z Vi
We shall denote the eigenfunctions exp(k-r) of H,
by |k). We are interested in the problem of determin-

ing the elastic scattering amplitude (0,k|7(E)|ko,0),
where T is defined by

T=V+V(E+ie—Hy—Ho—V)V. (1)

The main problem in solving Eq. (1) is that of the
treatment of Hy in the propagator. For this purpose it

8 K. A. Brueckner and W. Wada, Phys. Rev. 103, 1008 (1956).
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is important to distinguish between a propagator de-
scribing the projectile interacting with an individual
nucleon and one describing the projectile passing from
one nucleon to another. Accordingly, we rewrite Eq. (1)
as

T=Y Ti+ Y T(E+tie—Hy—H)T;
i i,

¥'S  TyBtieHy—Hy)"

i.jk,

i5#7,5 #k
XTi(E4ie—Hy—Ho) 'Tp+---, (2)
where
T5='U,'+'D1'(E+1:€—HN—H0)_1T,'. (3)

If we have an independent distinct-particle model of
the nucleus, then following Watson we can write

(] T(E)IO>=§ (0[T:]0)

+2 (0| T3 0)(E+ie— Ho) (0| ;] 0)
i

+ X (O|Ti|0)(E+ie—Ho)™
i

X 0| T;|0)(E+ie— Ho) 0| T%|0)+- - -
+ 5 (0| Tu(Etie—Hy—Ho?

i)

X Ti(E+ie—Hy—Ho)'T:|0)4---. (4)

How one treats the last group of terms in Eq. (4) is
only important to order N=".° To this order Eq. (4) can
be interpreted as the Born series for scattering from an
optical potential,

— h2
Vopi(r,r)= / gk ik 1’
> (2m)’m

XZ (0| Ti(E) | ko,0)d%dkq.  (5)

Thus in Eq. (4) we have replaced H y in the propaga-
tor with zero. We shall later show that this is still
appropriate even if we have a correlated nuclear wave
function. To determine Hy in Eq. (3), we rewrite it as

Ti=tst+ta(E+ie—Ho)"‘Hy(E+ie—Hy—Ho)"'T:, (6)

where
ta=v;+v,(E+ie—Ho)Y,. (7

We define the replacement of T'; with #; as the dia-
batic approximation. We note that once again we have
replaced Hy with zero. The ¢ matrix t; so obtained
describes the projectile scattering from a fized potential
v;, i.e., the reduced mass x of the two-body collision is
m. We now estimate the value of Hy by iterating

®J. F. Reading, Phys. Rev. 156, 1120 (1967).
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Fic. 1. Plot of 34 (u) at 90 MeV. Dashed line: imaginary part
of £A4 (). Solid line: real part of $4 (u). The potential used for
all energies was the 90-MeV one (see Appendix A).

Eq. (6) and using the properties of Hy on the ground
state.®
We write
A= <07k l T; l ko,O)—- <O’k l la l k0’0>
~(0,k|tas(E+ie—Ho)‘Hy(E+ie—Ho—Hpy)™
X |ta|ko,0)= (0.k | ta(E+ie—H )2
XLHy+H 2 (E+ie—Ho) 1 ia| ko,0).  (8)

For large nuclei, we are mainly interested in the
region where

k=ko=kz and kg= QmE/h)!2,

For this case,

— 2 B2 \"2
An / % e 1 K YK ltdlkE><E+ie————k’2>
Amm? 2m
hZ h2 2 h2 —1
X ( —(k'—kg)?*+ (——) <E-|—ie—--——k’2> { (k'—kg)*
2m 2m 2m

+4/[(k"‘kE)‘ViXo:|2d3$1, cee, BN })

Writing
q=k'—kz
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and changing variables gives

-1
A=5_2]d39 (ke|ta| ke+q)(ke+q|ta| kz)
Y8
X (ZkE"H“f_ié)"z{92—[94+4/(Q'Vixo)2
degll ) dng](ZkE'Q"f'qz""iﬁ)_l} . (9)

Thus for some momentum transfer ¢ the diabatic
approximation replaces the propagator [—2kg-q—g¢?
+ie— (2m/h)Hy 1 with (—2kg-q—¢*+ie)~L, whereas
we can read off from Egs. (8) and (9) that

(2m/W)(Hw)=¢,
2m\?
(';) (Hy >=94+/4EQ‘V¢Xo]d €1, + -, dPey.

