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Using a variational ansatz in which pair correlations between wave vectors of virtually emitted phonons
are taken into account, we have obtained better upper bounds to the polaron ground-state energy than have
been available heretofore for o.&3.5. The same variational trial functions are also used to obtain lower
bounds for G.&2.5. These lower bounds, although not completely rigorous, represent a considerable irn-

provement over the Lieb-Yamazaki values, which are, to the author's knowledge, the only other lower
bounds in the literature. The variational ansatz chosen is also suitable for practical calculations of the
polaron effective mass.

INTRODUCTION

HE problem of finding the ground-state energy of
the Frohlich Hamiltonian has a fairly substantial

literature, ' ' mostly originating in the period 1950—
1955. Aside from its intrinsic theoretical interest, there
are two reasons why this problem again assumes
significance.

First, effective masses have now been measured
directly' ' by cyclotron-resonance techniques in a
variety of materials in which the Frohlich electron —LO-
phonon coupling constants n lie in the intermediate
coupling range 1&m(4. It is therefore of interest to
obtain accurate theoretical values for the polaron con-
tribution to the effective mass. Unfortunately, we have
as yet no rigorous way of comparing the accuracy of the
various published polaron effective-mass calculations.
AVe can only assume that in comparing two approximate
calculations the one giving the better ground-state en-

ergy will likely give the better effective mass. Thus we

would like to have a highly accurate method of calcu-

lating the polaron ground-state energy in the region
0&.+&4, particularly if this method could be readily
extended to calculate effective masses.

Second, experiments on the ionization energy of bound
polarons' ' require for their interpretation the theoret-
ical difference in energy between the free-polaron ground
state and the energy of the bound polaron. Since these
energies are usually calculated separately, it is impor-
tant to have good values for the free-polaron ground-
state energy.

In this paper the theory of Lee, Low, and Pines"
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(J LP) is generalized to take into account correlations
of the wave vectors of pairs of emitted virtual phonons.
Our theory gives lower variational energies than have
been obtained heretofore for o, (3.5. Since the trial
functions used are translationally invariant, our method
also seems well suited for calculation of the polaron
effective mass.

Surprisingly little attention has been paid to the
problem of bounding the energies of low-lying polaron
states from below; yet obtaining good lower bounds is a
most reliable way of estimating the accuracy of a vari-
ational calculation. Using our optimized variational trial
functions and the Temple lower-bound formula, we are
able to obtain lower bounds for the polaron ground
state for o. &2.5. In this region we improve considerably
upon the lower bounds obtained by the ingenious
method of Lieb and Yamazaki. '

Finally, we discuss heuristically the relative accuracy
of our upper and lower bounds.

VARIATIONAL UPPER BOUND

In dimensionless form the Frohlich polaron Hamilton-
ian, whose ground-state wave function and eigenvalue
we wish to approximate, is

II=P'++~,+Pv„(e- '" "b,'+H.c.),
where energies are in units of the LO phonon energy,
Ace, and length is in units of re=(A/2m'&)'", with m

the bare mass or band mass of the electron. Momentum
and wave vector are in units of A/re and 1/re, respec-
tively. The creation operator for an LO phonon of wave

vector k is denoted by bk~, the number operato1

byek, and

8 1 1 1

0= crystal volume.

Following LLP, we take the exact ground-state wave

967
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function in the form

8
—ir Zk ng U'y o)

(2)

where Xo is a function of phonon coordinates only and

fi is a spherically symmetric function to be determined
variationally. Substituting (2) into (1) gives the Schro-
dinger equation

K(f)xo ——Eoxo,

x(f) =x,(f)+ac,(f), (3)

(OIX, I0)= n'= ——n.

