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Many-body perturbation theory (MBPT) is used to investigate the energy, wave function,
and two-electron density matrix of a closed-shell atom or molecule when the initial approxi-
mation to the wave function is taken in the Hartree-Fock approximation. Since, as Kelly has
found in his calculations using MBPT, certain classes of terms dominate in all orders of per-
terbation theory, models are investigated in which certain types of terms are summed to all
orders of perturbation theory. The diagrams which are summed are explicitly chosen to pro-
vide results in the form of inhomogeneous integrodifferential equations which are as similar
as possible to the models used by Kelly, Sinanoglu, and Nesbet, thereby enabling some corn-
parison to be made between these theories and indicating some of the corrections to them.

It is proven that the diagrams approximated by Kelly to all orders of perturbation theory,
w»ch have only two electrons excited at a given time, could be calculated from a knowledge
of what Sinanoglu calls Bethe-Goldstone (BG) pairs, which represent the perturbative correc-
tions for correlation for a pair of electrons moving in the field of the remaining electrons,
which are in their ground-state Hartree-Fock (HF) orbitals. The uncoupled linear inhomogen-
eous equations for the pairs could be solved by the use of a correlated basis set, and their
solution can be found variationally, along with the individual pair correlation energies, by vary-
ing part of the energy of a simple cluster-type wave function. However, as in the case of the
other models presented in this work, certain variations of part of the energy are shown to be
equivalent to the summation of particular classes of diagrams to all orders of perturbation
theory.

The doubly excited diagrams omitted by the BG pairs arise from the fact that when a pair
of electrons are excited out of the HF "sea," the Pauli principle no longer prohibits the re-
maining electrons from occupying the space left behind by the excited electrons. The inclu-
sion of these exclusion effects results in coupled linear inhomogeneous equations for the new
pair-correlation correction functions. Single and triple excitations modify the pair equations
by the inclusion of a two-body potential, respectively, describing the virtual de-excitation of
one of the two correlating electrons and virtual excitations of a third electron in the field of
the two correlating electrons. Alternatively, coupled linear inhomogeneous equations can be
written for the one-, two-, and three-electron cluster functions, and these equations may be
solved variationally.

The generalization of the above results to cover the case in which the zeroth-order wave
function is a single Slater determinant of arbitrary orthonormal spin orbitals (as we11 as a
treatment of the higher excitations) is presented in the followingpaper. In the appendix, adiscus-
sion is presented to indicate the connection between what Sinanoglu calls "unliked clusters"
and the diagrams of MBPT.

i. iNTRODUCTION

At present there is great interest in the role of
electron correlation in the description of atoms
and molecules. Approaches to this problem have
been made using the methods of configuration in-
teraction (CI), ' 3 cluster-type wave functions, 4 'x

and many-body perturbation theory (MBPT).'t-"
Approximate calculations have been attempted us-
ing all three methods, but the relationship be-

tween approximations made in some of these dif-
ferent approaches still remains to be clarified,
especially in the case of the latter two methods. '9

MBPT, which is just a diagrammatic represen-
tation of ordinary Rayleigh-Schrodinger perturba-
tion theory, "can be used to investigate the part
electron correlation plays in the energy, ' "wave
function, and/or reduced density matrices of
many-electron atoms and molecules. Because of
its pictorial form, MBPT can also aid in giving
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some physical insight into the nature of electron
correlation.

Our interest in electron correlation has been
stimulated by the availability and ease of calcula-
tion of HF wave functions for atoms and small
molecules. "-" As we know, the HF equations de-
scribe an independent particle model in which each
electron moves in the average field of all the oth-
er electrons. The HF equations, aside from being
soluble for atoms and small molecules, have the
virtue of providing us with simple physical pic-
tures, namely the orbital picture and the concept
of exchange interactions, which are lost when CI
or MBPT are used.

Errors in HF calculations, i.e., the difference
between predictions made with HF wave functions
and experimentally determined quantities, are due
to electron correlation. Although HF calculations
do provide on the order of 99% of the electronic
energy of small molecules, they only provide
about 50% of the binding energy of small diatomic
molecules. For the fluorine molecule, HF calcu-
lations do not predict binding. " Thus, in order to
properly account for energetics to the chemical
accuracy of 1 kcal/mole, some description of elec-
tron correlation must be included in any calcula-
tion." Furthermore, it must be remembered that
electron correlation also affects properties other
than energies, and some of these properties are
often more difficult to measure experimentally
than the energy.

In his calculations of the correlation energy of
closed-shell atoms'~~" (as well as in the open-
shell case"), Kelly found that certain classes of
diagrams contributed significantly to all orders
of perturbation theory. Some diagrams were
therefore summed through infinite order, and the
magnitude of other diagrams in successive orders
of perturbation theory were approximated so these
contributions could approximately be summed to
all orders of perturbation theory. In this paper
the process of summation of diagrams to all or-
ders of perturbation theory is discussed in a sys-
tematic manner. The discussion is applicable to
the study of electron correlation in atoms and mol-

ecules. " It is shown that the majority of the dia-
grams evaluated to all orders of perturbation theo-
ry by Kelly~ s" (i.e., the dominant diagrams) can
be expressed in terms of what Sinanoglu calls
Bethe-Goldstone (BG) pair correlation func-
tions. '~'~s This connection, thereby, provides
a basis for the comparison of results obtained
from MBPT calculations" "with those obtained
from cluster-type or Nesbet's BG-type wave func-
tions. s'

For simplicity, the discussion in this work is
restricted to closed-shell atoms and molecules
where the zeroth-order approximation is given by
a HF wave function zs, s2,ss One of the virtues of
using MBPT is that we can automatically separate
those diagrams which can contribute to one-, two-,
three-, ~ ~ ~, and N-body cluster-type correlation
functions, and in fact, these diagrams could, in
principle, be summed to give the differential equa-
tions determining all the correlation functions con-
tained in the cluster-type wave functions. ss~s4

The process of diagram summation is then con-
tinued beyond those classes that Kelly found are
dominant'4 in order to investigate the effects of
the coupling between the pairs" and of single and
triple excitations upon the pair correlations. It is
shown that these phenomena can be discussed, re-
spectively, in terms of localized orbitals and
"self-energy operators" describing the virtual de-
excitation and excitation of an electron in the field
of a pair of correlating electrons and the remain-
ing HF "sea."

In the next section we briefly review some of the
various approaches to the treatment of electron
correlation in closed-shell atoms and molecules. "
The discussion is not meant to be all inclusive, '
rather it is used in order to introduce the notation,
termonology, and ideas in terms of which the
above-mentioned results are presented. In Sec.
III the equations for the 86 pairs are derived from
MBPT. The coupled pair equations are derived in
Sec. IV, and in Sec. V the single and triple exci-
tations are also included. Appendix A discusses
what Sinanoglu calls "unlinked clusters"'~' in re-
lation to MBPT.s'

N
Ho= Q Ho(i)~ H040=EOCO,

i=1

EBF =E0+El =(C 0 ~H! 40),

(2. 3)

(2. 4)

II. VARIOUS APPROACHES TO THE DESCRIPTION
OF ELECTRON CORRELATION

For simplicity, the discussion is applied to
closed-shell systems. s' %e assume that our initial
approximation Cp to the nondegenerate ground-
state wave function g of an N-electron system is a
HF wave function. " P is the solution to the non-
relativistic Schrodinger equation

Hg=EP, (2. 1)

where H is the Hamiltonian. (For molecules, the
Born-Oppenheimer approximation is assumed. }
We can decompose H as H =HO+K„(2.2)

where H, is the HF Hamiltonian, and (in a. u. )

(2. 7)4p = Capp
1

where 8 = (N!) 2+P(-1} P is the N body normal--
ized antisymmetrizer and

N
y = II &.(j)0 (2. 9)

1 N 1-P.
H, = 2 ~

—— Z P &f(p.)i '"if(!))
i&j ij l occ i =1 2 JL(,

= p~. .-pv. . (2. 5)z)j
Pi& is a permutation operator, and lips are the N
lowest spin-orbitals which are eigenfunctions of H, (i),

H0(i)&(i) = ~,f(i), (2. 6)

defining the HF orbital energies e~. In terms of

the (l), 4, can be written as



Thus

«(1)f (2) t , " tf(1)I (2)&,
l occpd (I & I') occpd 12

(2.9)

where the spin-orbital indices are considered to be ordered in some manner, e.g., Ey &l2 &l3 & - ~ .&E~.
One of the earliest methods of including correlation was via the technique of configuration interaction. '-3

Here we consider CI as written in terms of a complete set of HF spin-orbitals in order to introduce some
of the notation and to give a simple discussion of CI. Any basis set could, of course, be chosen. I et the
set of spin-orbitals. (m] be the eigenfunctions of the HF one-particle operator H, (i) via

H0(i)m(i) = e m(i), (2.6b)

where the unoccupied (or virtual) HF spin-orbitals (mJ along with the HF ground-state spin-orbitals {I]
form a complete set of spin-orbitals, and

all I and m. (2.6c)

Since all possible Slater determinants formed from the complete set of HF spin-orbitals give a complete
set of V-particle wave functions, the exact wave function g can be written as a superposition of these
Slater determinants,

0&(v + E c v + E c, v™+") (2.10a)
E, m E&3', m &m'

whe~e Q i4$=1. The expansion has been separated into singly, doubly, ~ ~ ~, N-fold excited configurations
and the excited spin-orbitals are ordered in some arbitrary manner, e.g., m, &m, &ms ~ ~ .

=@[q0m( j)/I .(j)],
jpW j

ef I . , =eq
I ™=a[@0m(j)m'(k)/l.(j)f~(u)]

l~lI,' mm '
l~ly 0 j jp

(2.11a)

(2.11b)

describe singly and doubly excited Slater determinants. The excited Slater determinants are prescribed
by enumerating which of the N spin-orbitals are occupied. The vacated spin-orbitals are called 'holes, "
while the excited occupied spin-orbitals are called "particles. " Thus 4, in (2.7) and (2.8) contains nei-
ther holes nor particles and is often called the "vacuum state. " The Slater determinant C~ ~ contains the
hole l and the particle m. The coefficients CE, C~I~ ~, CEEIEII~~ ~, ~ ~ ~ can be obtained by minimizing
(g (8-EHF )g)/Q (g) with respect to these coefficients, which yields an infinite secular equation. In prac-
tice, we are forced to truncate this expression in some manner, obtaining approximate coefficients and an
approximate wave function. " '~ "

%e can also attempt to evaluate these coefficients by using perturbation theory. MBPT is just a conven-
ient representation of Rayleigh-Schrodinger perturbation theory and enables the separation of contributions
to the various CI~, C~EI~~, etc.

%e shall briefly review some of the presentation of Goldstone' in order to introduce some of the nota-
tion. rip& and gp are the "second quantized" creation and annihilation operators for an electron in the HF
orbital k (0 may be either an occupied or virtual orbital), and these operators obey the usual fermion anti-
commutation relations. Matrix elements of v and V are written as

(rs [v ]mn) = fr*(1)s*(2)v„m(l)n(2)d(12), (2.12a)

(r i Vls) = fr+(1)V,s(1)d(1), (2.12b)
and in terms of this second-quantized notation, (2.5) and (2.6) are rewritten as

H0=5 „„ri (2.13a)

Hl =Q(rs )v (mn)g 7l g r) -P (r ~ V(s)g (2.13b)

The first sum in (2.13b) is over distinct matrix elements, i.e., (sr(v (mn) is distinct from (sr(v ~nm), but
(rs (v [mn} is not. Although the perturbation (2.13b) is time-independent, the perturbed ground-state wave
function go can be obtained from the unperturbed ground state 40 by using time-dependent perturbation the-
ory and 'adiabatically switching on the interaction H, from time t = -~ to time i =0. I et (in units where
a =1)

(i) = 'Hoi -&'Hoi « (2.14)
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As o. -0, we obtain the perturbed ground state at time t = 0

= lim U C /(C IU lC0)-0 0 0 0

and the ground-state energy

E-E0=(C0IHI i/0) = lim (C0lHI U IC'0)/(C'0 IU 1C0).
~-0

(2.16)

(2.17)

Ordinary Hayleigh-8chrMinger perturbation theory with the unlinked clusters36 canceled is obtained from
(2.16) and (2.17) once the time integrations are performed. Equations (2.16) and (2.17) are ratios of pow-
er series in the perturbation H, . In both cases, however, the denominator is an exact factor of the numer-
ator, and therefore E-E, may be expressed as a single power series in H, . This factorization is easily
established (Goldstone's theorem) when the results of the time integrations (2.15) are expressed in terms
of Feynman diagrams, but can also be derived without the use of a time-dependent formalism. s' The rules
for obtaining all of the diagrams contributing to go and E Eo a-re described by Goldstone and need not be
repeated here. However, the diagrams needed will be presented and evaluated as they are used in the dis-
cussion.