We therefore deduce that we can replace Hy with
Hy=#/2m)¢[120(a/r0)], (10)

where ¢ is the range of the nucleon-nucleon force and
ro is the distance over which the bound-state wave
function (not the nuclear density) varies appreciably.
We can estimate a/7 for a light nucleus as being some-
what less than unity and greater than 0.25. In the
limit that

o<y,

as in the deuteron, for example, H » can be replaced to
a good approximation by #%?/2m, i.e.,

[— 2](1;' q— q2+’i€— (2m/h2)HN]_1
~27[—-2(Gke @) —¢*+ie] .
If we insert this into Eq. (3), then
<0’kEl T; J kE’O>zAi(/‘:E) = Zt‘i(%m7%Ea%kE) ’ (11)

where f;(m,E,kg) is the forward scattering amplitude
for a mass m scattering from a fixed potential v; at
energy E. In this limit, then, we have the impulse
approximation; T is replaced by the free two-body
¢ matrix. We are now in a position to understand why,
if the high-energy approximation can be applied to »;
it is irrelevent whether we use the impulse or diabatic
approximation for T, In the high-energy limit,*
(—2kg-q—2¢*+ie)™ and (—2kg-q—q?+ie)! are both
replaced by (—2kg-q+ie)™ and the energy given to
the target nucleon has no effect, whether it recoils
freely or not.1?

1The corollary of this statement, at least in the small a/r,
limit, is that the error to be expected in A; from making the
diabatic approximation will be of the same order as the error to
be expected in ¢ if we calculate it from »; using the high-energy
approximation.
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If the high-energy approximation cannot be applied
to the two-body force, then one must be very careful
how one treats the recoil. We have investigated the
sensitivity of T'; to this by writing Hy as (%2¢%/2m*) and
allowing m*, the effective mass of the struck nucleon,
to vary.®® We then have

[—2kg- q— -+ ie— (2m/R)Hy T
~[—2kg-q—g*+ie— (m/m*)g* 1.
This gives, on substitution into Eq. (3), that
<O’kEl Til kE’)O>zAi(I‘)E’kE)
= (m/w)ti(u,Ep/m,ken/m)

u=mn*/ (m+m*).

We allowed u to vary from 0.38m to m.}t A typical
variation of 4 with u is shown in Fig. 1. A value of
w/m greater than 0.5 could be interpreted as the target

(12)
where

2 h2

#
(Hvy=(0| eXP[—i(k“k')‘Ei]["é;vaz—;n‘vez-i-

TO IMPULSE APPROXIMATION 1029
nucleon being held to some extent by the nuclear forces.
A value of u/m less than 0.5 might be symptomatic of
the nonlocality of the nuclear potential. From Fig. 1
we see that there is a striking variation in the imaginary
part of A (u) and that the real part is roughly constant.
Since the imaginary part of 4 (u) is responsible for the
absorption out of the elastic channel into the inelastic
channel, we might have expected

ImA (0.5m) <ImA (m).

This is presumably because it is easier to excite a
nucleus whose states are all degenerate at zero energy
than it is to excite one that has states with energy
appropriate to a freely recoiling nucleon.

In the same way that we investigated Hy in Eq. (3)
we can now investigate Hy in Eq. (2). If we approxi-
mate T;asin Eq. (12), then T';is a single-body operator.
In this case, the appropriate quantity (# ) is given by

h2
S — Lyt s u(&—so} exp[—i(k'—ko)- £]]0)
2m k1

k, ki

= (0] exp[—i(k—K')- £J[— (#*/2m)V;*] exp[—i(k'—ko)-£;]|0)— (O] exp[—i(k—k')- ;]

Thus the mean excitation energy of the nucleus as the
projectile passes from one nucleon to another is zero,
confirming our intuitive result obtained from an inde-
pendent-particle model. We can work out the standard
deviation from this mean value in a similar way. But
we shall leave that for a later calculation involving the
correlation correction. Sufficient to say here that one
can expect the uncertainty in Hy to play as great a role
in the propagation between different nucleons as it does
when the projectile interacts with an individual nucleon.

