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tween the observed properties of krypton and some
calculations, but systematic agreement in detail for all
thermal properties is lacking. For krypton, the situa-
tion can be considered good, however, when comparison
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is made to that for other classes of solids. For the latter,
anharmonic effects being smaller are easier to approxi-
mate, and largely phenomenological theories with many
adjustable parameters are generally employed.

APPENDIX

Complete lattice-thermal-expansion data for two different specimens of solid krypton are given in Table VI.

TaBLE VI. X-ray lattice-parameter thermal-expansion data from specimens Nos. 1 and 2. ¢o=5.645872-0.00010 A*.

T,°K 10*A¢/ay T,°K 10*Aa/ay T,°K  10%Aa/a T,°K 10*Aa/ay T,°K 10*Aa/a0 T,°K 10%*Aa/ao
Specimen No. 1 Specimen No. 2

4.30 0.04=  35.92 45.77 76.01 163.84 2.5 0.014 3298 38.79 86.02 200.86
4.30 0.05 39.85 55.22 80.00 178.14 3.2 —0.01 35.98 45.57 90.00 216.20
4.30 0.03 39.87 55.50 83.98 192.73 4.25 0.04 38.99 53.28 94.04 232.75
8.45 0.95 43.97 65.92 88.01 208.48 4.25 0.04 42.01 60.85 94.15 233.00¢
9.95 1.78 48.23 77.40 92.13 224.69 5.93 0.20 45.00 68.59 98.02 249.44
12.28 3.36 52.00 87.73 96.02 241.02 8.68 0.95 47.98 76.96 102.00 266.54
14.61 5.43 55.97 99.24 100.02 257.81 9.86 1.46 51.98 87.97 106.00 285.25
19.44 12.10 59.99 111.24 104.14 276.30 12.28 3.10 56.00 99.49 107.01 290.38
19.45 12.12 59.99 111.40>  108.05 295.52 15.14 6.13 59.97 111.46 107.07 290.60
24.28 20.23 59.99 111.49 111,98 315.31 18.00 9.63 63.99 123.33 108.87¢  299.46
28.05 27.85 63.99 123.74 113.97 325.99 21.16 13.70 69.98 143.44 109.99°¢  305.38
31.97 36.26 67.99 136.72 e e 24.02 19.03 74.00 156.90 110.03 305.39
35.92°  45.60 71.98 149.95 26.95 24.88 78.03 171.17 112.00 315.45
29.96 31.93 82.00 185.73 114.04 326.34

a Ni Kai radiation (1.657910 A*) and (622) planes used on this and on succeeding data points, until otherwise specified.
b Co Ken radiation (1.788965 A%*) and (620) planes used, as in Ref. a; refraction correction 0.00007 &%,

¢ Measurement made after cooling.
d Cu Kai radiation (1.540562 A*) and (640) planes used, as above.

e Fe Kai radiation (1.936042 %) and (531) planes used, as above; refraction correction 0.00008 &%,

6 W. GOtze, Phys. Rev. 156, 951 (1967). For another view, see P. F. Chaquard, The Anharmonic Crystal (W. A. Benjamin, Inc.,

New York, 1967)
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The deviations of the second-order elastic constants from the Cauchy relation for some representative
alkali halides were successfully accounted for by Lowdin’s theory of many-body forces of quantum-mechan-
ical origin. In the present paper, this theory is extended to include second-nearest-neighbor (nearest anion-
anion) interaction in MgO for the calculation of the pressure derivatives of the second-order elastic con-
stants. The calculated values, dc12*/8p=1.4 and dcss*/9p=0.5, are compared with the empirical results.
While the qualitative agreement tends to support the theory that the many-body character of interionic
interactions is indeed responsible for the particularly large deviations observed in MgO, better quantitative

agreement would require a more elaborate calculation.

I. INTRODUCTION

HE elastic constants of crystals and their depend-

ence on pressure are of considerable interest

because of the information on the interatomic forces

which they provide. In particular, deviations from the

Cauchy relations in ionic crystals indicate in certain

cases the presence of many-body forces of quantum
mechanical (QM) origin.