One important limitation of the LLP wave function
is that the probability amplitude 2» of finding a pair
of virtual phonons in the field with wave vectors k and
1 is

&ki= (irll &I 0)= fi,f«xp( ——',Pfi'), (7)

where lid)=b&~b&~I0) and is in our terminology a two-
phonon state. Therefore, we can consider the phonons
as being emitted into the single-particle state f inde-
pendent of how many phonons are in the field. Intui-
tively we expect this approximation to be good when the
electron has time to reabsorb an emitted virtual phonon
before virtually emitting a second phonon, that is, when,
say)

g+[(ol I7—'(lQ —g)2U lo)]''2&1

where

&=(0IU '»'&lo&=ln (9)

Evaluating the expectation value in (8), we obtain the
condition

Xo(f)= (Pkug)'+conj, n'—,

Xi(f) =P [(1+k')fl,+vt,](bit+ bj,)
+2+(k.m) fif b„tb

+Z(k m)f~f (4'b '+bkb )
+2K(ir m)f~(e b~+b~"e ), (4)

where
—n'= 2+vI fi+P(1+k') f„'. (5)

The LLP variationa1. ansatz consists in approximating
)io by the phonon vacuum state

I 0) and minimizing

(0 I
X

I 0& with respect to f. This calculation gives

f~ = —vi/(1+k')

would require replacing the single-particle functions of
(7) by an essentially two-particle function. To accom-
lish this we generalize the LLP ansatz by replacing

I
0) by I P&& whose general form is given by

I &)= d
I 0&+Ed~ I lt&+Ed» I kl& (12)

Ke shall use the convention dl, l = 0 for k& L, and we as-
sume

I p& to be normalized.
It is obvious that (12) allows correlations between

wave vectors of pairs of virtual phonons in the field.
We obtain

(kl
I
I7l 0)= exp( —2Zf-') [(d»+d&k)+ f~fid+~~E], (13)

where

&I«= fi«+f id'+ fifi(Q f;f,d, . Qf,d„—).
—f»f (d~.+d.~)

—fief. (dk.+d..).
Obviously any angular correlation between wave vectors
of a pair of emitted phonons, if present, can only be
contained in dq~+dn, . In deriving (13) we have made
use of the identity

P—g&(f»&mt —f»~m) —g~f»&mt g
—&f»&m --k~f»

and in particular we have used

(ol vb, t
I
o&=-f„.-~*r-

(ol Ub, tb,tl0)=f„f,. '* ~"'.

To investigate the properties of lg) further we mini-
mize (QIK I Q& with respect to di, dv&, and fI,. It is easy
to show that for given f the equations determining dI„
d», and E,(f), the variational energy, are given by

(ol~(f) ly&=E„(f)(oly),
&kl~(f) I4»=E (f)&kit), (14)

«l~(f) l~&=E.(f)«l~&
writing out (14) explicitly using (4) and (5), we obtain

E,„+n'=Qk'fi, 'g(k)+Qagfrdk, (15a)

(L„+ '
1 k')di [2k'7/(k—)+—z(k——)+c jf, (15b)

[E.+n' —2—(k+1)'jAi= 2ir 1(f~fi+ fide+ faA)
+2k Ifgf([q(l)+g(k)$

+aifidi+a~f~dv. , (15c)

where di ——dI/d, dq~
——dk~/d, (15c) is valid only for k & 1,

and

-'n+(-'n)'"&1 or n&-', (+5—1)' 0.76. (10) i'f)g(l)=Pl mf (d,+d, ), (15d)

It condition (10) is seriously violated, we would expect
that the electron would often emit a second phonon
while still recoiling from the first emission. Under such
circumstances we would anticipate signjI6cant correla-
tion between the wave vectors of emitted phonons. Thus
a proper description for somewhat larger o., satisf
say)

f(Z(l)=gf a (d )+d) ), (15e)

f(ai= v(+ (1+P)f). (15')

2n+(kn) '"&2 (hence n &2)

ying, To complete the variational equations (15) we must
minimize E,„(f) with respect to f at fixed functjons d„

(11) and dk~ by taking the appropriate functional derivative
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I'Aul. z I. Comparison of variational energies L„and l~:y from Eqs. {18)and Feynman's calculation, resl)ectiveIy.
Energies are in units of A~. lt7„ is defined hy (g

~

U p2 N2U~&} and d is dehned in (12}.