Perturbative calculations of the wave function or energy can be performed in two manners: either we
calculate the contributions for successively higher orders of the perturbation H, s' (i.e., starting with ze-
roth-, first-, second-, ~ ~ ~ order wave functions, energies, etc.) or, as is presented in this work, we
can choose a model in which certain contributions (hopefully the dominant ones) are calculated to all or-
ders in 0„' e.g., we calculate all contributions to the correlation energy arising from doubly-excited con-
figurations. Kelly's Be calculation is of just this modellistic nature. "~" The graphical representation of
Rayleigh-3chr6dinger perturbation theory is not necessary for the treatment of the lowest orders of per-
turbation theory, but is very helpful in enumerating which contributions have been included in a given
model.

In (2.10a) if we let

5"
C/ m(g)=-U, (j), (2.Isa)

(2) '(I-a12) P C,™m(j)m'(k) 7/, (j—=k),
m&m'

(2.16b)

(2.16c)

(2.10b)

where U~, UE~~, U~~~~~~ are cluster or orbital correlation functions which are strongly orthogonal to the HF
ground-state spin-orbitals. " Following Sinanoglu, ' we can decompose these cluster functions into "linked"
and "unlinked" parts vias'~4'

U~, ,(12)=(2)-~&2(I-S 2)U, (1)U, ,(2)+U„,(12), (2.19a)

U~, ,,„(123)=(6)-&&2(I-S 3-~ 3)(I-I 2)[U,(I)U, ,(2)U, „(3)

+ (2) -'~'(U/(3) U/, /
„(12)+ U//„(12) U/, (3) + U//, (12)U/„(3)) ]+U//, /„(123) etc., (2.19b)

(2.19c)

where the tildes on the orbital correlation functions indicate that these are approximate functions. "
In the next section the basic features of the technique of diagram summation are illustrated by restrict-

where U/~ U//i, U//~/r, ~ ~ ~ are the S-type unlinked clusters. s'~" If (2.10b) is truncated to include only

{U/, U//~] (see Sec. Vll), and the energy from such a wave function is varied by making arbitrary variations
in the spin-orbitals of C, as well as the cluster functions (in order to maintain self-consistency), subject
to the orthonormality of the ground-state spin-orbitals and their strong orthogonality to the cluster func-
tions, then the non//near coupled eigenvalue equations of Szaz for the {/, U/, U//~) are obtained.

In order to avoid obtaining nonlinear coupled equations, as well as for physical reasons to be discussed
below, Sinanoglu kept the {//) fixed as the HF spin-orbitals in the approximate wave function

@A@0+(2) "' Z V// U//, l (2.10c)
l&E'

and varied the {U// ]. in only part of the energy expression. '-' These two-particle correlation functions
were used to construct the four-, six-, ~ ~ ~ body S-type unlinked clusters' ~~' in (2.10a), e.g., the four-
body correlations were approximated by only the "unlinked" parts4~36~"

//'/ "/"' ' l3 14 23 24 23 14 ~ //' / "/"'

+U „(12)U, „,(34)+U „,(12)U,/„(34)],
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ing attention to the two-body diagrams, which (together with S-type unlinked contributions which can be
evaluated from the resulting pair functions") Kelly found gave better than 90% of the correlation energy
for Be.'4~" It is proven that the evaluation of these diagrams is equivalent to the solution of perturbative
Bethe-Goldstone equations. " As opposed to the direct summation of diagrams, which requires the use of
a complete orbital basis, the BG equations may be solved by the use of correlated pair functions whose
convergence is expected to be much more rapid. »y"y44

III. DERIVATION OF THE BG PAIR EQUATIONS

It is well known (Brillouin's theorem) that for a closed shell HF wave function all matrix elements of the
perturbation H, between Co and singly excited states (e.g., Syfm, all f and m) vanish. 'Thus, the lowest-
order correction to the true wave function is due to double excitations. It has long been believed that cor-
rections due to double excitations represent the major corrections for correlation to the wave functions
and energies of closed-shell systems which are initially described by HF wave functions. '~» Thus, it is
not surprising to find a number of theories in which these double excitations play the central role. 4 My»~3~~45

In this section as was suggested in part by the diagrams evaluated by Kelly, ~4&" a subset of all the dia-
grams involving only double excitations are. summed to all orders of perturbation theory, while the re-
maining diagrams of this type are considered in the next section.

In MBPT, to each diagram in nth-order perturbation theory there corresponds 2"-1 "exchange dia-
grams. '"' Much labor is saved if all these 2" diagrams are considered to be equivalent, but the matrix
elements are taken as the direct minus the exchange term at each vertex in the diagram. Only one of the
equivalent class of 2" diagrams must then be counted, and the overall sign of this "antisymmetrized" dia-
gram is just that which the ordinary diagram of this form would have [i.e., (-1)&+1where Pg is the number
of hole lines and f is the number of loops). 4' Thus the usual second-order energy diagrams are replaced
by the single "antisymmetrized" diagram given in Fig. 1. This diagram has the value E"', where

I(l(1)l'(2)f(1-P„)/x„ lm(1)m '(2)) I'
(l )l') occpd

(m )m') unoccpd

(3. la)

P» permutes the coordinates (space and spin) of particles 1 and 2, and elf ~ = Ef + Elf, Gm'm & = 6m+ fm ~ are
sums of Hf spin-orbital energies. In (3. 1)

2 (3.2)

since the contribution with m =m' vanishes because the direct and exchange matrix elements are identical.
Furthermore, we can use the equality

Im(1)m'(2))(m(1)m'(2) I Im(1)m'(2))(m(1)m'(2) I

-H (12) y

mp m ll' mm' m p m ll 0' '

where Ho(12) =Ho(1) +Ho(2).

(3.3a)

(3.3b)

im(1))(m(1) I =1(1)- P l(1))(l(1) I,

l occpd

Setting Q, =

Let
I Pl']„)=2 "'(1-P„)Il(1)l'(2)),

Qi2 = QxQ2 = Q2Qi~

then (3.1a) can be rewritten as

m unoccpd

then (3.3a) becomes Q1Q2/[off&-H0(12)].

(3.3c)

(3.4a)

(3.4b)

Eo' = Q ([fl']„ I
— H' 12 I [fl']g2)P

l&f', occpd 12 fl' 0( ) 12

which is the sum of contributions from each of the HF pairs. "
Define the antisymmetric pair functions Uff~a (12) by

U,"'(12)=(Q12/[e &,-H0(12)]](1/r12) I [fl']12).

(3.1b)

(3.5a)

m & l m'

FIG. 1. The "antisymmetrized" diagram for the sec-
ond order energy of a closed-shell HF system involving
the excited state 4'~~i. ~~ .

t
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Note that Q» is a projection operator which makes any pair function strongly orthogonal to the ground-
state spin-orbitals. '0 Since Q»' = Q», the integral e&luation (3.5a) is e&luivalent to the differential e&luation

f~,-eo(12)]q,2////P&(12)-q, 2(1jr ) I[// ],2) =0. (3.5b)

E&luation (3.5b) should be recognized as the e&luation defining the first-order pair functions from which the
first-order wave function

is constructed. 5~'y~' In terms of these first-order pairs,
Z&'&= P E P&= P ([//] i i//, a&(12)),

~2 El
(3.1c)

where E//~&2& is the second-order correlation energy of the spin-orbital pair //'. Thus (3.5b) and hence
(3.lc) can be evaluated by expansion in any basis set, including a correlated basis set of the James-
Coolidge or Hylleraas variety.

E&/nation (3.5b) can be solved variationally for each first-order pair function and second-order correla-
tion energy. The functional5~'~4'

//' //' ([ ]12 ~ 12 @12 ~//'

+ (////, "'(12)
~ 912(1/~12) ~ [//']12) +(U//, "'(12) i@12(//O(12)-~//, ) i////, "&(12)) (3.5)

is stationary with respect to variIRtions of the UE)1"' or UE)I"'* about the first-order pairs which are the

solutions to (3.5b), and the stationary value of E//I"&(U//i&&') is just E//~~'. The variational principle for
Upf"' is merely the familiar second-order variation-perturbation theory applied to a closed-shel HF C0.3'

Some of the third-order "antisymmetrized" energy diagrams are given in Fig. 2. The two remaining
third-order diagrams are obtained from Figs. 2(c) and (d) by taking mirror images in a plane perpendicu-
lar to the page and the vertices. The new vertex in Fig. 2(a) is a "particle-particle interaction, "while in
(b) it is a 'hole-bole interaction, " and in (c) and (d) there are 'hole-particle interactions. " In this section
only diagrams with diagonal-hole lines are considered (the ones with nondiagonal-hole lines are treated in
the next section). Thus, with regard to Fig. 2(b) only the terms with /=/" and /'=/"' are considered in this
section, while in Figs. 2(c) and (d) the diagrams with /'=/"' are diagonal-hole-line diagrams.

Writing the Coulomb and exchange operators for two electrons (1 and 2)

/f//, = Q (/(/&) I

1=1,2

and the two-particle potential

'n ""='~'12- //- / /" ([//']12 ~('~ 12) ~ [//']12»

(3.7)

{3.9)

where Vgi is defined only if l gl', then, after a bit of algebra which is presented in Appendix 8 for the con-
venience of the readerthe , third-order (diagonal-hole) energy can be written as

(3.9a)

= P (I///, &»(12) [ V„,(12) l V„,&»(12)) (3.9b)

1= P ([// ] i
—iU, s&(12)),12 x~2 EE'

(3.9c)

where the second-order pairs in (3.9c) are the solutions to the e&/nations

[~„,-HO(12)]q12//„, & &(12)-q 2V, ,(12)q12V/, ,&»(12) =0,

-0 -3
FIG. 2. Some of the third-order "antisymmetrized"

energy diagrams.
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and could be evaluated variationally in a manner similar to that described for UnI"'. Equation (3.9b) is a
consequence of the "2m+1" rule of perturbation theory that knowledge of the wave function to nth order en-
ables one to calculate the energy to the (2n+1)st order in perturbation theory. s' In this case, the UnI"'
and the ground-state HF spin-orbitals determine the first-order wave function, and these first-order pairs
can also be used to evaluate the nondiagonal-hole contributions to the third-order energy.

%e should note that the diagonal-hole third-order energy diagrams are constructed from the second-
order diagrams by placing a vertex between each pair of lines in the second-order diagram at a time inter-
mediate between the two vertices in Fig. 1. The extra vertex —call it a bar vertex —in Fig. 3, which does
not connect any specific pair of lines, is used to denote that this diagram is the sum of all of the distinct
"antisymmetrized" diagrams which can be formed by letting this vertex connect any pair of lines that it
crosses. Thus, the diagram in Fig. 3 is equivalent to all the third-order energy diagrams, i.e., Fig. 2 in-
cluding the mirror images of Figs. 2(c) and (d). The restriction to diagonal-hole diagrams is made by
placing dh over the bar vertex.