* Research supported by the National Science Foundation.

For cubic crystals under hydrostatic pressure p the
six Cauchy relations reduce to the equation! ¢ys—cus
=2p, where c1» and c44 are the effective elastic constants
of the compressed crystal that determine, for example,
ultrasonic wave propagation. It is well established
theoretically that the Cauchy relations hold for centro-
symmetric crystal structures in the absence of thermal-

1A, E. H. Love, The Mathematical Theory of Elasticity (Cam-
bridge University Press, Cambridge, 1934).
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and zero-point motion with no initial stresses present,
if the cohesive forces are two-body central forces.2 The
role of many-body forces in destroying the Cauchy
relation was first pointed out by Léwdin®4 in a compre-
hensive QM treatment of the cohesive properties of
alkali halides. In this theory a Heitler-London-type
wave function for the electrons in the crystal is con-
structed from the Hartree-Fock (HF) functions of the
free ions. The theoretical results for the elastic constants
and for the deviation from the Cauchy relation agree
reasonably well with the experimental data, confirming
the QM origin of the departures from the Cauchy
relations. Remaining discrepancies are partly due to
experimental error and to the uncertainty arising from
subtracting the effect of thermal- and zero-point motion
from the experimental data. In addition, a series of
simplifying assumptions was made in the theory which
reduce its accuracy.

The effect of thermal and zero-point motion was
investigated by Leibfried and Hahn.?:5 These authors
showed that in crystals with central forces thermal
motion causes deviations from the Cauchy relations
which are only small and opposite to those found in the
alkali halides, except in lithium halides. Thus the
departures from the Cauchy relations in these alkali
halides become larger if the vibrational contribution is
subtracted and must for the static lattice be ascribed
entirely to QM many-body forces.

Another mechanism for explaining departures from
the Cauchy relations was proposed by Herpin.® It arises
from the electrostatic interaction of quadrupole mo-
ments which are induced due to the loss of cubic
symmetry in the strained crystal. Dick? has designed
a simple model for estimating the effect arising from
QM exchange charges which arise in the region of
overlapping wave functions of neighboring ions. Re-
cently, Haussiihl® has discussed the empirical data for
alarge variety of materials and has proposed qualitative
rules for the deviations from the Cauchy relations.

The pupose of the present paper is to investigate the
failure of the Cauchy relations in MgO by means of the
theory of Lowdin. Because the overlap of the wave
functions of adjacent oxygen ions was found to be
large it was necessary to extend Lowdin’s formalism so
as to include next-nearest-neighbor (NNN) anion-anion
interaction. The choice of MgO was motivated by the
fact that for this material the deviation from the
Cauchy relation is much larger than for any alkali
halide. In addition, the elastic constants of oxide
compounds and their dependence on pressure are of
great importance in connection with the problem of the

2 G. Leibfried and W. Ludwig, Solid State Phys. 12, 275 (1961).

3P. O. Lowdin, A Theoretical Investigation into Some Properties
of Ionic Crystals (Almqulst and Wiksell, Uppsala, 1948).

4 P. O. Léwdin, Advan. Phys. 5, 1 (1956

5 G. Leibfried and H. Hahn, Z. Physxk 150 497 (1958).

¢ A. Herpin, J. Phys. Radium 14, 611 (1953).

7 B. G. Dick, Phys. Rev. 129, 1583 (1963).

8 S, Haussiihl ,*Phys. Kondensierten Materie 6, 181 (1967).
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constitution of the earth, and of all oxides MgO has
the simplest possible electronic and crystal structure.
The pressure dependence of the elastic constants is of
theoretical interest in itself because one would expect
that the deviations from the Cauchy relations increase
with increasing overlap of the electronic wave functions,
or with increasing pressure. Therefore, attention will
be focused in this paper on the pressure dependence of
the elastic constants.

While the present work was being completed, Calais
et al® have reported calculations of the cohesive
properties and the elastic constants of MgO on the basis
of Léwdin’s theory; however only nearest-neighbor
(NN) interaction is taken into account for the elastic
constants ¢i and c44, and only the zero-pressure values
of the elastic constants are calculated.