So far, then, we have established the sensitivity of
A (u) to the effective mass of the struck target nucleon.
In Sec. III, we show the variation of the off-energy-
shell characteristics of 4 with this mass.

III. NONLOCALITY OF OPTICAL POTENTIAL

Whatever value of u we chose in Eq. (12), the optical
potential given by Eq. (5) will be nonlocal, since
0.k | T';|ko,0) is a function not only of (k—ko) but also
of (k+ko). We can write a local ‘energy-dependent
potential ¥, which takes into account the first moment
of this nonlocality!~2

Vo(u,r) = — 2w/ u)Np (r)E(u, Ep/m ke gu/m)
. X[1—2xk g™ Np () (u,Ep/m fezu/m) T, (13)
where

. VL

U There is no reason why m* should be real, but we did not
mvestlgate complex values in this paper.
127, F. Reading, Phys. Rev. 156, 1116 (1967).

Xexp[—i(k'—ko)- £ — (#%/2m) V]| 0)=0.

and p(r) is the nuclear density. In Eq. (13), we have
replaced a sum over nucleon quantum numbers® by an
appropriate average Ni. We shall use this notation
throughout this work. Note that # is of second order in
the nucleon-nucleon force.’? Thus the nonlocal correc-
tion is a third-order effect. Because of this, for a
calculation which is only accurate to second order in
the ¢ matrix such as we shall present in Sec. V, there is a
certain amount of ambiguity in determining the non-
local correction. In Eq. (13), we are only using one of
the many possible corrections.

For the purpose of illustrating the effect of the non-
locality, we define Vi(u,) as that value of V,(u,r)
obtained by setting #’ to zero. It will be sufficient to
only consider V(i) and V(x) as the values of V;(u,0)
and V(p,0). It turns out that for the impulse approxi-
mation, —V.(0.57) is on the whole larger than the
experimental points found for it from an analysis of
the data.® Mulligan® calculated only the real part of
£(0.5m) and found it to be negative. He assumed that
the imaginary part of # (0.57) was zero. The effect of the
nonlocality then is to make —V,(0.5#%) smaller than
—V:(0.5m) as can be seen by substituting a negative
real value of #’ into Eq. (13). Mulligan thus found a sub-
stantial change in the optical potential about 309,
which was of the right sign to improve considerably the
fit to experiment.! However, he used a force which bore
only a qualitative resemblance to the real force.

We have repeated Mulligan’s calculation for both the
real and imaginary parts of #(0.5%), which we call
tx'(0.5m). We then calculated #(0.5), using an im-
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TasLE I. Spin-averaged forward scattering amplitude.®

Lab
energy t¢(0.5m) (0.5m) 22 (0.5m)>
(MeV) (F) (F) (F)
90 0.594-10.44 0.59-+4-70.42 0.65+4-10.16
156 0.48-4-70.40 0.49-+40.37 0.624-70.14
310 0.14+4:0.48 0.164-70.50 0.57440.38

a The full Gammel-Thaler result is #¢(0.5m), our modified central force
gives (0.57) and Mulligan’s force is ¢a(0.5m).
b There is no spin-isospin dependence with Mulligan'’s force.

proved force, but one that still had no tensor com-
ponent. This force is essentially the Gammel-Thaler
force®® with the triplet #-p part modified (see Appendix
A). It gives the correct forward scattering amplitude
in the 90-300 MeV region, as is shown in Table I.

The calculation of # involved an improvement on the
perturbation approach used by Mulligan. We must
calculate the derivative of the ¢ matrix to go off the
energy shell, but in (13) we only need this derivative
evaluated on the energy shell.??

In Appendix B, we indicate how to prove that

] d
—(k|(E) |k)=2—(k|¢(E) | kg) (15)
ok ok

if the derivative is to be evaluated at % equal to kg. Here
2u 1 ]
(k|¢(E) | kg)=——— / e (r)(r)d’r,
72 4

where ¢(7) is the usual on-energy-shell wave function.
Thus all we have to do to find # is to evaluate such

expressions as

i

2 KB kay=—5, e, (21+1)
ok

w_jl(kr)”(f)Rz(r)rzdr. (16)

2u 3
o)
w/)o ok

The only remaining difficulty is that of dealing with
hard cores, since the integral in Eq. (16) is not clearly

Tasi IT. Forward scattering amplitude A (i)
for various values of u.>?