All the possible fourth-order diagonal-hole energy diagrams containing only double excitations can be
formed from the third-order diagonal-hole energy diagrams by adding another vertex between each pair of
lines (holes diagonal) in each of the third-order diagonal-hole energy diagrams. Figure 4 summarizes the
sum of all double excitation fourth-order energy diagrams. Just as the diagonal-hole bar vertex in the
third-order energy diagrams introduces the factor Vnl(12)@12/[effl-HO(12)] in going from (S.lb) to (3.9a)
Fig. 4 has the value

2 1~2dh"'= ~ (["']12~ -e'(12) Vn"" -H'(12)
l & l' l2 ll' 0 - ll' 0 — 12

(s.11)

By induction we can write the sum of all diagonal-hole two-body diagrams as a single diagram as in Fig. 5
with a two-body diagonal-hole infinite-order bar vertex, and the value of this diagram, which contains the
diagonal-hole two-body contributions to all orders of perturbation theory, is

„=Z „=Z(f 'l ~, , „"(, ) Z „,( ), "( ), ~['] ).
n =2 l &l' 0 nO- 'll ~O

But (3. 12a) contains the Born series for the diagonal-hole iwo-particle propagators"

'n; dh"'= ~12[~12('n -"o('2))-~12Vv" 2)~12] '~12

and hence (3.12a) can be written as

1 @)1„„=Z, .„,= Z &[ l„i—, «,„"—, i[ ]„&.
l &l' ' l &l' 12 y l2

By analogy with (S.lb) and (3.5a), we define the pair functions„1'n""='n" dh", ~[n']12»

so that
„„=5 &[ ]„i,-i„,( )),

l &l'

~12['ll -Ho""-'n "2)~12]Un "2)-~12"/~12) ["']12&='

(S.12a)

(S.ISa)

(s.1sb)

(3.14)

(S.isa)

and Un~(12) are the Bethe-Goldstone pair correlation functions (the total BG pairs are [ll']12+ Uffi(12)).
if we note that off~-([I/']12 )(I/r12) ( [n']12& is the HF pair energy for electrons in spin-orbitals I and I'

(since sf+ el~ counts the n' repulsion twice) and that the En and EEII~ in Vn~(12) remove the Coulomb and
exchange operators for orbitals l and l from Ha(12), then it is clear that the BG pair corrections in(3. 15a)
describe the perturbative correlation corrections for pairs of electrons moving in the field of the remain-

FIG. 3. Sum of all the third-order energy diagrams.
Since no hole or particle indices are presented, a sum
over all possible hole and particle indices is implied.

FIG. 4. Sum of all doubly excited diagonal-hole fourth-
order energy diagrams represented schematically in
terms of bar vertices.

A A A 4Nl

I 2dh I + + ~ ~ ~ ~ + I I i i dh +
V V J V V Vdh J V dh

FIG, 5. Diagrammatic ]Born series for the doubly excited diagonal-hole correlation energy E2dh. The porn series
for the propagator Q EE» dh is obtained by removing the first and last vertices and by labeling the hole lines with $

(g)

and /, where a sum over all particle indices is still implied.
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ing electrons, which are in their ground-state HF spin-orbitals. Thus, provided we introduce some S-
type unlinked clusters which can be written in terms of the BG pairs, 4' the MBPT calculations of Kelly~4p~'
are equivalent to the physical assumption that the total correlation energy is well approximated by the sum
of independent pair correlation energies for each of the pairs which are moving in the field of the remain-
ing electrons. As opposed to the calculation of Kelly, (3.15a) is in a form where the BG pairs can be ex-
panded in an arbitrary basis including correlated functions. 4' Furthermore, these BG pairs can be used in
an approximate wave function of the form of (2.10c) in order to calculate properties other than energies.
In the following sections, we examine some of the corrections to the physical assumptions embodied in
equations (3.14) and (3.15a). However, before discussing what is neglected when BG pairs are used, (3.15a)
should be discussed in more detail.

Equations (3.15a) are a set of uncoupled linear inhomogeneous integrodifferential equations, as opposed
to the eigenvalue equations. obtained using the variational-type theories of Sinano™glu and Nesbet ' in which
they initially solve for the stationary states of a pair of electrons which are moving in the field of the re-
maining electrons, which are in their ground-state HF spin-orbitals. Nesbet's formulation includes orbit-
al excitations in addition to the double excitations of the pair g,nd is written in terms of an orbital expan-
sion Af the pair function, while Sinanoglu neglects the orbital excitations. Orbital excitations are dis-
cussed in Sec. V. Beyond the form of the pair functions, the theories of Sinanoglu and Nesbet differ
significantly.

The BG pair equations can be solved variationally since the functional

Fll, [Ull, ] = ([ll']12 [(1/r12)Q12 I Ull, (12)) +(Ull, (12) [Q 2(1/r 2) [ [ll'] 2)

+(Ull, (12) I Q12[Hp(12) + Vll, (12)QI2-elf, ] [Ull, (12)) (3.16a)

is stationary with respect to variations about the Uii~ which satisfy (3.15a), i.e.,
5Fll, /5 Uli, = 6Fll, /6U, *= P (3.16b)

yields Eq. (3. 15a). The stationary value of the functional in (3.16a) is just the pair correlation energy
E2dh if~ of (3.12b), and hence, this variational principle corresponds to a variation of each of the pair
correlation energies independently. The variational principle in Eqs. (3.16a) can be obtained from the ap-
proximate cluster wave function in (2.10c) by varying only some of the terms in ([ICI, [H-ZHF [[IOi,) with
out any normalization constraints except that we have made ([Icl, [Cp) =1. (See Sec. IV for a discussion of
the omitted terms. ) This is the manner in which Sinanoglu derived the BG pair equations. ~ However,
here we can enumerate the MBPT diagrams which in effect have been summed in making this approxima-
tion.

If {X;jdenotes a complete set of two-particle antisymmetrized orthonormal functions (containing both
space and spin variables) which are strongly orthogonal to the HF ground-state spin-orbitals, "then if the
$Uii~) are expanded in this basis set,

lE'
ll Zi i Xi

the variational principle in Eqs. (3.16) is equivalent to

(3.17a)

(3.17b)

(3.18a)

Then the expansion coefficients in (3.17a) are simple, namely,

a. =5, . (X.(12) [I/[elf, -Hp(12)-V, (12)][X.(12))(X.(12) [1/r12 [[ll'] 2),

where (Xi(12) I 1/[all~-Hp(12)-Vlli(12)] I X&(12)) is the inverse of the matrix (Xi(12) [all -Hp(12)-Vlf (12)
x IX&(12)). Equations (3.17a) and (3.17b) give the linear variational approximation to the BG pairs for the
case in which the basis set (Xi(12)) is not a complete set

One simple choice for the basis set[X)is the set (exact, or approximate in the case of a truncated basis
set) which diagonalizes the operator Q12[Hp(12)+ Viii(12)Q12], i.e., ]Xiii') such that

Q12[Hp(12)+ V, (12)Q 2]X. =e. Q 2X.

a. = (X. (12) [1/r12 I [ll']12)/4li, -e. ), (3.18b)

where (3.17a) and (3.18a, b) represent "the spectral expansion" of the BG pairs For a ne. utral system the
eigenvalues of Q»H, (12) which correspond to antisymmetric functions are greater than zero (in the "HF
continuum"), and the ([ll']» l l/r» I [il']») in Vili(12) give another positive contribution to the eigenvalues
mill'. The rest of Vlf~(12), i.e., 1/r12-Kit-El~1~, however, is not necessarily a positive-definite operator.
It seems reasonable to expect that this part of Vlf~(12) does not appreciably change the spectrum in the
sense that the &zEE should be either positive or slightly negative. and smaller in magnitude than e~~~. If one
of the e;ll were comparable in magnitude to ail~, the energy denominator in (3.18b) could get very small,
and hence the a;~~ would be large. This situation is contrary to our expectation that for a closed shell HF
system the pair corrections should be small in the sense that (Uil~ [Uil~) «l. If (Ulli [Ulli) -1, perturba-
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tion theory cannot be expected to converge. If (as seems reasonable) effi-efff (0 for all i, II', the varia-
tional principle in Eqs. (3.16a) has a stable minimum. The presence of a stable minimum can, of course,
be checked in a given case.

At this point it is of interest to examine the relationship between Sinanoglu's "exact pairs'~ ' and the BG
pairs, which are the variational and perturbative analogs of each other. The "exact pairs" U~~i~ are the
lowest eigenfunctions of the equation

Q12[e I,-H0(12)-VI, (12)Q12]UII, (12)-Q12(1/&12) i[ll']12) =-e, U, (12), (3.19)

where the eigenvalue ~If~~ =([ll']12 il/r12 i Uffi~(12)) is the pair correlation energy. If the eigenvalue effi~
is known exactly, then (3.19) can be solved as an inhomogeneous integrodifferential equation. In terms of
the basis set of (3.18a), the solution is

U&&, (12)=P.g. (12)(y. (12) iQI2(1/rl2) i[Il']12/(e&&, -e. +c&f, ).

However, typically the correlation energy is a small number in the sense that

(3.20)

(3.21)

(otherwise (Uffi I

Ulled)

would not be «1), and hence, the Elf' represents a small energy denominator shift
in (3.20) as opposed to the coefficients in (3.18b). Hence, when (Uffi i Ulled) «1, Uffi=Uffi". '0 This condi-
tion is one of the conditions used by Sinanoglu to justify the variation of part of the energy in the derivation
of the equations for the "exact pairs" (the other condition was that certain kinds of exclusion effects, the
triangles of Ref. 5, are negligible). " Sinanoglu also noted the similarity between the BG and "exact pairs"
when their norm is much less than one. '

A slightly better approximation then Ut~~ to U~~i would be obtained by taking e~~~ in the denominator of
(3.20) to be ([ll )12 i(I/ri2)QI2 i UII~(12)) (and possibly iterating this result so that in the limit of self-
consistency elf "=(Pl')12 i(1/&'12)Q12 I Ufp (12))).

As discussed in this section, the perturbative BG pairs are obtained by summing only some of the dia-
grams in which two particles are excited at one time. Explicitly, we have neglected the off-diagonal-hole
contributions, These off-diagonal-hole terms arise from exclusion effects'~" namely, when a pair of elec-
trons is excited from the HF spin-orbitals ll', the Pauli principle no longer prohibits other electrons from
occupying the spin-orbitals l and l'. Hence the resulting orbital pair correlation functions become con-
nected, "as is shown in the next section, where the concept of "localized pairs" analogous to the idea of
localized orbitals" is used to discuss the order of magnitude of these exclusion effects. In Sec. IV the re-
lationship between the two-particle density matrix obtained from MBPT" and a related cluster-type wave
function are used to compare the variational ana perturbative approaches to electron correlation in the
two-electron approximation (i.e., when we only consider double excitations).

IV. EXCLUSION EFFECTS FOR THE DOUBLE EXCITATIONS

(c i(G &'&)-& iP]=(G ~&)-'6
0 ~,' dh Q.P

= Q12[e -H0(12)-V (12)Q 2]5

(n i V &

I a] = Q V (12)Q

$n iE-H0"& i&3] = 6 [e -H0(12)]Q12,

where the curly bracket matrix notation is used to denote a quantity which is the component of an operator

(4.1a)

(4.lb)

(4.1c)

Exclusion effects" begin to contribute to the energy in the third order of perturbation theory (for the en-
ergy), and are present in all succeeding orders of perturbation theory. In this section the exclusion effect
diagrams are considered in which only two electrons are excited at a given time (i.e., these are the con-
tributions from double excitations. ) The third-order-energy double-excitation exclusion-effect diagrams
are Fig. 2(b) for the pair II' g I "I"' and 2(c) and (d) for I' g I". The nondiagonal-hole diagrams in Figs. 2(c)
and (d) are often referred to as three-body diagrams. However, since only two electrons are excited as a
given time, it is more appropriate to call these diagrams three-orbital two-body disgrams, since three
ground-state HF spin-orbitals are involved. Qualitatively, exclusion-effect terms are expected to be
smaller than the corresponding diagonal-hole diagrams when matrix elements of operators like Eg~~ for
l &l' are smaller than those of K)g or E~&~&. In Be Kelly finds that these nondiagonal-hole diagrams are
not of importance. " A more thorough discussion of the order of magnitude of exclusion effects is given
later in this section.