Experimental data on the elastic constants of MgO
and their dependence on temperature and pressure are
available from several investigators.*—!® The room-
temperature values and the pressure derivatives ob-
tained by different investigators are substantially in
agreement. Marked differences in the temperature
variation exist, however, and will be discussed in
connection with the evaluation of the thermal contribu-
tion in Sec. II.

II. DEPENDENCE OF ELASTIC CONSTANTS ON
PRESSURE AND TEMPERATURE

The isentropic second-order elastic coustants of a
crystal at arbitrary pressure p and temperature T can
in the quasiharmonic approximation be represented as
the sum of two terms?:

Cijni®(9,T) = Cijea™(p)+Bijra(p,T) . 1)

The first term represents the elastic constants of the
static lattice. The second term contains the effect of
thermal and zero-point motion and is usually much
smaller than the first term. The first term consists of
a contribution from the cohesive forces of the crystal
and a second term which arises from the mechanical
work of the surface forces against the pressure?:

17 02E
Cijkl*(ﬁ)=‘< > +#pDijia, (2)
V' \0e;idexi/ e=o
where
Dijri=08i0r1—8:10;:— 010, 3)

and E is the cohesive energy of the crystal per mole at

9 J. L. Calais, K. Man51kka, G. Petterson, and J. Vallin, Arkiv
Fysik 34, 361 (1967).

10 M. A Durand, Phys. Rev. 50, 449 (1936).

us, Bhagava.ntam, Proc. Indian Acad. Sci. A41, 72 (1955).

12 C. Susse, J. Rech. Centre Natl. Rech. Sci., Lab (Paris) No.
54, 23 (1961).

18 E, H. Bogardus, J. Appl. Phys. 36, 2504 (1965).

4 0. L. Anderson and P. Andreatch Jr., J. Am. Ceram. Soc.
49, 404 (1966).

i D. H. Chung, Ph.D. thesis, The Pennsylvania State Univer-
sity, 1966 (unpublished).
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a state corresponding to the compression caused by the
pressure upon which a deformation described by the
strain tensor e= (e;;) is superimposed. V is the molar
volume of the crystal at the pressure p, and §,; denotes
the Kronecker symbol. The quantities defined in (2)
are called effective elastic constants. For crystals of
cubic symmetry the first term in (2) depends only on the
NN distance a. Therefore the first and second pressure
deviatives of the effective second-order elastic constants
can be written in the form

Csji* ao (3C:jn1
) =—— ) +Dijrr,
aP 0 3B() da 0
62C,',~kz* 2 2 62Ci;'kl 1
S NE
61)2 0 3.Bo 6(12 0 3B0

Csjri*
Xl:( > "‘Dijkl:| . (4b)
ap /o

Here By and By’ are the zero-pressure values of the bulk
modulus and its first pressure derivative, respectively,
and the index O always refers to the static lattice at
zero pressure. The quantity

(4a)

L
) )
deij0er1/ e=o

is the contribution from the cohesive forces and will be
calculated in Sec. III as a function of the interionic
distance, and the first two pressure derivatives of the
effective elastic constants of the static lattice will be
evaluated according to (4).

The second term in (1) contains the temperature
dependence of the adiabatic elastic constants for any
given pressure. It is approximately proportional to the
vibrational energy and therefore for temperatures above
the Debye temperature directly proportional to the
temperature. This is the justification for the widely
used procedure (first suggested by Leibfried and Hahn?®)
to determine the elastic constants of the static lattice
by extrapolating the experimental data from the high-
temperature region linearly to 7=0°K. The same
procedure must be used to determine the lattice
constant of the static lattice from measurements at
high temperature.