Lab ~ _ -
energy 34 (0.44m) 34 (0.5m) 3A (m)
(MeV) (F) (F) (F)
90 0.534-70.28 0.59-4:0.42 0.624-:1.09
156 0.43+40.25 0.49+4-40.37 0.01+71.43
310 0.07+4170.40 0.164 0.50 —0.114-71.19

a We have antisymmetrized in a_way appropriate to free two-body
scattering for all u. G. Takeda and K. M. Watson [Phys. Rev. 97, 1336
(1955) ] have justified this for the impulse approximation.

b Our potential has a slight energy dependence. We took the 156-MeV
potential for Zg?;l) at 90 MeV and the 310-MeV potential for 4 (m) at
156 and 310 MeV,

18 J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957);
107, 1337 (1957).
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TasiLE III. Derivative of the forward scattering
amplitude to go off the energy shell.

Lab
energy 1'(0.44m) #(0.5m) ' (m) tar’ (0.5m)
MeV)  (F2) (F?) (F?)
90 0.104-:0.04 0.364:0.26 1.80+4¢1.3¢4 —0.36+170.32
156 0.084:0.08 0.24-4+70.16 —0.08+471.80 —0.15+470.08
310 0.124:0.02 0.22+470.02 0.26+:0.58 —0.04-+440.32

defined in that case. We show in Appendix B that

0 d
ZK|4(B) k)= — 5 e 21+ 1)[&'(60)—11(1@@)%2
ok 1 ok

+(i—“> / v(r)Rz(r)r“’;];jz(kr)dr], (17

where ¢, is the hard-core radius.
In Egs. (16) and (17), the radial wave function
R,(r) is such that at infinity

Ry (r)~cosdi(kr) —sindmm, (kr) .

IV. RESULTS

In Table II, we plot A (u) for u equal to 0.5m, m,
and 0.44m. There is a wide variation of A4 (u) for this
range of p which would not be present if the high-
energy limit obtained. In Table ITI, we plot # (u) for
the same values of p. Once again there is a wide varia-
tion; the nonlocality is large in the diabatic limit and
small for x4 equal to 0.44m. For the impulse approxima-
tion, #(0.57) has a positive real part, so we might
expect —V.(0.5%) to be greater than —V;(0.5m).
This is so, as can be seen from Table IV, though the
imaginary part of ' also plays a role. We do not get
Mulligan’s result that

—V(0.5m) <—V1(0.5m).

The nonlocality for this force makes both the real and
imaginary parts of V, more negative. The diabatic
limit produces an optical potential which seems to bear
no relationship at all to the experimental results (Table
IV). A reasonable fit can be obtained with 0.44m for
p; the nonlocality for this case is negligibly small. In
Table IV, we plot V,(0.44m) against some optical
potentials obtained from an analysis of experimental
data.® A reasonable fit to the data is obtained.

Of course, a value of u obtained in this way does not
have much meaning. It is apparent that both the non-
locality and variation of A(u) will be very force-
dependent. This is not necessarily a bad thing, since it
is hoped that we may be able to distinguish between
two-body forces in this way. However, a cautionary note
should be sounded here.

Both the effect of the nonlocality and the presence of
Hy in the propagator are the result of the binding
forces the struck target nucleon experiences because of
the other nucleons in the nucleus. The nonlocality is
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TasLE IV. Optical potentials v;() and v(u) (in MeV)® compared with some experimentally determined values vexpt.?
Lab energy
MeV) 23 (0.5m) 26(0.5m) vy (m) v, () 2;(0.444m) Voxpt
90 ~37—1426 —39—135 —36—164 29—4112 —33—417 —274+£3—410£5
156 —29—422 —30—1425 0.0—1478 27—165 —25—1414 —28+3—414+2
310 —8—427 —8—1427 6—164 0—1769 —4—421 +3—41545

a g7 and 7. depend on a choice of p(r) and how one includes the finite range of the nucleon-nucleon interaction. The potentials were chosen such as to be

normalized to the results of Ref, 3.
b The values of vexpt were taken from Ref. 6.