0.5 1.5 2.0 3.0

I& „
Jr' f

Ã„
d'

—0.5040
—0.5032

0.258
0.9990

—1.0160
—1.0130

0.532
0.9957

—1.5361
—1,5302

0.822
0.9901

—2.0640
—2.0554

1 ~ 126
0.9817

-2.5995
—2.5894

1.442
0.9710

—3.1421
—3.1333

1.768
0.9581

—3.6915
—3.6885

2.100
0.9436

—4.2471
—4.2565

2.436
0.9280

in (15a). This gives us our final equation

2$ 2+ (1+k') f2j/2k'ti(k)y/+ (1+k')d J, 0. (——16)

Using definitions (15d) and (15e), Eqs. (15b) and
(15c) can be easily transformed to a, pair of coupled
three-dimensional integral equations for q and Z. Be-
cause d~~ has the simple structure

—kl

C= 2+k'+P —L' —n

g(l) = ——
4xl .

dk G(k, l),

where
C+2kl

G(k, l) = Lk(1+k2) 2] ' —4klC+C' ln—
C—2kl

2+ (k+1)'—E„—n'

)&positive function independent. of angles, (17)
h(l) =

1';„+n 1+—P
g(l).

E„+n 1—P—

(E.+n 1 k2)di= 2k2fktI(k—)—, (18b)

LE„+n—2—(k+1)21d2t= 2k I(f2fiL1+ 21(k)+ tt(l) ]
+fida+ fa«) (18c)

Because the marginal improvement a6orded by Kqs.
(15) and (16) seems hardly worth the additional com-
plication, we shall consider ~@) to be determined by
Eqs. (18) in all subsequent discussion.

After performing the angular integrations analytically,
we obtain from (18b), (18c), and (15d) the integral
equation

ti(l) =- [P h(l)] '—
X g(l) ——

47rl

E„+n—1+k'—
dkti(k)Cx(k, l) ———,(19)

E„+n 1—k'—

all angular integrals are readily performed analyticall~,
and the problem reduces to a pair of one-dimensional
integral equations, which can be solved numerically by
iteration. Taking an initial guess for E„, ft, , and dst,
we iterate on g and Z until these functions become
stable. We then adjust the values of E, and fi, from
(15a) and (16), respectively, and again solve for tI and
Z. The process is continued until self-consistency is
obtained as evidenced by the stability of successive
va.lues of E„.

Interestingly enough, we find that our optimum fi,
is very close to the LLP value (6) and that: the increase
in variational energy due to the replacement of (16) by
(6) is less than 0.1'Po of the ground-state energy for
the range 0&n&4. If we do replace (16) by (6), our
Eqs. (15) simplify considerably, for in that case n'=n
and at, ——Z(k) =0, giving

1'.= —n+Pk2 j„2'(k) (18a)

The equation for 1':„,, (18a), beconies

2o.
1&'„=—n+—

ksg(k)
dk--

(1+k2)2
(20)

g() ——n —0.015920n'. (21)
(1+k') '

2o, k
lim E.= —n+—

In their paper, LLP" obtained essentially (21) by
treating BCi(f) in (4) in second-order perturbation
theory. However, the perturbation correction of Eq,
(42) of LLP is too small by a factor of 2 a,nd the numer-
ical evaluation there is not accurate. Hohler and Mullen-
siefen' have also obtained result (21) by fourth-order
perturbation theory in the representation of (1).

We remark that from (17) di, t and ~dt, t~ both reach
their maximum when k and I are antiparallel so that, at
least if the coupling is not too strong, the two-phonon
amplitude given by (13) is a, maximum for given

~
k~

and ~1~ when the magnitude of the total phonon wave
vector,

~
k+1~, is a minimum. This result is undoubtedly

a consequence of the presence of the recoil term,
(p km')', in 3Cs, which becomes very important when
two or more virtual phonons are present in the 6eld.
We expect that for coupling strengths substantially
violating (11) additional angular correlations involving
three and more phonon wave vectors will assume im-

As before, our procedure is to guess ti(l) and E„, iterate
(19) at fixed L~"„, then recalculate 1~'„ from (20) ancl

repeat the process until L", is stable. Convergence is
suKciently rapid to permit solution of (19) and (20)
by hand calculation for o«4.