The zero-pressure values of the elastic constants of
the static lattice as determined from the experimental
data of different investigators are for MgO listed in
Table I. The data of Anderson and Andreatch could
not be used for this purpose since they cover only the
range from 79°K to room temperature. Although at the
lowest temperature measured the data for ¢;; and ¢;» of
these authors are, rexpectively, 1 and 39, higher than
the data of Chung,'® there is very good agreement at
room temperature. The room-temperature values for
cn and ¢z of both authors fall almost exactly between

Ciju(a)= '117(
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TasrLe I. Static elastic constants of MgO (in 10" dyn cm™).
(From linear extrapolation of high-temperature data to 0°K.)

o’ c1° ¢4 B Ref.
34.80 8.57 16.78 17.31 10, 2
32.27 10.80 16.38 17.96 12
31.88 10.00 16.24 17.29 15

those of Durand® and of Susse,* the deviations being
1 and 5%, respectively. The room-temperature values
of cs of three investigators agree, but those of Susse
are 19, higher. Since the slopes at high temperatures
are also slightly different the discrepancies for the
extrapolated values of the static lattice are larger. The
discrepancy is particularly striking for ¢is, where the
value obtained in Ref. 2 from Durand’s data is 209,
smaller than the value obtained from Susse. This is
due to the fact that Durand’s measurements covered
only the range 80-560°K, whereas those of Susse and
Chung are extended to 1480 and 1250°K, respectively.
Since the Debye temperature of MgO is'® about 950°K
it may be expected that the temperature dependence
of the elastic constants becomes linear at or above this
temperature. The measurements of all three authors
show that the linear range of ¢;; starts at about 500°K
and that of c44 at about 700°K. According to Susse and
Chung, c¢1» decreases linearly above 800°K; however,
Durand finds a constant positive slope between 90 and
560°K. The other two investigators'¥15 that have
extended their measurements to low temperature con-
firm the positive temperature coefficient of ¢i» below
room temperature. It must be concluded, therefore, that
c12 passes through a maximum which occurs according
to Chung at about 300°K. Thus the static value of ¢»
obtained from Durand’s data is too low and incorrect
because it is not based on the correct high-temperature
slope. All three static elastic constants as determined
from the data of Susse and of Chung agree quite well.
After a careful consideration of all factors involved it
was decided to choose the data of Chung for further
use in this paper.

In order to obtain the pressure derivatives of the
elastic constants of the static lattice the same method of
extrapolation of the data taken at high temperature
has to be used. Unfortunately, the only available
experimental data'®:! for the pressure derivatives refer
to 300 and 79°K. Since in this temperature range the
thermal contribution may not be expected to be propor-
tional to temperature, there is no direct way of deter-
mining the static values from the experimental data.
In the absence of experimental data at or above the
Debye temperature one could perform a lattice-
dynamical calculation, but this is beyond the scope of
the present paper. Therefore the unreduced experi-
mental data will be used for the comparison with the
theoretical results.

( 16 g) K. White and O. L. Anderson, J. Appl. Phys. 37, 430
1966).



960 S. Y.
o2 Mgfz
201
s Is
2p
3 1.04 2s
< 2p
R ————
00 \/ 10 20 30 4lo 50
r (au)
-1.04 2s

Fic. 1. The radial wave functions for O~2 and Mg*? in MgO.
Functions for O™2 and Mg*2(2p) are Hartree-Fock solutions.
Mg*2(1s) and Mg*2(2s) are obtained by a variation principle.

III. QUANTUM-THEORETICAL CALCULATION

In this section the theoretical method developed by
Lowdin®* and applied by him to alkali halides will be
adapted to evaluate for MgO the elastic constants and
their pressure dependence for the static lattice.

Although alkali halides and divalent oxides such as
MgO have in common the ionic bond and the rocksalt
structure, there are several important differences.