Before evaluating the doubly-excited nondiagonal-hole diagrams, we can anticipate their contributions to
the new pair-correlation correction functions. Each of the BG pair corrections in (3.15a) contains a differ-
ent (Eo-H)-like operator acting on the

Ulled

[namely, (Gffi dh~&) '] and has a different inhomogeneous term.
We can collect these different operators into a matrix. Let n =If' be shorthand for a distinct pair (I pl'),
and define
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(4.2)

as distinguished from the c number which is the matrix element of an operator. Thus, the BG pair equa-
tions can be compactly written a's

{n l(G0~2~) ~ Ia]U (12)-Q12(1/rl2) Io(12)) =0, (3.15b)

where Io.(12)) =-
I [ll']„). (4.1d)

In Eq. (3.15b) the {U~] represent independent pair excitations due to correlation. However, the electrons
are indistinguishable (the orbitals are not), and the Pauli exclusion principle must therefore connect these
pair excitations. Let {wz] denote the pair-correlation correction functions which contain all the doubly ex-
cited exclusion terms. It will not be surprising to find the equations for these {wz}to be coupled. " Specif-
ically, if

{oI(g»)-~ Io,]={oI(G,&»)-&
I o],

(nI(G ') 'IP]=-{o.IV'"IP] n«P
then

p p{o.I(G") '
I p)wp(12)-QI2(1/~12) I o.(12)) = o,

where the two-body potential of (4.1b) now has off-diagonal components {n I V ' IP] which describe the "driv-
ing forces for the exclusion effects. "" In (4. 2) the column indices of (G&'&)-~ (and all, other matrix
operators that are used in Secs. IV and V) must match those of the function upon which it acts.
although the pairs p= ll' and p = l'l (for l «l') are not distinct, in (4. 2) we can use {n I(G&») &Ill')U'
or {o I (G ) 'Il'l]Ulq but not {ctI(G~") 'Il'l jU11 ~ in a summation over l )1'. The+ in (4. g is
over distinct pairs.

It now remains for us to compute the form of {o, I
W' IP] from the nondiagonal-hole diagrams, where an

investigation of these off-diagonal potentials gives insight into the magnitude of the exclusion effects.
There are a number of ways in which we can sum up the doubly-excited exclusion-effect diagrams. Rath-

er than treating successive orders of perturbation theory, the BG pairs can be corrected to 1st, 2nd, ~ ~ ~,
sth, ~ ~ ~, ~ order in the exclusion effects. Let wc@'= Uo, be the BG correction pairs, w~(+) be the nth-
order correction for exclusion effects, and finally the w~ in (4.2) are

(n)
Q p

Q
(4.3)

Figure 6(a) describes the contribution to the correlation energy from double excitations which are first-
order in exclusion effects. The bar vertex in this figure with ndh denotes that this is the sum of all of the
distinct antisymmetrized diagrams in which a nondiagonal-hole vertex at this time connects all possible
pairs of lines that the bar vertex crosses. The sum over all the diagrams containing diagonal-hole inter-
actions is still implied by the infinite-order diagonal-hole bar vertex in Fig. 6. Figure 6(a) has the value
[cf. (4.1a) and (3.13b)]

(o (12) I
—{o.I

Go"'
I o]{o.I

V'» IPj {PI G "' IP]—I P(12))
O. gP 12 12

(U (12) I {oI
V"

I P] I U (12))
ngP

(o.(12) II/r12 lw "'(12)),

(4.4b)

(4.4c)

where the same index, say n, in Eqs. (4.4) must be ordered in the same way in each term in which it ap-
pears, and

{n=ll'IV+'IP=l~l~)=(P(12) ll/r» In(12))Q», l or I'«l" or l"',

{ll' I
V"' ill "(-={l'l I

V"' ll "l]=
-QI2K1 „1,QI2+ Q12([ll "]12Il/rl2 I [ll')12), l' « l".

(4.4d)

(4.4e)

The sums in (4.4a, b) are over all distinct pairs o «P. [The row (column) indices on the right-hand side of
(4.4d, e) are the column (row) indices —in the same order —on the left-hand side of (4.4d, e) because "holes
travel backwards in time. "] The (p(12)ll/r„lu(12)), is just the repulsion energy (Coulomb minus exchange
contributions) between the different spin-orbital pairs o, and P, while the KllilI as given by Eq. (3.7) are
"hole scattering operators. "

P, dh
l i

[ I
[ 2. dh

I ndh

]

I

I

I

/
I

P, dh

2, dh

p, dh

P
I

I
ndh

ndh

I

FIG. 6. (a) The correlation energy to first order in ex-
clusion effects. (b) The correlation energy to second or-
der in exclusion effects. Again a sum over all hole and
particle indices is implied.
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(4.6a.)

(n(12) I 1/r12 I &u '"(12)). (4.6b)

It is clear that the higher-order terms in exclusion effects represent successive corrections of the form

(n l(G0 ) In)w (12)- P (n I V IP)w
" (12) =0,

pgn p

where the contribution to the double-excitation energy, nth order in exclusion effects, is just (n(12) I 1 /
rl2 Iwn(n)(12)).

If we interpret, e.g.,
p (n I

V"'
I p)(p I GO'" I p')

n+P
in (4.4a) and (4.6a) as a matrix multiplication of the components of the operators V"' and GP' (with column
and row indices ordered in the same way and sums run over distinct pairs) then the summation implied in
the first line of Fig. 7 is just the diagrammatic Born series expansion of the double-excitation energy

E2=+ E2 =p (n(12) ll/r12 Iw (12)) (4.8a)

(4.7)

(4.8b)p(n(12) I (I/rl2)(n I
G~'

I p)(1/r12) I p(12)),

which is still the sum of individual pair correlation energies E2~. The second line in Fig. 7 indicates the
diagrammatic Born series expansion of (4.8b) in orders of ordinary perturbation theory.

Thus the "complete pairs" w (12) are defined by the equations

pp(n l(G ') '
I p)wp(12)-Q12(1/r12) In(&&)) =0, (4.9a)

or equivalently,

S~p(n IE-H0~'- V'~
I p)w. (12)-Q12(1/r12) I n(12)) = 0.

Equations (4.9) are coupled linear inhomogeneous equations which can be solved variationally from the
functional

(4.9b)

Equation (4.4b) is a manifestation of the so-called "2n+1 rule of perturbation theory, "~' and here indi-
cates that a knowledge of the pair correction functions to nth order in exclusion effects enables the evalua-
tion of the double-excitation energies to 2m+1 order in the exclusion effects.

Comparing (4.4a) and (4.4c) using (3.13b) gives the equations for w "' as

(nl(G0~') 'Intw "'(l2)- P (nl V"'IP)w '0'(12) =0, (4.6)
p~n p

which is a set of linear inhomogeneous eQuations which could be solved variationally as in the case of U~"'
and Un =wne' in Eqs. (3.6) and (3.16a).

By analogy with the transition from Eqs. (3.9) to (3.11), Fig. 6(b) has the value

(n(12) I
—(nIG ~'In)(nl V 'IP)(PI G 'IP)(P I V 'ly)(y IG ' 'ly) —ly(I»)0 0 0 y„

E2((w )) =5~ [(n(12) I(1/r12)Q12 lw (12))+(w (12) IQ12(1/r12) In(12))

-Q (w (12) I(nl(d")-'IP)lw (12))], (4.10a)

since (4.9) imply that

5E2/6w = 0, all y. (4.10b)r
Equations (4.9) are, of course, equivalent to the Zn 0 of (4.7) where wnt '&=—In(12)). It should be noted
that the variational principle obtained from (4.10) represents a variation of the total correlation energy,
i.e. , the stationary value of E, is E, (including only double 'excitation contributions) as opposed to (3.16a)
in which the individual pair correlation energies are varied independently. This variational principle is
also obtained by varying the cluster wave function in (2.10c) in the expression (gCL I II- E HF I JCL) with-
out any normalization constraints other than requiring (pCI, I 40)= 1. The HF wave function is invariant

O
R R n n ii+ 8 V+~~ ~~+'' + ~ ~

/'X
2 I = t 2.dh I + Figure 6(a} + Figure 6(b}+ ~ ~ ~

V V V V

FIG. 7. Diagrammatic Born series for the doubly ex-
cited correlation energy E2 to all orders in exclusion ef-
fects. The first line gives the Born series in orders of
exclusion effects, while the second line gives the series
in orders of ordinary perturbation theory. The series
for the propagator G is obtained by removing the first
and last vertices.
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under a unitary transformation among the HF spin-orbitals of the wave function. Such a transformation
induces the trans formatl~o~the-HF-pairs-

i~{12)&=P f~ i Ti~}la(»)&,

where (n l T I c.}is unitary. Applying P~(a l T in} to (4.9a) and defining

u (12)=5 (nlTlo. }w (12),

(~ i(G")-' iH}= P $~ i Tin}(e i(G'")-'ia}/Pi T-'
i y}

~, p

(4.11b)

(4.1le)

give'4

5 &+~i(G")- ii3} &(12)-q,2(1/r, 2) in(12)& =0. {4.11d)

[The unitary transformation could likewise be applied in E, in (4.10a).] In particular, (a i T iu} can be
chosen such that the l n(12)& have definite spin and spatial symmetries. " However, a much more interest-
ing transformation might be expected to exist, namely, a unitary transformation which completely decou-
ples (4.11d), i.e., fa i(d")-~

l p}=(ni(G'")-' i H}5op where (n l T l n} may in general be an operator. The
pairs l c(12)& could be termed "localized HF pairs" in this case by analogy with the concept of localized
orbitals. " From {4.4d) we see that the exclusion effects are qualitatively proportional to the repulsion
(Coulomb minus exchange) between the different pairs. The localized pairs would therefore qualitatively
correspond to pairs which are noninteracting with each other. Since {G~') ' contains the operators EIIII,
XII, etc. , it would not be advantageous to attempt to diagonalize (G ')-' as we diagonalize ordinary ma-
trices. However, if we qualitatively expect that both the parts in (4.4d) contribute in the same manner,
these localized pairs should be related to the pairs that diagonalize the constant terms in (4") ', namely
the matrix e~6~p-(o, ll/r12 ig).

The diagonalization of (G~')-' would imply that we can solve variationally for each of the pair functions
and energies independently. If exclusion effects are significant only between some pairs (e.g., possibly in
delocalized systems), then only blocks of (G'@) ' need be "diagonalized. " In order to make a rough esti-
mate of the ratio of exclusion effects to diagonal terms, we assume that the overlap between two pair func-
tions (w~ iwp& is appreciable (compared to (wo lw~& o (wplu p&) when the interaction between the HF pairs
is also appreciable, i. e. , when the HF pairs can get near to each other. Thus, qua). itatively,

exclusion energies (w i(pll/r 2 le& iw & (pll. /r ln& ,

'~

diagonal energies (w l(n I 1/r12 io& [w & (n l1/r12 i n&
(4.11e)

then the two-particle reduced density matrix'F56 "for this wave function can be written after some rear-
rangement in the form

where a typical energy is chosen to represent both types of energies. In Be, Kelly found that the diagrams
which contribute to the energy to first order in exclusion effects'~ are very small. " This is to be expect-
ed since Be has the strongly localized (Is)' and (2s)' pairs.