intimately connected to the overlap of the target-
nucleon potential with that of the next particle with
which the projectile interacts. It can be shown that if
there is no overlap of these potentials, then absolutely
no off-energy-shell information is obtained from the
experiment.!® The projectile propagates between the
two nucleons on its mass shell. The amount of overlap
that any given pair of nucleons have is determined by
the pair-correlation function the effect of which we have
completely neglected. Thus the correlation correction
and the nonlocal correction are inextricably tried
together. Fortunately, a deuteron experiment can
provide an estimate of correlation correction,'® and we
calculate the nonlocal effect.

The same thing can be said about determining the
effect of Hy. Here we can solve the problem, given the
nuclear wave function X,. And, in fact, we only need
single-particle wave functions to evaluate the integral
in Eq. (9). However, this means that any off-energy-
shell information about the two-body force obtained
from these experiments can only be as reliable as our
microscopic description of the nucleus. Fortunately, as
we have demonstrated, all the information that we
need is contained in the ground-state wave function.
There has been a considerable improvement in the
calculation of this function in recent years,” and a
reliable calculation of the effects which we have only
estimated so far should now be possible. In Sec. V, we
present a calculation of the second-order correction to
T, using a crude estimate of .

V. SECOND-ORDER CORRECTION TO
THE IMPULSE APPROXIMATION

The impulse approximation treats the target nucleon
as if it were free. In the previous sections, we tried to
mock up the effect of the binding forces by allowing the
nucleon mass to vary. In this section, we present a
perturbation approach to the problem of determining
T:. It turns out that indeed the variation of 4 (u) with
u does play a fundamental role.

14 We wish to thank Professor R. E. Peierls for an illuminating
discussion on this point.

15 L. Eyges, Ann. Phys. (N. Y.) 2, 101 (1957).

16 J. F. Reading, Phys. Rev. 156, 1110 (1967).

17T, T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966);
R. L. Beeker and A. D. MacKellar, Phys. Letters 21, 101 (1966);
C. M. Shakin, Y. R. Waghmare, and M. H. Hull, Jr., Phys. Rev.
161, 1006 (1967).

Using the results derived in Sec. II, we return to
Eq. (3) and start a perturbation expansion, not in Hy,
but in (Z—(Hy)). We write
(0,k|7:(E) |ko,0)= {0,k | T's(m,E) | ko,0)

+{0k|7:i(m) (E+ie—Ho—(Hn))" (Hy—(Hx))
X (E+ie—Ho—Hy)"\Ti|ko,0), (18)
where
<07k l Ti(m*7E) l k0>0>= <O,k I 7)1'| k010>+ <O7k | Vi
X (E—Ho— (Hx)ym/m*)7;(m*) | ko,0)
and
(Hy)= (#*/2m) (iV ,—ko) (:V,— k).

We first of all establish a relationship between 7;(m*,E)
and two-body ¢ matrix ;. If k=k,, then

(0ko| 74(m*,E) | ko,0)

m—+m* m*
—_ 1

mm* h2k?
= V‘i( ) E— 3 ko) ) (19)
m* m-+m* 2(m+m*) m+m*

where 1;(u,E ko) is the off-energy-shell forward scatter-
ing amplitude of a particle of mass p and energy E
interacting with a fixed potential v;. Thus 7 is a general-
ization of A (u). Since #; is a single-body operator,
(0,1(] T.(m,E) !ko,O)zF(kao)zt,

X(0.5m, E— (h*/4m)ke, 3ko) ,
where F (k—ko) is the nuclear form factor and we have

made the zero-range approximation for the two-body
force. If we are on the energy shell, i.e.,

[ kol = k0= kE 3
we have the impulse approximation. Then
0,k | 7:(m,E) | ko,0)=F (k—ko)2:(0.5m, 1 E, 3k )
=F(k—ko)A4:(0.5m).