In alkali halides, only NN interactions have to be
taken into account, because the overlapping of wave
functions between other than NN ions is usually small.
Also, the deformation of the ions due to the effect of
the crystal field and that arising from direct interactions
with neighboring ions may be omitted. Hence the use of
HF functions of the free ion represents a good approxi-
mation to the “true’ electronic wave functions of the
ions in the crystal. These assumptions are obviously
much less valid, if valid at all, in MgO. As shown in
Figs. 1 and 2, the overlap between nearest oxygen pairs
of ions is by no means small, as expected, because the
outer electrons of the negative ion are more loosely
bound to its nucleus. This, in turn, leads one to expect
large deformations of the negative ions. It is also likely
that in a divalent crystal, the effect of the crystal field
upon the electronic wave functions, perhaps mostly
those of the outer electrons, would be considerably
greater than in alkali halides. To incorporate these
additional conditions, the contribution from the many-
body-force interaction of nearest oxygen pairs of ions
is estimated. Any rigorous attempt to obtain the
perturbed wave functions would require much too great
an effort to be practicable, at least for our purpose.
Consequently, a more feasible approach appears to be
a semiempirical method. Therefore it is assumed that,
due to the Coulomb repulsion arising from the effective
negative charge of the neighboring anions, the electrons
of the negative ion tend to localize toward the center
at its nucleus along the lines joining the NN anions; in
a similar manner, the electrons tend to diffuse outward
along the lines joining the nearest cations for the same
reason. As for a cation as a center, the same effect
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occurs, except that the directions of localization and
diffusion are reversed. In order to take this effect
approximately into account, two ‘“‘scaling” parameters
A+ and A for evaluating the overlap integrals are
introduced and defined by the following condition:

ML (i Sjn) =5 EirSin),

AN 2 2 (muSnm)y=23 3 (mr,Snr). (6)

The brackets denote matrix elements of an operator .S
between two electronic states that do not belong to the
same ion, and iy, jr are the HF functions of the free
ions associated with ith and jth states of NN pairs of
anions. The quantities 77, jr are hypothetical true
wave functions of the corresponding states in the crystal.
Similarly, my, %y, mr, and nr have the same meaning
as the corresponding iz, 7m, ir, and jr except that they
refer to nearest cation-anion pairs. The factors Ay and
A_ may either be real or complex. In the case of S=1
the quantities in Eq. (6) become the overlap integrals
between two states, and the only restriction on the
possible values of A, is that the absolute values are
upper bounded by the fact that the greatest possible
values of the right sides of Eq. (6) are integers represent-
ing the sums of the overlapping states considered. How-
ever, in view of the reasoning for introducing them,
meaningful values should be within the range of
[A_] <1.0, |\;|>1.0, and | A\, |221.0.

To derive an expression for the QM contribution to
the elastic constants ¢1 and c4s from the many-body
force of NNN interactions, a rectangular coordinate is
fixed at one of the anion sites as origin and with its
axis coinciding with the edges of the unstrained lattice.
If a distance between two points, say, from a fixed
point as origin to an arbitrary point occupied by the gth
ion, is given by a coordinate (ani, ans, ans), where u,
are integers and e an interionic distance, then the
distance 7 in the homogeneously strained lattice can
be written as

r=aD,, (7a)
where
D,=[NJIINT"2. (7b)
204
Is
E’ 1.04 2s
2p
00 ;
\/ 10 20 30 40 50 \| 60
r (auw)

Fic. 2. Overlap between radial wave functions of nearest
oxygen pair of ions in MgO. All functions are Hartree-Fock
solutions by Watson (Ref. 20).
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Here N is considered as a column vector with compo-
nents (#1,m9,m3), and J is the deformation gradient
tensor which is related to the strain tensor e according to

1) s5=2es5+8,5. ©)

The daggered quantities in (7) and (8) denote the
transpose of a matrix.

From Eq. (7) it is easily seen that among the 12
possible pairs of ionic distances between nearest anions
of the strained lattice, only six of them are distinct
and are given by

a()=0a[2(14estestes) ]2,
a(2)=a[2(1+eo+es—es) 12,
a(3)=a[2(1+e1testes) ]2,
a(@)=a2(1+e1+es—es) ]2, 9)
a(5)=a[2(1+e1+eateq) ]2,
0(6)= a[2(1+e1+e2—es)]”2.

They are obtained by letting #o=1,n3=1,n,=0; ns=1,
ng=—1, 11=0; n1=1, n3=1, ne=0; my=1, ng=—1,
ne=0; m=1, na=1, n3=0; n1=1, no=—1, 7;=0 into
Eq. (7). In Eq. (9), the contracted notation of the strain
components e;; is used ; e;;=2(1-+8;;)e,, where 17 — u is
related to 11—1, 22— 2, 33— 3, 23—4, 13—5
and 12— 6.