So far in Secs. III and IV the correlation energy as calculated by perturbation theory in the double exci-
tation approximation has been discussed. It is of considerable interest to compare these results with
those obtainable from related cluster-type wave functions and the variational theories of Sinanoglu and
Nesbet when these later theories are also restricted to the double excitation approximation. These theo-
ries are easily compared by using two-electron density matrices.

If we insert the "complete pairs" which are the solutions to (4.9) into the normalized double-excitation
cluster-type wave function

|iC~(w) = v(w)a[go+2-'"5 q w ], (4.12a)

where
v(w) '=1++ (u lw &, (4.12b)

I'CL(12; I 2 ) =
2 INC&(1, 2, ~ ~, X)yC~+(I', 2', 3,",X)d(3, ~ ~ ~, X)

HF CORR

where in operator form

I'HF(»i 1'2') =r l a(»)&(Q(1'2') l,

(4.13a)

(4.13b)

(4.13e)

(4.14a)

and l CORR is written in terms of the fw~} and the ground-state HF spin-orbitals. From the definition of
density matrices ' 56-'~ if

e =QP(i)+ P F7(iq),
i i&2
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then (gCL!H!gCL}
= Tr(H I'CL),

where H =(N-I) [H(1) +H(2)]+H(12)

(4.141)

(4.14c)

Note that (4.13a) implies that

H~ H(V-I)
CL 2) 2

since gCL is normalized, and hence Tri'CORR =0.
MBPT provides an explicit perturbative expansion for the two-electron reduced density matrix in addi-

tion to an expansion for the wave function. The rules for the diagrammatic expansion of the two-electron
density matrix will be presented in a future work by Reinhardt, "~"but these results are used to investi-
gate this density matrix within the model of one-, two-, and three-particle excitations and to compare this
with the form of the cluster-type wave functions as used by Sinanoglu and others. ' "

If we define a two-electron density matrix I'MB(w) '~ such that

"[(H — IIF}'MB( )]=
2

(4.15a)

where E, is the correlation energy of (4.8), then

MB(")=
~IAAF

' CORR(~) (4.15b)

where the I'CORR in (4,.15b) and (4.13b) are identical provided they are constructed with the same sets of
pair functions.

Equations (4.13b) and (4.15b) differ only in the presence of the normalization term v(w), and hence, in
the language of the cluster-type wave functions, (4.15b) contains some 4-, 6-, ~ ~ ~ body effects which are
necessary to cancel out the normalization constant v(w)'. Since no N-electron wave function is apparent
which yields the density matrix I'MB, this reduced density matrix is not necessarily N-representable„and
hence F., is neither a rigorous upper or lower bound to the true correlation energy. However, the corre-
lation energy from the wave function!! CL(w) in (4.12), E,v(m)', is an upper bound to the correlation energy
of the N-electron system.

As discussed in Appendix A, the exact wave function is composed of S-type unlinked clusters [when we
use the many-body normalization which is defined after (2.10)], and once approximations to the exact pair
functions such as the "complete" or BG pairs are calculated, some of the contributions from 4-, 6-, ~ ~ ~

electron excitations can be included in terms of these pair functions. 4' The major effect of these S-type
unlinked clusters is probably just to reduce the size of the normalization constant (4.12b) when it appears
in the correlation energy for such a cluster-type wave function. 4' Equivalently, some of the 4-, 6-, ~ ~-

body energy diagrams MBPT can be expressed in terms of the pair functions. ~'~"~'j Some of these dia-
grams are the ones that Kelly calls EPV (exclusion principle violating) diagrams, and they arise from the
linked-cluster factorization in MBPT."

If exclusion effects are neglected and the BG pairs are used, then I'CpRR(U) can be written as a sum of
I'CORR dh(U) and I'CORR ndh(U) where

R
HF CQRR;dh 2dh'

(4.16)

and E2dh is given by (3.14) and (3.12b). However, E2dh is again not necessarily an upper or lower bound

to the correlation energy and neither is E2dhv(U)'! A rigorous upper bound is obtained from Tr[(H
-EBF)I'CORR(U)]v2(U) which contains energies to first order in exclusion effects. ' '

When the complete pairs are small, i.e., (w~!m~) « I, I CL((w~)), and I'MB[(w~)) are roughly equiva-
lent. Furthermore, when exclusion effects are also small, the complete pairs, BG pairs, and "exact
pairs" are also roughly equivalent. Thus the correlation energies calculated from any of these sets of
pairs, with or without the first-order exchusion energies, a normalization term (4.12b), or a smaller
normalization due to S-type unlinked clusters, should be roughly the same. '

Sections III and IV have dealt with the description of electron correlation in closed-shell atoms and mol-
ecules ' in the double-excitation approximation. Some mention, however, was made of the $-type unlinked
clusters which give some information about higher excitations from the HF ground state." The double-
excitation approximations have given very good results when applied to small atoms, and it would be a
very satisfactory situation if this approximation would suffice for larger systems (possibly including the
use of S-type unlinked clusters), since this would mean that all of quantum chemistry could be reduced to
a set of one- and two-particle problems for a given state of an atom or molecule. (For a system whose ap-
proximate single-determinantal wave function is built up from non-HF spin-orbitals, or for a single-
determinantal restricted HF wave function for an open-shell system, we should, of course, expect orbital
corrections to be of importance in order to obtain fairly accurate wave functions and correlation ener-
gies. 32~") If this is in fact the true situation, then we have learned that the singly, triply, ~ ~ ~, excited
functions in (2.10a) and (2.10b) are essentially negligible. If, on the other hand, the double-excitation ap-
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FIG. 8. The contribution to the fourth-order correla-
tion energy containing single excitations summarized in
terms of bar vertices.

proximation proves not to be an entirely adequate description of some atoms and molecules (i.e., possibly
in delocalized w systems), these single and triple (and possibly higher) excitations would be the next Iogi
cal candidates to investigate. In the next section, the single and triple (S-type liMed) excitations of (2.10a)
and (2.10b) are investigated. Our aim is again to obtain some qualitative and physical understanding of the
role of these one- and three-particle cluster functions, i.e., their effect on the correlation enegy and the
modification they induce on the resulting pair-correlation correction functions.

V. EFFECTS OF SINGLE AND TRIPLE EXCITATIONS

First the effects of including the possibility of single excitations in addition to double excitations is con-
sidered. The treatment of both double and triple excitations is analogous to that for single and double ex-
citations and will be shown to have the same kind of physical effect on the correlation energy. Both single
and triple excitations first contribute to the energy of a closed-shell HF system in the fourth order of per-
turbation theory and are present in all higher orders. By single and triple excitations we mean that during
some time interval in the MBPT diagrams for the energy one or three electrons, respectively, are excit-
ed out of the "HF sea, "or equivalently, that singly or triply excited configurations are contributing to the
energy. It should also be noted that quadruply excited states contribute to the energy in the fourth order of
perturbation theory. However, these terms occur as matrix elements of S-type unlinked clusters, i.e.,
they can be expressed solely in terms of the first-order pairs defined in (3.5)."~4'~'o~" As discussed in
Appendix A there are four-electron diagrams of this nature in all higher orders of perturbation theory (as
well as 6-, 8-, 10-, ~ ~ ~ electron diagrams) and these are then expressible in terms of the "complete
pairs" of (4.9) or more approximately in terms of the BG pairs of (3.10).

The one-body excitations could be treated in successive orders of perturbation theory. However, it i's
just as easy to correct the correlation energy of a closed-shell HF system to 1st, 2nd, ~ ~ ~, nth, ~ ~ ~ order
in the single excitations. Using this method, the summation to all orders of single excitations is analo-
gous to that in Sec. IV for the exclusion effects. The method of assigning "orders in single excitations" is
arbitrary, but is chosen below to correspond to orders in a perturbative expansion of the final equations.

The lowest-order energy diagrams in perturbation theory (fourth order) for a closed-shell HF system
containing single excitations are summarized in Fig. 8. The bar vertices on the left-hand side of the equal-
ity of Fig. 8 which separate the intervals of single and double excitations denote the sum of all possible dis-
tinct antisymmetrized vertices which can change the number of excited electrons between one and two.
Both diagonal- and nondiagonal-hole lines are considered, since the exclusion effects can be neglected by
dropping some of the coupling terms in the final equations. In order to generalize the diagrams in Fig. 8
to infinite order in perturbation theory, it is convenient to define the one-particle propagator {II

G"' iE') by
Fig. 9. The diagrams in Fig. 9 have values (when they appear in an energy diagram) which form the Born
series

{If0"IE')=~-H (1) 6EE'+e -H (1){EiV"'ll') -H (1)0 0 gl 0

or

+E H (1){Ei~"iE")
H (1){E"tV'"tE') '

(1)+ ~ ~ ~

l 0 )e Q E1 Q

{Ii(G"') ' iE') =QI[eE-H0(1)+KEE(1)Q ]6,+Q K, (1)Q (1-5,)
= Q1[eE-H0(1)]5EE,—{E i

V"' lE').

(5.1)

(5.2a)

(5.2b)

Note that H0(1)-KEE(1) in (5.2) describes the Hamiltonian for the motion of a single electron in the field of
the remaining electrons which are in their ground-state HF orbitals.

The top bar vertex in Fig. 8 can be shown to give a contribution which is equal to the matrix element of

tt
i&l = + + +I I+

It

FIG. 9 The diagrammatic series for the one-particle
propagator 6 ~ . (Sum over all hole and particle indices. )
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the operator (putting in hole indices)

(tt' IV'&» It}=q12(1/r12-Et, t,)2 '~~(1-F12) it(2))ql,

(rt I 8 "it }=q,2(1/r, 2-1f„)2-&~~(1-~,2) it (2))q, ,

(tt'I V" "It"}=-q Z „,2-'"(1-t ) it(2))q,

(5.36)

(5.3c)

(5.4a)

(5.4c)

(as well as introducing an extra energy denominator). The bottom bar vertex yields

(~
11

I
P(1~2& ittt }—(tt I

I
P2& && It SP' {5.3d)

In terms of this one-body propagator and the potential connecting single and double excitations, the energy
to first order in single excitations as represented in Fig. 10(a) is

(a(12) I(1/& )(a I G~&V"&"d'&Vu&2&G"'IP}(1/& ) IP(12))e, 8 12 12

(w (12) i(a IV'»G&»V" 2&IP} (12))
QpP A P

(5.4c)

t„(w (12) l(a i V ~" It "}Iw "'(1)),

where the indicated matrix multiplication is to be performed between the components of the operators G
and V. The first-order single-excitation functions defined by (5.4c), wtu&, are equivalently the solutions to
the linear coupled inhomogeneous equations

Q, ft i(G"') 'it'}w "'(1)-P (l I
V"&" ia}w (12) =0. (5.5)

(5.7)

(5.9a)

If exclusion effects are to be neglected then u ~ is to be replaced by the BG pair U~, and only the diagonal
components of (G&&)-& and F42& are to be taken, i.e., the equations become uncoupled. Equation (5.5) can
be solved variationally in the same manner as described in {4.10) for wa or in (3.16) for Ua if exclusion
effects are to be neglected.

Define the two-particle "self-energy" operator A, which contains a sum over all one-particle states
which are orthogonal to the ground-state HF spin-orbitals by

fa IA IP}=(a i V *'&Gu& V' "iP} (5.5)

The energy to second order in one-electron excitations which is presented in Fig. 10(b) has the value

(a(12) i(1/r12)(a I
G@&A1G~&A1G~'&I p}(ljr12) I p(],2)),n, P

and could be calculated from knowledge of the twt"&} (so can the third-order term) as well as providing a
definition of wttm'. If the diagram in Fig. 10(c) denotes the sum of the energy to all orders in one-electron
excitations (including the "zeroth order" energy of Fig. "I which contains only double excitations), the re-
sulting Born series may be summed ta give

E2~ 1
=p & 2~El =5~ (a(12) il/r12 Iy (12)) =p p(a(12) I(1/x12)(a IG&&1 'Ip}(1/r12) ip(12)), (5.8)

where y (12) =Fp&a i Gal" I p}(1/~12) I p(12)»

and ta I(G&&1~&)-' IP}=(a l(G ') '-Al IP}.