We must know two things to determine the
scattering:

<O,kE|T[kE,0> and (O,kE[T/]kE,0>

We shall first of all calculate A;, the second-order
correction to T';, where
A= <O7kE[ T@'IkE7O>— 2ti(%m’ %E; %kE)
~{(0kg|r:i(m)(E+ie—Ho— (Hn))™3
X[Hy—(Hn) T ri(m)|0kz).
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TasLE V. Second-order correction to the impulse approximation
A, with the corresponding local potential ;®.

Energy

lab N 1@ 212) Yexpt

90 —0.02—70.19 0.57+440.23 —36—:14 —274-3—410+5
156 —0.12—40.10 0.3743i0.27 —25—415 —284-3—;1442
310 0.03—20.00 0.19440.50 — 9—3427 +3—715435

Using the results of Sec. II, we have
<kEIT1(m) (7Vr kE’)2Tz(m)|kE> / 72 )2 1
T [Etie—Ho— (1/2m) 0V, ~kay F\2m

1 (i) 2
Lo f[Lnos
e 9E;

We could evaluate A; by substituting for 7 and per-
forming the required integration. However, for a second-
order calculation, this is unnecessary, since we already
have sufficient information to calculate A; directly to
this order.

We have
(ko 7:(m*,E) [ko)= (ko| 7:(m, E) | ko)+(ko| 7:(m, E)
X (E4ie—Ho—{Hn))"YHy)(m/m*—1)
X[E+4ie— Ho— (m/m*)(Hy) T ri(m*,E) | ko).  (20)
Differentiating Eq. (20) with respect to #* and evaluat-
ing the derivative at m, we have

7’02
where
BEn.

0
%—*(ko{ i(m*,E) | ko)
B (ko| 7i(m,E)[(Hw)|m]ri(m,E) | ko)
(E+ie—Ho— (Hy))? '

Differentiating again with respect to E, we have
[neglecting (d7;/9E), which is already of second order
in the two-body force] the result

2

(ko 7:(m*,E) | ko)
~<k0| ri(m,E)[2(H )| m]ri(m,E) | ko)
(E+4ie—Ho— (Hy))? )

If we evaluate this derivative on the energy shell, then
2 92

ko| ri(m* ,E) | koy~—
alrlm Bk o

hzko m*

B 2 (m-l—m*)’ m—+m*

OE dm*

2 2

47’02 0Edm
{m—l—m* [ mm*

4| )
m—+m*

1

ko:” ;

m*
ie.,

—_— A — ———

W
4y 6E6m*L ( m* 4y Om*
m*
]. (21)

d dkE a - m—l—
(o
dE dE dkg m*

h? 02 ,‘A m+m*:l 9

J. F. READING AND A. D. MACKELLAR

173

We can find all the quantities in Eq. (21) by working
out A (1) at various values of m* and E and calculating
the derivatives. The results are shown in Table V. We
calculated the energy derivative by evaluating 04 /dm*
at 90, 120, and 156 MeV and then using linear extrapo-
lation. One difficulty was the energy dependence of our
potential. We used the average of the parameters at 90
and 156 MeV for the determination at 120 MeV. A
considerable error could be introduced by this proce-
dure, so A in Table V should be regarded only as an
indication of the magnitude of the expected effect. With
7o estimated as 1F, a considerable improvement in the
agreement between the local optical potential V;® and
Vexpt Was observed. The change at 310 MeV worked
out from A /dm* evaluated at 280 and 340 MeV was
quite small. This indicated that the impulse approxi-
mation was reasonably good at this energy, at least
for this force.

We cannot include the nonlocal correction with
complete consistency, but some remarks on its possible
effects may not be completely out of place. The first
thing to notice is that with our definition of 7; in Eq.
(19), the nonlocal parametric dependence on ko appears
not only in the momentum variable, but also in the
energy variable. This can result in much larger values
of [8(0,ko|7(m* E)|ko,0)/0ko] than estimated from
#. In fact, neglecting the total energy dependence of
7, we get

[a(o,kol -F(m,E) ]ko,O)/6k0]~2i'.