The interaction energy arising from many-body
forces between the ions is given by?® (e in the following
expression is the electronic charge)

=26 22 3 i (r1),00; (r0)) s (11) | 2 00/ 75| 4(x1)), (10)

where the brackets have the usual meaning as in
evaluating integrals of matrix elements. ¢, are HF
electronic wave functions associated with different
ions (¢; and ¢; in the above expression have the same
coordinate r; because one of them can always be
expanded with respect to the other), v, denotes the
valency of the ions, and r;, is the distance from a
point r; to an arbitrary point occupied by the gth ion.
The summation of ¢ and j runs over all electronic states
of the ions considered. The prime in the summation
over g indicates to exclude the ion with respect to which
the summation is to be performed. As in the case of
alkali halides, it will be assumed in carrying out the
integration in Eq. (10) that most of the contributions
come from the region where »=a. This is justified
because the wave function diminishes rapidly beyond
this region. Analogously to Lowdin’s calculation, one
of the ¢ functions is expanded in terms of the a func-
tions, and 1/ry, in terms of spherical harmonics. Then
the energy per unit volume E for NNN interaction
having # sets of M; equivalent neighbors can be
written as

1 =
E—'—‘-—Z Mkek, (113)
4a® &
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where the following notations are used:
e=2¢2Y (1/a**V) A, (k) B, (11b)
h

An(R)=2aN2 3 3i(r1),b;(x))U (B)jin, (11c)

Ba=Y P y(coshs), (11d)
g rlg
U(k)jin=\-2 _%MK imPM(Py(x),P M () P M (x))
X[ NLM: ay5(k),r ], "' fra(r))y, (1le)
K™ =[(24-1) 2LF+1)(—m) [ (L—M)!/
167 (14-m) (LM ]2, (116)
2+1 (t—M)! potr
A M! ij W | =
NI e =t S ™0
XPLM(z1)PM(2)dR, (11g)
21= (r’—a?—R?)/2aR, (11h)
22= (r®+a®—R?)/2aR. (11i)

PM(x) is Legendre’s associated function and NLM,
nlm refer to the usual quantum numbers associated
with each wave function. f,;(r) represents the radial
wave functions multiplied by the radial distancer. Ris a
radial distance measured from the center of the neighbor
ion. 6, in By is the angle between the line extending
from the origin to a nearest cation and the line joining
the origin with an arbitrary gth ion. Since in the actual
computation the a functions play a central role, all «
functions used are listed in Appendix A.

According to Egs. (5) and (11) and by noting that
according to (9) there are six distinct ionic distances
between nearest anion pairs in the strained lattice, the
expression for ¢,,'’, the QM part of the elastic constant
¢u due to NNN interactions, takes the form

e? 1 o2
1 —

2a* » a*lde,de,

+(Ar3)+Ar(H))(Br(1)4Bi(3))

[(An()+A44(2))(Br(2)+Bw(3))

Cuy

+(Ah(5>+Ah<6>)<Bh(1)+Bh(2»]e=o}. (12)

Here Bn(n) with n=1, 2, 3 represents lattice sums
[Eqg. (11d) carried out with respect to three possible
z axes, namely, z(1)=a(1+42¢1)"2, z(2)=a(142¢)'2,
and z(3)=a(1+2e;)"/?]. Since for each A,(k), there are
two corresponding Bi(z), Eq. (12) follows. Observing
that while all of Bn(n) are functions of all six strain
components, each 4,(k) depends only on three of the
six components, Eq. (12) can be differentiated directly
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Tasie II. Lattice sums in Egs. (13) and (14).