Equation (5.9a) is equivalent to the inhomogeneous integrodifferential equation for the new pair functions y

Pp$a i(G~,»)-' IP}yp(12)-q, 2(1/~») i a(12)) =0. (5.10)

Again exclusion effects may be neglected by taking only diagonal components of all the operators in
(GgElt2&) '. It should also be noted that the total correlation energy can be written as a sum of individual
pair-correlation energies. [The exact pair-correlation energies are determined by a, knowledge of the
pair-correlation functions &exacta that occur in the exact wave function by (a(12) I 1/r] 21U&xacta(12)). ]
As should be obvious, (5.10) could, in principle, be solved variationally in analogy with (4.10) for the w

p, p
L

4/ V'
/ X

1
/

z l

V'

A A
XJ 4/

/ X
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Xj V
/ K

L
/

/X
I 2

&&/ V
b

V V FIG. 10. (a) The correlation energy to first order in
single excitations. (b) The correlation energy to second
order single excitations. (c) The correlation energy
summed to all orders in single excitations.
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(5.12)

+Qp&y (12) I-{n l(G ') '
I p} ly (12) ) ]+QE ~&yE, (1) (-{l'l(G"') '(l}(yl(1)), (5. 13a)

(5. 13b)

The only difference between (5.10) and (4.9a) is the presence of the integral operator A, in (5.10). This
two-body operator is also the only new addition to the expression for the pair-correlation energy in the
last term of (5.8). Since A, contains a sum over all one-electron states outside of the "HF sea, " it repre-
sents an effective two-body operator describing the virtual de-excitation of an electron due to the mutual
correlation of that electron with another electron. Just as (3.17a) and (3.18a) provide the "spectral expan-
»&»" of {n I

Go&2&
I n}i t e i {n I Go(2 In}=Xi (Itin(12))&&Ein(12) I/(en-&in) &

we could»so define a spectral ex-
pansion of {n I

G"'IEI} in terms of the eigenfunctions of (G@&) '. The "self-energy" operator A, then quali-
tatively just gives energy shifts in the denominators in the spectral expansion of {n (GSE1 (&8} over what
they are in {n(G~& (EI}. Provided A, is "small" compared with (G&'&) ', the single excitations will have a
negligible effect on the pair functions, i.e., y~ =M ~, and the pair correlation energies.

In its present form (5.10) is not easily soluble since A, contains a sum over states (or more precisely
it contains the operator G' ' for which we cannot easily write a functional form). We can remove this self-
energy operator from (5.10) by defimng the orbital excitation functions

y (1) =P {E I G»(E }{E i V i&»(n}y (12) (5.11)
P

and we obtain coupled E&gegy inhomogeneous equations for the pair and orbital functions

Q {l'((G"') 'Il}y (1)-Q {l'I V"& 'In]y (12) =0,
E E e n

+8{n((G'2&)-'(P}y (12)-P,{n(V" |&(E}y,(1)-q, (1/r, ) (n(i2)) =0.

Equations (5.12) no longer contain any self-energy operators and can be solved variationally since the pair
of equations

F2 1[yl, y ]=+ [(y (12) (@12(l/r12) in(12))+(n(12) I(1/r12)&I&12 ly (12))

+QE((y (12) ({n (
V& &» (E}(yl(l)) +(yl(1) ({l(

V&'&2&(n} (y (12)))

are equivalent to (5.12). Equations (5.13a, b) correspond to a variation of «f&CL IH-EHF ((t&CL) where &E&CL

= 6[&&&0+QEp~yE+ (2) "'Qnpnyn] and no normalization constraint is imposed other than requiring that
&&E&CL &40) = 1. The stationary value of +2 SE1 is the total correlation energy of (5.8). However, in varying
only part of the energy expression from this cluster-type wave function, we can now enumerate which of
the terms in perturbation theory we are actually evaluating. Again the neglect of exclusion effects enables
the decoupling of some of the equations in (5.12) and enables the modified variational principle to corre-
spond to a variation of individual pair-correlation energies. The functional F2SEy still is very similar in

structure to the functional used in ordinary second-order variational-perturbation theory (3.6), and hence
is amenable to solution. The couplings can also be handled by using iterative or perturbative techniques,
and the pair functions {yn}may be expanded in a correlated basis set if desired. As in the discussion of
the BG and "exact" pairs in (3.19) to (3.21), the solutions to the stationary-state equivalent of (5.12) should
be very similar to the solutions to (5.12) since pair-correlation energies are small. in the sense of (3.21),
etc.

The treatment of the three-electron excitations follows in the same manner as the above discussion of
the one-electron excitations. Letting s = ll'l", where the indices are distinct (l & l', l" & l, l') and their or-
der is preserved throughout an equation, we define the three-body propagator {s(G'" (t}by

{s((G &9&)-i it}=[a -H0(123)]@1235 t-{s(V&s&(t], (5.14a)

where e =el+el, +el„(s= ll'l"),
8 I

9„,='Q,Q,Q„
{s(V&'&is}=

@123 ([El']12((1/r12) ([ll']12) + ([ll"]12((1/r 1 ) I [ll "] )

3
+ &[E'E"112i(1/, 2) I [E'E"], &+ Z —@,23- Z Z EE';;(l)Q, 3i&j=l ij i=1, 2, 3 lCs

{nl ( V&s& lnE'}= &I&123 I g & [ll']12(—([ll']12)- g Ef E,E(i)q123 ~, Ee E',

{nl (V&~ & IPE}= &&&1~~&P(12)(1/r,~ I n(12)), n A P = 0,

{sIV"&It] =0, sa t=0,
and {s(V"'(t}is defined only when s (and t) refer to distinct spin-orbital triplets, e.g., s 0 ill'.

(5.14b)

(5.14c)

(5.14d)

(5.14e)

(5.14f)

(5.14g)



The bar vertex which couples two particles to three particles introduces the operator ~(3~2) where

3
1

3
{ll'l" I «s~m& I 11'j= Q P ——g g E (t)— " ")

I
l"(3))Q

~ +f a ~ o

y j E EI L E +3 12

3
{ll'l" I V('~'&Ill"j= -Q Q K „, ,(') " ") Il "(3))Q, 1"'&l, l', l",

123 .
1

l"'l'
~3

12'

(5.15a)

(5.15b)

{ll'l" IV( ' ) ll'"l' }=0 l"' l Ol l' or l" (5.15c)

The correlation energy to all orders in the triple excitations (including the "zeroth-order" energy of Fig. 7
which contains only double excitations) is again obtained by summing a Born series and is

=2&( ) / ( )&

= Z & (12) I(1/ ){ IG, "'IP}(1/ „)IP(»)&, (5.16)
n, P

where {nI(G8E3('&)-'IP}={nl(G'I&) '-A3 IP},

I Pj = {n I I& (Rps &G (8 &P(Sq2 &
I P}. (5.IVb)

The new pair correlation correction functions {snj are the solutions to the equations

Zp{n I(GSE3"') 'I
pj's p(12)-QI2(1/r12) In(12)& = o

(5.1Va)

(5.18)

Equations (5.18) contain the self-energy operator A, which contains a sum over three-electron states out-
side of the HF sea, and represents an effective two-body potential due to virtual excitations of a third elec-
tron as a result of its interaction with the pair of correlating electrons. A.3 is thus a polarization potential
for the correlating pair of electrons.

In order to "solve" (5.18), we must introduce the three-electron-correlation correction functions ss(123)
by

z (123)=gt {sIG"&Itj{tI«' &IP}z (12)

giving the coupled linear equations

Z {nI(G"&)-'Ipjs (»)-Z {nIp'""Isjs (»3)-Q»(1/r»)In(»)&=o,

gt{s I (G &3&)
~ it}st(123)-g {s I « "Injz (12)= 0;

(5.19)

(5.20)

(5.2 lb)

If we define the corresponding pair functions, they have the two-body self-energy potentials due to virtual
excitations and de-excitations of an electron. Introduction of one- and three-particle functions as in (5.11)
and (5.19) leads to a set of coupled linear inhomogeneous equations for the one-, two-, and three-particle
functions which can be solved variationally in the same manner as the simpler approximations. The pair
correlation energies in (5.2la) calculated from the solutions to these equations contain all contributions to
the energy through fifth order in ordinary perturbation theory (as well as what we physically expect to be
the most important terms in all higher orders of perturbation theory), provided we include the four-elec-
tron S-type unlinked cluster contributions to the energy, '~

The process of summation of the MBPT diagrams could be continued to give the exact equations for the
cluster functions. '4 Although the equations defining the exact pair functions (i.e., the pair functions that
appear in the exact ground-state wave function) are not presented here, there is one aspect of these equa-
tions which can be anticipated from the discussion already given: these equations must be of the form

Qp{nl(G ) -A tip}p t (12)-Q12(1/r12) I p(12)) =0, (5.22)

where inexact is a self-energy operator which describes all of the excitations of the system out of the HF

and the discussion following (5.12) as to neglect of exclusion effects, variational principle, etc. , is also
applicable to (5.20). Again, it should be noted that {sl(Gs&)-'Isj is just the (Eo H)eff for t-hree particles
moving in the field of the remaining electrons, which are in their ground-state HF spin-orbitals.

Since As contains sums over triply excited states (with corresponding energy denominators) while A~ con-
tains sums over singly excited states, we should qualitatively expect that IA.3 t & lA~ I in terms of their ef-
fect on the spectral resolution of GSE+'. The single and triple excitations can both easily be incorporated
together with the double excitations (neglecting interactions between the single and triple excitatiqns) by
taking

E
2 SE1 3 =gp&n(12) I (1/r12){n I G8EI 3'" I pj(l/r12) I p(12)), (5.2 la)

where {n I(G '&) 'I pj={n I(G&'&)-&-A -A I pj.SE1+3 3
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sea. Knowledge of the operator inexact implies a knowledge of the exact wave function for the system.
However, since a calculation of the true pair-correlation energies requires us only to have the (Uexactg,
a reasonable semi-empirical form for A. exact would enable the evaluation of the correlation energy from
two-electron equations only. Any pair functions obtained with a semiempirical self-energy operator could
be put into a cluster-type wave function with S-type unlinked clusters and possibIy some extra variational
parameters as discussed inRef. 42 to obtain a rigorous upper bound to the correlation energy for the pur-
pose of comparison. It is hoped that the highly accurate calculations that are now being made on smaIl sys-
tems will help to establish the structure of Ae»ct in a manner that would be helpful for semiempirical
work. The formal structure of A.exact can be obtained from the results of another paper, ' where the gen-
eralization of this work to the case in which the zeroth order wave function is a single determinant of ar-
bitrary orthonormal spin-orbitals is also given.

VI. CONCLUSIONS

In using perturbation theory to approach the
problem of the description of electron correlation
in atoms and molecules, (if we start from a closed-
shell HF wave function as the simplest example'2)
contributions to the energy, wave function, and den-
sity matrix can be classified according to the or-
der of perturbation theory in which they appear and
according to the type of terms they represent.
Thus, terms in the perturbation expansion can be
separated into contributions from singly, double,
triply, ~ ~ ~ excited configurations, those which do
or do not contain exclusion effects, "those which
do or do not contribute to S-type unlinked clusters,
etc. It is hoped that for a particular class of
terms the contributions from successive orders of
perturbation theory are monotonically decreasing
beyond the first or second orders in which they
first occur. However, contributions from differ-
ent classes in the same order of perturbation theo-
ry may differ greatly in numerical orders of mag-
nitude. '4 Therefore, in order to bring perturba-
tion theory in line with orders of magnitudes, we
could assign order parameters to each of the class-
es of terms, and take the products of the order of
the class with the order of ordinary perturbation
theory to arrive at an order parameter for an
"order-of-magnitude-oriented form of perturbation
theory. " In practice, however, it is much more
physical to order classes of terms and sum terms
of a given class to all orders of ordinary Rayleigh-
Schrodinger perturbation theory This type of sum-
mation thus is equivalent to a physical model.