The weak-coupling limit of (19) and (20) is found by
replacing C by 2+k'+P ancl k2ti(k) by g(k), giving the
result
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TABLE II. Comparison of lower bounds for the polaron ground-state energy from the present calculation, P „, with the I.ieb-Yamazaki
lower bounds ) LY. Also compared are y„with the corresponding quantity from I LP, yLLp. All energies are in units of Ace.

0.5 1.0 2.0 3.0 3.5

"/'LLP

—0.5052
—0.5227

0.00121
0.0417

—1.027
—1.0998

0.0105
0.1667

—1.576
—1.748

0.0381
0.375

—2.172
—2.487

0.0962
0.667

—2.872
—3.339

0.198
1.042

—4.322
0.357
1.500

—5.450
0.585
2.042

—6.730
0.895
2.667

portance in keeping the recoil term small. Whereas Eqs.
(15) could readily be extended to inchide three and
higher phonon states, the resulting integral equations
to be solved become much less tractable numerically
because of the difficulty of performing analytically the
angular integrations.

In Table I we present a comparison of our varia, tional
upper-bound calculation and the Feynman theory"
energies X;'f for 0&+&4. Note that the percentage dif-
ference between the Feynman energy and A,. decreases
as o. increases until I''f 6nally becomes lower than A',.

at 3.5(+&4.0. For o.&4, E, becomes worse and worse
relative to Ef with increasing o. but remains lower than
the Lee-Pines energy" for o, ~9.

Finally, we note that Haga" has compared the exact
results for the Gross model with a va, riational ansatz
analogous to Eqs. (18) for that one-dimensional model.
He finds substantial agreement between exact a,nd vari-
ational answers for o. ~3 both for the ground state and
low-momentum excited states.

LOWER BOUND

Our discussion of lower bounds for the polaron ground
state is based upon the Temple formula, given by

Eo&E~ =&al&cia) —~/(E~ —&OI~I&))

v= &pl ~'I P)—(&0 I
~

I
0))' (22b)

where l';o is the exact ground-state energy and I&,'~ is
the energy of the lowest lying of the exact excited sta, tes
admixed in the normalized trial function If). The in-

equality (22a) is valid only when g IAIDO) &E,."
Since we have admixed only states of zero total mo-

menturn in our trial function, we expect that Ey & F0+1;
the first. excited state consists of a zero-momentum
polaron with a free phonon of zero wave vector. "To
optimize Er we should not choose

I P) =
I p), but rather

we should vary our parameters d~, and dk ~ to ma, ximize
the right-hand side of (22a). This, however, is a, com-
plicated procedure and it seems doubtful that a signifi-
cant improvement could be obtained. By virtue of (14)

11 R P. Feynman, Phys. Rev. 97, 660 (1955)."T.D. Lee and D. Pines, Phys. Rev. 92, 883 (1953)."E.Haga, Progr. Theoret. Phys. (Kyoto) 13, 555 (1955).
"For a simple derivation, see, for example, T. Kinoshita, Phys.

Rev. 105, 1490 (1957).
'5 The assumption that the ground state is the only zero-mo-

mentum polaron state with energy less than 80+1 can be proved
rigorously to order a in the weak-coupling limit. For the range
0(ca&2.5, this assumption is at present only a conjecture which,
however, the author regards as highly plausible.

it is a relatively simple matter to compute y „=(p I
K' g)—(&I3CI&)', moreover, y„, which would vanish if g)

were exact, is itself of interest since it gives a measure
of how good our wave function Ig) really is. Thus we
obtain lower bounds X, from

(23)

where, to ensure that X, is in fact a, lower bound, we
have repla, ced Eq in (22) by 1+X „which bounds F&

from below.
Solving (23) gives

X„=-,'L—1+(1—4y )'"J+E (24)