If we applied the impulse approximation, this nonlocal
effect would be large enough to destroy the agreement
obtained in Table V. But, as we have seen, #’ is very
dependent on a choice of m*. If one compares {® in
Table V at 90 MeV with A(0.44m) in Table II, one
sees they are not all that different. Since the nonlocal
correction is negligibly small, with u equal to 0.44m,
it is possible that the same is true for t®, However, only
a third-order calculation can resolve this point, and we
can say nothing conclusive at the moment. On the
whole, however, Table V, which contains no adjustable
parameters, must be regarded as encouraging. It gives
corrections with the right sign and magnitude to remove
the discrepancy.
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APPENDIX A

We have obtained a central modified Gammel-
Thaler®® force to fit the forward scattering amplitude.
We use the word central in a loose sense, meaning that
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there is no coupling of the radial equations
a J(J—1) 2(J-1)

l: +k— ( ve (%) Z

da? 22 (27+1)

— = )oss()— (T~ 1>vLL<x>]u,- ®)

(®)

6[J (J+1)]2
= W”T(x)wf(x) ,
[d2 e T+ +2) o () 2(742)
T - e(X)T
da? 2 (27+1)

+<J+2)m<x>+(J+2>m<x>]w,-<x>

6LJ (JH-1)Ju2
2741

The modification had the form that the coupling
term was set to zero, and the diagonal vy term was
changed for the #-p triplet force only, to be of the form

2(—1)  6CLT(J+1)]"
@I+1)  (@J+1)

where vy’ differed from v7 by a constant of multiplica-
tion. There is a slight energy dependence of vy’ and
C, as well as the suggested energy dependence of the

op (%) u; (%) .

ur,

TasLE VI. A central force* at 90 MeV (lab).P

np,S =0 np,S =1 5.5 =0 9,5 =1
1go+ =425.5 3yt =100.7 syp+ =400 1yet =425.5 3,=0
et =145 3u.t=1.23 3urt =1.203 luct=1.45 Syrgt=0
1ye~ = —100 3.~ =60 3p~ =0 1y~ =0 3ypt =0
e~ =1.0 3uc~=1.5 3ur—=0.8 lyLg =0 3L~ =7122.5
re~=0.5 35+ =5000 ret=0.4 yr =0 SuLg=3.7
1yr =0 3urst=3.7 re” =0.4125 7.*=0.4 Sup~ = —26
lyr.g =0 31y~ =7122.5 C=0.083 7e” =0.5 3ur~=0.8
7ot =04 3urLg~ =3.7 ret =04

re~ =0.,4125

a We use the conventional notation of Ref. 13 and the tensor force
described there which is zero at the core radius.

b At 156 MeV, 3¢~ is 20, fort is 290, C is 0.133. At 310 MeV, lv,~is —150,
390 is 60, 3y~ = —5, 3yrt is 175, C =0,
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full Gammel-Thaler force. In Table VI, we give the

parameters of the force at 90 MeV, with the modifica-

tions that are to be made at 156 and 310 MeV.
Mulligan used a force

v(r)=vo(e"/1)
=0,

o()=co,

evenl, r>co
oddl, r>c¢o

r <co,

where ¢y=0.5 F, u=1.7 F1, and vo=—900 MeV.

APPENDIX B
We wish to prove that

3 3
—_ =2—(k kg
ak(klt(E)Ik> Zak( |4(E) | k)

when k=k E.

The proof trivially follows for a potential v(|r|)
by writing down the Born series for (k|i{(E)|k),
differentiating, and comparing with a(k|¢(E) |kz)/0k.
For parity-dependent, spin-orbit potentials, etc., the
proof most easily follows if one performs the partial-
wave decomposition first and then uses the Born series
for (k|t:(E)|k). For tensor forces, because we average
over the spins of the target nucleus for an assumed
closed-shell nucleus and we only look at forward angles,
once again the theorem is true.

To use the theorem for a hard core, we must work
a little, since the integral (k|#;(E)|k) is not clearly
defined. However, Mulligan! showed that

<kl t(E) I kE>= —Z e"’sl(ZH— 1)[jl(kCU)R1'(kE,Co)Coz

+(i——“) f j,(kr)v(r)R,(kE,r)rzdr],

0jl (kCo)
a

so that

]
3];0‘ |(E) | kg)=— Zt 12+ 1)[ R/ (kg,c0)cd®

+(i—”) [ ij’a%')wr)zez(kw)rzw]-