MBPT is a convenient tool to use in the investi-
gation of different models. Because of their pic-
torial nature, diagrams are easily classified, and
terms in a particular class are easily found to all
orders of perturbation theory. In calculating the
correlation energy of Be and the oxygen atom, Kel-
ly found that certain classes of terms were domi-
nant and approximated these terms to all orders of
perturbation theory. ' " Diagrams in MBPT are
evaluated as sums over states using a complete
set of HF spin-orbitals as a basis set. In this form
it is difficult to compare models in MBPT (i.e. ,
summation of certain classes of terms to all or-
ders of perturbation theory) with models which are
expressed in terms of a certain kind of wave func-
tion or an approximate Schrodinger equation. How-
ever, sums over states can always be related to
the solution of differential equations, and the mod-
els discussed in this work are those which, within
the framework of MBPT, most closely resemble
the theories of Kelly, Sinanoglu, and Nesbet;

thereby enabling a comparison between these meth-
ods and providing insight into some of the correc-
tions to their models.

A generalized form of perturbation theory in
which some of the models presented (e.g. , the BG
pairs) naturally form the first aPProximations is
presented in another paper. ~' In this work the con-
tributions to the correlation energy, wave function,
and density matrix of an N-electron wave function,
which is initially approximated by a closed-shell
HF wave function, are examined in the double-
excitation approximation as well as in approxima-
tions in which single and triple excitations are al-
so present.

A subset of all the diagrams contributing to the
correlation energy are summed to all orders in
perturbation theory. This result is shown to be
equivalent to that which can be obtained from
knowledge of the Bethe-Goldstone (BG) pairs as
defined by Sinanoglu. These BG pairs, which are
the solutions to uncoupled Linear inhomogeneous
integrodifferential equations, describe the corre-
lation of a pair of electrons in the field of the re-
maining electrons which are in their ground-state
HF spin-orbitals. Since these BG pairs along with
approximate pair correlation energies can be ob-
tained by varying part of the energy of a simple
cluster-type wave function, such a variation of
part of the energy is equivalent to the summation
of certain classes of diagrams in MBPT. When
these BG pairs are small, .as Sinanoglu has also
noted, they are very similar to Sinanog™lu's "exact
pairs" which are the eigenvalue equivalents of the
BG pairs. The pairs that Nesbet calls BG pairs
are identical to Sinanoglu's "exact pairs" when the
latter are expanded in an orbital basis set and or-
bital excitations are omitted from the former.
Knowledge of the BG pairs would enable the evalu-
ation of the majority of the diagrams calculated by
Kelly, including some of the higher-order EPV
diagrams which are parts of S-type unlinked clus-
ters.

The mathematical discussion of the coupling be-
tween the pairs and between the triple and single
excitations leads very naturally to the physical
concepts of localized orbitals and "self-energy" or
"polarization energy" contributions.

While the equations derived here (as well as the
higher-order approximations which are presented
in another work"~'4) could be solved by expansion
in a correlated basis set, some workers in the
field believe that orbital expansions are more con-
venient at present. It is obvious that it is impossi-
ble to do a complete Cl calculation (i.e. , exactly
solve Nesbet's N-body Bethe-Goldstone equation).
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In fact, Nesbet has used secular determinants on
the order of 2000 by 2000 in order to calculate
what he calls BG pairs. It would be more advanta-
geous to solve a number of smaller problems than
to attempt to approach a complete CI calculation
(e.g. , rather than adding triply excited configura-
tions to those used in Nesbet's BG pairs, we could
attempt to solve a smaller problem within the
space of the triply excited configurations alone),
and then we could correct these simpler problems
by some iterative technique. Thus, for instance,
we could solve for the "complete pairs" of (4.9a)
by first obtaining the simpler BG pairs of (3.15a)
and then iterating these results in (4.9a). The ma-
trix that must be inverted to solve (4.9a) directly
is roughly N(N-1)/2 times the size of the matrix
necessary to obtain the BG pairs for a given size
of basis set. The single, triple, ~ ~, excitations
can also be approached by iterative techniques.

VII. ADDENDUM

After this work was completed, an interesting
article by L. Szasz and J. Byrne" appeared and
deserves comment with regards to the discussion
presented in this paper. Their calculation is for
the Be atom where they formulate what we call
generalized configuration interaction in Ref. 33.
As discussed in Sec. II, the pair functions used by
Szasz are orthogonalized to the ground-state HF
spin-orbitals in such a manner as to include the
single excitation functions in the pairs. They con-
sidered only the (ls)' and (2s)' pairs in this case.
First Szasz and Byrne (SB) varied the energy from
each of the pairs independently. With this choice
of orthogonalization to the HF ground-state orbit-
als, the resulting pairs are identical to Nesbet's
BG pairs, "except that a correlated basis set was
chosen by SB. It is interesting to note that SB's

results for the correlation energies are identical
to those of Nesbet to within 0.001 a.u. ; however,
SB used only 10 parameters ior the (1s)' correla-
tion energy and 16 parameters for the (2s)' corre-
lation energy, while Nesbet used on the order of
1000 configurations for each.

What is equally interesting is that, again to
0.001 a.u. , the results of Nesbets' and SB are iden-
tical to those of Geller, Taylor, and Levine (GTL)"
who calculated the same pair functions, but omit-
ted the orbital excitations (i.e. , Sinanoglu's "exact
pairs"). When SB recalculated the correlation en-
ergies obtained from the wave functions of GTL
with and without the single excitations, the differ-
ence in the correlation energy was on the order of
1% of the correlation energy, or on the order of
0.001 a.u. which is in line with Sinanoglu's discus-
sion of the single excitations for Be.4 SB point out,
however, that their choice of orthogonalization of
the pair functions requires the evaluation of fewer
integrals.

When SB calculated the total correlation energy
(a rigorous upper bound) from a wave function
which contained both (ls)2 and (2s)' pairs, i.e. ,
when (1s)2-(2s)' exclusion effects were included,
the total correlation energy was decreased in ab-
solute

magnitude

by 0.003 a.u. This is not in con-
flict with the qualitative expectation in Sec. IV that
such exclusion effects should be small for Be.
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APPENDIX A' S-TYPE UNLINKED CLUSTERS

There has been some confusion in the literature
concerning the properties of S-type unlinked clus-
ters" (e.g. , their contribution to the linked cluster
energy of MBPT"): Much of this difficulty is due
to the semantic problem already discussed. " In
this appendix we give a brief discussion and criti-
cism of the literature on this subject, and also
present a few examples which are sufficient to il-
lustrate the properties of S-type unlinked clusters
referred to in the main body of the text.

It should be noted, first of all, that the MBPT
expansion for the wave function (2.16) can natural-
ly be separated into the S-type cluster expansion
since the right-hand side of this equation contains
some diagrams which are unconnected, but the un-
connected parts each have at least two (one parti-
cle and one hole) external lines. Since there are
diagrams in which these disconnected parts occur
with all relative time orderings, the time integra-
tions Icf (2.14) and (2.15)] for each of these uncon-
nected parts can be performed independently.
These diagrams therefore contribute to S-type un-
linked-cluster orbital correlation functions. ' ~

One simple example of this property is the already

well-known result"~" that the second-order quad-
ruply excited cluster functions can be expressed
entirely in terms of first-order pair functions.
This result can immediately be seen by writing
down the wave function diagram for the quadruply
excited part of the second-order wave function:
This diagram is simply an unconnected diagram
containing the, vertex in Goldstone's' Fig. 10 twice.
(The two vertices are at different times and con-
tain no hole or particle indices in commpn if anti-
symmetrized vertices are used. ") Since this dia-
gram occurs with the two vertices in both relative
time orderings, the time integrations factor, and
w'e obtain the above stated results.

Yaris and Musher ' have had the semantic diffi-
culties discussed in Footnote 36. They essentially
show that S-type unlinked clusters do contribute to
the energy in ordinary Rayleigh-Schrodinger per-
turbation theory (independent of any form in which
this perturbation theory may be expressed), and
furthermore they demonstrate what is probably the
dominant contribution. For instance, the pair en-
ergies 8yf which appear in Eq. (18) of their paper
and are defined in their Eq. (19) contain the denom-
inator 1+ (usaf lug&). Since we can imagine calculat-
ing these pair functions by perturbation theory,
Eq. (19) is the ratio of two power series in the per-
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turbation to the HF Hamiltonian. The linked-cluster
energy of MBPT written in any of its forms'0~38 is
a single power series in the perturbation. Thus,
only bvo possibilities exist, namely, either the de-
nominator in (19) is an exact factor of the numera-
tor, or terms of the form ckf(-I)"(Mkflukf)", & =I,
2, ~ ~ ~ ~, must contribute to the energy, since the
denominator must in the latter case be expanded to
obtain a single power series in the perturbation.
As discussed below, such terms do contribute to
the energy in perturbation theory. The case of n
=1 above has been verified, and it is reasonable to
expect to find that the higher members of this ser-
ies occur with coefficients (-1) . This denomina-
tor correction is probably the major coxrection
due to S-type unlinked clusters. Provided what we
call exclusion effects" and the terms in Eqs. (44-
48) of Ref. 4 are negligible, Sinanoglu's many-
electron theory shows that (because of this energy
denominator in the hkf discussed above) a sum of
independent "exact pair" energies is a justifiable
appxoximation which is a better approximation to
the true correlation enexgy than this sum of pair
energies di.vided by some normalization factor
(which is always greater than unity).

The existence of S-type unlinked clusters in the
fourth- Rnd fifth-order energies of ordlnRx'y pex'-
turbation theory (or MBPT) follows directly from
the 2n+ 1 rule of perturbation theory [knowledge of
the wave function through nth order enables a cal-
culation of the energy through (2n+ 1)st order] and
the above-stated fact that the second-order quad-
ruply-excited cluster functions can be expressed
entirely in terms of the first-order pair func-
tions. '0 " As can easily be seen by writing down
the diagrams for the third-ox'der quadruply-excited
parts of the wave function (and then invoking the 2n

+ 1 rule again), four-electron S-type linked clus-
ters begin to contribute to the sixth-order energy
where there are also a large number of S-type un-
linked clusters, As illustrated below, these S-type
unlinked clusters are necessary in order that the
four-electron diagrams of the same class as those
in the fourth- and fifth-order energies can be
summed to infinite order to replace the first-order
pairs in the fourth- and fifth-order energy expres-
sions by BG (or better) perturbative correction
pairs. Thus, it is not too surprising that in varia-
tionally determined wave functions (i.e., those de-
termined on the basis of energetics) for closed-
shell systems, Sinanoglu found primarily S-type
unlinked clusters like gg&up~ as opposed to the
»nked terms.

We should note that the higher-order EPV dia-
grams of Kelly'~ represent contributions of S-type
unlinked clusters. The two EPV diagrams Fl and
F2 of Ref. 14, which have the values given by Eqs.
(3.6) and (3.8) of that reference, evken added to-
gether have the value (in Kelly's notation)

I'I+ n = P,—(Pqi~ ikk')1

kk'k''k"
x(k"k"'in i jq)(kk'iv

Iraq)/D'(k"

k"')

=E,(P, q) 5 (k"k"' ly if&q)/D'(k" k")
PIr /fry

Although these terms give contributions from S-
type unlinked clusters, it is important to note that
both diagrams gl and 72 are each connected dia-
grams [when obtained from the contractions of our
Eg. (2.17)], i.e. , they give contributions to the
MBPT linked-cluster energy. " The S-type un-
linked contributions which result from the sum of
Y 1 and Y2 cannot be written as a, single unconnect-
ed dlRgx'Rm.