We notice from (24) that no real solutions exist for X, if
p&0.25. This is not a property of the general Temple
formula, (22a), but is rather a consequence of our lack
of a sufficiently good lower bound for F& when p& 0.25.
However, even if we had some independent lower bound
P for Eo satisfying E„/&1, ins—erting P for X„on the
right-hand side of (23) would give a value of X„on the
left-hand side which is lower than P when y„&0.25.
Thus the Temple formula is useful in estimating lower
bounds to the polaron ground-state energy only for o.

such that y&0.25.
The size of y depends, of course, on the goodness of

the wave function used to calculate it. If we use the
LLP wave function in (22b), we obtain

yr. LP= 2+(m n)2f ~f„~=6n', (25)

which, as we shall see, is considerably larger than y, for
n (4.

Equa, tions (14) or, equivalently, the fact that lg) is
the exact ground state of K in the subspace restricted
to zero, one, and two phonon wave functions, implies

where the sum Q, ' is restricted to intermediate states
I
i) containing three or more phonons (states of the

type I
klm),

I
kbnn), etc.). We obtain explicitly

v'= {22(m.n) 'f-'f''I:Z«~'+ 2Z («»-'+«i")]
+4+(l.m)2f 2f 2~2(t)

+t.Zi'f '~(i) j'
+-';ex+(k'+k l)(dgP+du, ')
+gZ(k 1)'fifjn(i)(%i+du)
+4+I4f 2~2(])

+4+t 213'(l) —28(t)F(t)+ P'-(l)])
&& (1+2«~-'+Q~fki') '
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B(l)=t—'P(k 1)'f (ci +d ),
F(t) QIP fk(dkl+dik) ~

or

(27) Defining

6(1—e) = P(L&',—Ep) 'c,'—e.

6=ED—P, )

6= Ey Ep.

Defining the eigenfunctions of K by 3CX;=E;X;, we
expand ~g) as

(2g)I4,)=Pc,X, .
Then

In Table II we compare, where possible, X„and lower
bounds XL& computed from the theory of Lieb and
Yamazaki'; also compared are y„and &LLp. We note
that P „becomes very close to E, for small u, and repre-
sents, wherever calculable, a considerable improvement
over XL~. Of course, the method of Lieb and Vamazaki
has the advantage that it is applicable for all n.

Finally, we come to the question of fixing more pre-
cisely where in the range between E, and )„the ground-
state energy actually lies. Here we enter into the realm
of conjecture. However, it seems clear that the true
energy lies closer to E„ than to X,.

To justify this statement we consider the energy
differences 8 and e defined by

R.=E(E;—E.)""/E(E'—E.)c"
and

M „=Q(E,—Ep)cg/g;wp c,', (31)

it is easy to prove that R„)M„and since from (23) we
have Er& X„(and therefore 5&6), we can write

8/e& 6/e) R„1&M—„1.— (32)

Presumably ~p) accounts well for the admixture of
one- and two-phonon eigenstates of Xo and Xo. Thus we

expect that, at least for n &3, the main contribution to
P;wp c,'X; comes from three-phonon and higher-phonon
states. Now comes the crucial assumption of our argu-
ment: The eigenstates of 3C are sufficiently similar to the
eigenstates of Ko for n &3 that the main contribution to
P;ape;X; comes from states X; corresponding to the
three- and higher-phonon states of 3CO. These states X,,
like their corresponding eigenstates of 3CO, have energies
E;—Eo greater than 3.

If this assumption is granted, we have to conclude
from (31) that M„)3 and therefore from (32) that

e=g(E;—Ep)cP. 8/e) 2. (33)

Now consider Ez from Eqs. (22). It is not hard to see
that Eqs. (22) can be rewritten

Q i(K—E )(K—E ) iy)=0=+(E,—E,)
X (E, Ep+A)c' (3—0)

Actually we think that (33) is conservative —we would

not be surprised to find 8/e greater than 3 or even 4,
depending upon the value of 0..

Computations of the effective mass are in progress.

where

Thus
~=Eo—I'-r.

—hQ (E,—Ei)c '= Q(E—Ei) (E —Ep)c'
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