Brenig used wave-function arguments to derive
the same x'esults for the nuclear many-body prob-
lem as obtained by diagram summations. " Bren-
ig's principle assumption is the use of S-type un-
linked c1usters to decompose the three- and four-
particle orbital-correlation functions. The need
for such an assumption should not be too surpris-
ing when it is realized that the diagrams which
represent energy contributions from S-type un-
linked clusters are just those diagrams which in
nuclear many-body theory are necessary in order
that the reaction matrix be evaluated on the ener-
gy shell. After completion of this work, the re-
view article by Day~ appeared, and the discussion
in this review is now used to illustrate this con-
nection. In Day's Fig. 27, for the sake of greater
generality, let the upper m (later time) be I' and
the lower m (earlier time) be n' in 27(a), while in
27(b) let the upper m be n' and the lower be I'. In
the notation of Sec. III of this paper, the sum of
DRy s Fig. 27(R) Rnd Fig. 27(l&) (with the above re-
labeling and antisymmetrized vertices~~) has the
value

(p (B ip (1&)

EE
I I /l '

En

&& (0,&'&(l2) i I/r 12 i[nl']12)

when we sum over all particle indices. Thos, this
repxesents a fourth-order energy contribution
from quadruple excitations which is sole1y expres-
sible in terms of first-order pairs. These dia, -
grams can be generalized to infinite order to re-
place the first-order pairs U~~

"' by BG pairs U~~~

(or even better pairs) by introducing infinite-or-
der bar vertices into Day's xelabeled Fig. 27 in
the following manner:

Let t, denote the time of the earliest vertex (low-
est one) in Day's Fig. 27(a), and t~, t„ t, label the
other three vertices such that t~ & ts & t, & t, . In this
figure place an infinite-order bar vex tex between
the lines ln'ab at a time between t, and t„ the sec-
ond infinite-order bar vertex is placed across
nn'cd between t~ and t» the third bar vertex cross-
es the lines ll'ab between ts and t„but is under-
stood to be comprised of diagrams which have
their vertices in all possible time orderings with
respect to those of the second infinite-order bar
vertex; and the last bar vertex is placed across
Il'ab between f, Rnd t, . In Day's Fig. 27(b) we
again denote the vertices by times t, &ts &t, &t„
and between t, and t, place an infinite-order bar
vertex across nn'ed; between t, and t, place two,
one across l1'ab and another across nn'cd, with
all relative time ordex'ings; and the last infinite-
order bar vertex between t~ and ts across ln'ab.
If we sum over all intermediate particle indices
and take all the vertices to be antisymmetrized, ~e
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the above stated results follow simply.
Day's Fig. 32(b), if interpreted in terms of anti-

symmetrized vertices, along with the diagram ob-
tained from this one by interchanging the times of
the first and second vertices, when added together
give

(U io)11/r i[An]I )
m&l, k &n

x (U &1) )U &1))
k'n ml

when summed over particle indices.
This result can be similarly generalized to infi-

nite order by the use of bar vertices to replace
the first-order pairs by BG (or better) pairs.

These two sets of diagrams, when restricted to
the case of only two excited holes, sum to give the
coefficient stated above for the n = 1 term in the
expansion of the denominator of yl of Yaris and
Musher.

Similarly, it is not difficult to draw diagrams in
which there are 6, 8, , 2n, where n-~, ex-
cited electrons (remember that the final diagrams
correspond to a field in which the number of parti-
cles is arbitrary) that modify the pair correlation
energies by the addition of terms

Q C (nl1/rl Iw )(w Iw )
n=3

where the C„are integers (0, +I, ). As dis-
cussed above, it is reasonable to guess that these
terms sum (along with the diagrams in which two
and four electrons are excited) to give a total pair-
correlation energy of

(o. 11/r Iw )/[1+(w Iw )].

There is also a set of exchange ~-type unlinked
terms (obtained from diagrams analogous to Day' s
Figs. 27 and 32(b) if hole and particle are inter-
changed) which have values of the form

C '(o, (12)w (34) 11/r121w (13)u (24))

x(w Iw ),
where n = 0, 1, , ~ and the C„' are also integers.
These two types of 8-type unlinked clusters demon-
strate that perturbation theory is meaningless un-
less (wn iwo) «1. In that case, )[w] ' in (4.12b)
is =1 and evaluating the correlation energies by
(o. 11/r12 lwo) divided by 1, v[w] ' or 1+(wo, luo)
etc. makes little real difference (see Sec. VII). In
the above equations ~~ could be taken to be first-
order, BG, "complete, " etc. pairs.

APPENDIX 8

Figure 2(a) contains an extra particle-particle interaction and has the value

(ll' I (1-P„)/r„ im "m"')(m "m"'1(1-P, )/r„ imm')
E 2a = -1'+'

' ll m"m"'" ll mm'l &l', m &m', m" &m"

(8.2)

x (mm' I (1-P„)/r„Ill'), (B.1)

where Ill')—= Il(1)l'(2)), etc. Since, as in (3.2) and (3.3a), when antisymmetry is included,

Imm')(mm' I ) Q»

m & m' ll' mm' ll' 0', -H (12) '

using &2» = (1-P»)/2 (B.1) becomes

2 Q (ll'I — -8, — " 8 " -a»lll')."[ 11,-H0(12}] 12
"[ 11,-H0(12}] r12

Since 8»'= 8»; 8»(l/r») = (1/r»)e», N»Q»=Q» g»,
W2(ll'18„= ([ll']» I,

(B 3)

(B.4)

[,—.+ (12}] [,-fJ» (I
l &l' l2 ll' 0 12 ll' 0 12

The diagonal-hole diagram of the form of Fig. 2(b) has the value

I,+2 + (ll'1(1-P»)/r» I mm')(ll' I (1-P»)/r» Ill')(mm' I (1-P»)/r„ Ill')

l &l' m &m' ('ll -'mm }'

Q (ll' I "ill')(ll' I 8, " 8» ill')
l l 12

' [ 11,-H (12)]'

(B.5)

(B.5)

by just repeating the steps used in going from (B.l) to (B.5).
The diagonal-hole forms of Figs. 2(c) and (d) and the mirror-image diagrams of both of these add to

give
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),+, + (ll' I (1-P»)/r» Imm")(l'm"' I(1-P»)/r„ ll'm')
dh l&

l'mmmm'

m" ' ll' mm'"' ll' mm')

x (mm' I (1-P»)/r» I ll'). (8 7)

Since the terms for which m = m' or m" vanish because the Coulomb and exchange integrals are identical,
using the definition of El~l~(2) in (3.7) and a sum rule like (8.2), the right-hand side of (8.7) becomes

g (ll' )(») @» .If (2) @» (») Ill') ( .8)
1& 1' 12 [ ll' 0 ~ [ ll' 0 ~ 12

Taking 2 of the sum of (8.8) and the equation obtained from (8.8) by interchanging the dummy variables 1
and 2, breaking up the summation into parts for which l &l' and l'&l, and using the properties of 8», we
have finally

E(2c, d)dh ~ ([ll 1,2I, —[, lf»(, 2)jl & l' 12 ll' 0

x(-&11-&1,1,)[@12/[elf,-ff0(12)p(1/r12) I [ll'112 ). (8.9)

Comparing the sum of (8.5), (8.8), and (8.9) with (3.9a) gives the definition of Vill(12) in (3.8). The po-
tential (n I V+'I p) for o.'& p as given in (4.4d) can be found from the nondiagonal-hole third-order energy
diagrams in an analogous fashion.

We could have also identified the Vll~(12) in (3.8) from the diagonal-hole part of the third-order energy
written in the conventional form of Rayleigh-Schrodinger perturbation theory

(3) =
dh

l &l', m &m'

(4 I H I 4, „„,)(4, „„,IBID, ,)'

l &l' m&m' m" &m"'

l(4 IH ICll, ,) I'

'll' 'mm'
(8.10)

where C'„411~.mm~, and H, are defined in (2.7), (2. lib), and (2.5) resPectively. The terms in (8.10)
must be rearranged considerably to demonstrate their equality with the diagrammatic results since the
second term in (B.10) cancels out part of the first term and only the EPV part of this second term re-
mains. "
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For the case in which the zeroth-order wave function is a single Slater determinant of ar-
bitrary orthonormal spin-orbitals, the exact wave function can be expressed in terms of a
cluster-type expansion. If perturbation theory is applied in the standard (and systematic)
fashion to the Schrodinger equation for the cluster functions, a generalized form of Rayleigh-
Schr5dinger perturbation theory (GPT) is obtained. Although GPT is quite flexible, the form
presented in. this work is chosen so that the terms initially calculated in GPT correspond as
closely as possible to the starting points in the theories of Sinanoglu, Kelly, Conkie, Nesbet,
and others.

The first™order corrections to the wave function in GPT are written in terms of one- and
two-electron functions which respectively describe the perturbative corrections for the mo-
tion of one and two electrons in the field of the remaining electrons which are in their ground-
state orbitals (i.e., perturbative Bethe-Goldstone-like equations). This is a more physical
starting point than the first-order wave function of ordinary Rayleigh-SchrMinger perturba-
tion theory (OPT), and GPT should be much more rapidly convergent than OPT.

By analogy with OPT, GPT also has a 2g+ 1 rule, a variational principle for the gth-order
energy and the 2+th-order wave function, and interchange theorems of douhle-perturbation
theory. As in OPT, the equations of GPT can be solved by the use of correlated functions;
however, in GPT, &0 is not required, and the zeroth-order spin-orbitals need not all be
eigenfunctions of the same one-electron Hamiltonian.

Q„=Q,Q, =Q,Q„
i[El']„)=2 "'(I-P~) il(l)l'(2)),

(l.lb)

(l.lc)

I. INTRODUCTION

The iheories for the description of electron cor-
relation in atoms and molecules of Sinanoglu,
Szasz, Nesbet, and others begin with approximate
Schrodinger equations (in different forms) describ-
ing the stationary states of a pair of electrons
which are moving in the field of the remaining elec-
trons which are in their ground-state orbitals. ' 'o

Although the results presented in this work are val-
id for the case in which the zeroth-order wave func-
tion is a single Slater determinant of arbitx'ary or-
thonormal spin-orbitals, the discussion in the
first three sections is limited to the simplest case
of a closed-shell Hartree-Fock (HF) Eeroth-order
wave function.

VYhen approaching the problem of electron corre-
lation by ox dinary Hayleigh-Schrodinger perturba-
tion theory, the first-order corrections to the
wave function are written in terms of first-order
pairs. If (I& ii = 1, , Kj denote the occupied spin-
orbitals in the zeroth-order HF wave function, '~

0,= 1(1)-Z, di(1))&I(1) i, (1.1a)

where P» is the operatox which permutes the
space and spin variables of particles one and two,
then the first-order pairs uEII "'(l2) are the solu-
tions to the uncoupled Bma~ inhomogeneous inte-
grodifferential equations,
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where H, (i) is the HF Hamiltonian for particle f,
&,(12) =Ho(1)+&e(2), effl =sf+ef~ is a sum of HF
orbital energies via

H (i)l&(i) = e&l&(i), (1.3a)

for all k ~ N and f (12) arbitrary
From the homogeneous part of Eq. (1.2), we see

that the pairs see the full HF Hamiltonian, and the
inhomogeneity (or "forcing" term) is the product of
the perturbation to the HF Hamiltonian and zeroth-
order occupied spin-orbitals. This Eq. is, howev-

and Q~, is a projection operator which makes any
pair function strongly orthogonal to the HF orbitals
which are occupied in the zeroth-order wave func-
tion, i.e.,

fd(l)f~(l)912f (12)= 0 (1.3b)