Qo 8Bo(2) 9Bo(1)
=—4.1730 =—=—1,1653
deidey dey de;
0, 9B:(2) aBs(1)
=0.0 = =5.9490
de10e2 dey des
3Q0 9Qo
T2 34960 Bo(1)=Be(2)=Bo(3)=3.496
dey 682
Q2 9Q:
—=—=16.2166 By(1)=B,(2)=B:(3)=0.0
661 382
6200 62@2
—=—4.1730 =23.7960
des deq?

with respect to the strain components to obtain the
expressions for ¢12”” and ¢4 in the following form:

2¢? 32Q},, adAy;
e T e Rt
at n de1des/ o 4 da
30r 0Qn 9dBnr(2) 9Bi(1)
X[ F—-F f ]
2e; dey dey dez o
9?4, 04,
-!-|:a2 ——a—:l(Qh/lz)o} , (13)
2a? da
2¢? %0y,
Ca''=—3 (1/ah) {Ah< >
a h 6642 0
9245 904
-{—[a2 ——a——:l(Qh/12)0] , (14
da? da

where Qn=Bxr(1)+Bi(2)+ Br(3).

Some of the lattice sums appearing in the above
expressions are identical except for sign differences with
those computed by Lowdin by means of the Evjen
method. Others can be easily derived as linear combina-
tions of already known lattice sums. Values thus
determined are listed in Table II. Substitution of these
values into Egs. (13) and (14), together with the

TasLe III. Exponents and normalization coefficients in analytic
HF adapted functions as given in Eq. (17).

i = 1 i = 1 2 3
0-2(25) as 7.700 bs 1.490 2.802 1.776
As —10.3813 B; —0.13332 —6.21035 —2.9479
0-2(2p) bi 0.714 3.412 1.384
B; 0.11617 8.74998 1.49205
aMg+2(1s) ai 11.6586
As 79.6158
sMg*2(2s) ai 10.3251 bs 3.8100
As 19.23955 B;  34.56014
Mg*2(2p) bi 2.7226 4.4808 7.9907
B; 7.0360 22.795 21.348

a These functions were obtained by a variational method by Morse-
Young-Haurwitz (Ref. 21) and subsequently corrected by Tubis (Ref. 22).
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TaBrE IV. Elastic constants ¢;2 and cg of NaCl (in 101 dyn
cm™2) for zero pressure from tabulated (L&wdin) and analytical
HF wave functions. (¢=>5.20 a.u. was used for the ionic distance
in both cases.)

Electrostatic QoM Theoretical
part part value
c12(Lowdin) 1.399 —0.417 0.982
¢12(analytic) 1.399 —0.388 1.011
ca(Lowdin) 1.399 0.126 1.525
cus(analytic) 1.399 0.118 1.517

approximation that the series converge sufficiently

fast as to allow truncation at z=2, gives for the final

expressions

c19” = (ébu/2a%)[—8.346 4 ¢— 6.4093a (d4 o/ da)
+22.1656(1/a) (d4+/da)

+1.748a2 (24 o/da?)], (15)
cul’= (/20" [ —8.346 4 +47.592(1/a?) 4
—1.7484(dAo/da)+1.748a2(A o/da2)].  (16)

Here v=|v,]|.

All calculations in Lodwin’s work were carried out
by means of numerical integration. This was necessary
because most of HF functions are given in tabulated
form. However, in many calculations of atomic and
molecular properties, analytic solutions are often
more convenient. For this reason, we have used HF
adapted analytic wave functions of exponential type.

Slater'” first developed analytic forms of HF wave
functions by fitting the tabulated functions with
hydrogen-like exponentials employing the method of
successive approximation. This method has sub-
sequently been generalized as well as refined by
L6wdin'® and applied to many light and intermediate
atoms including Nat, Cl~, Mg*2(2p). As for the O~2 ion,
Watson® has carried out an analytic solution of the
HF equation for O~ in solids using a ‘stabilizing”
sphere of 4-1 charge having a width equal to the radius
of the ion, 2.66 a.u. The effect of such a well is to
preserve the “correct” potential within the sphere while
destroying the repulsive potential due to the net
charge of —1 outside the ion boundary. For the 1s and
2s functions of Mg*?, Morse ef al.*' have given similar
functious obtained by a variation method. Their
calculations were later corrected by Tubis.?? We have

Table V. Scaling factors Ay and A_ for MgO determined from the
static elastic constants c12 and css of Table I (Ref. 15).

Ay A
2.355 0.470

177, C. Slater, Phys. Rev. 42, 33 (1932).

18 P, 0. Léwdin, Phys. Rev. 90, 120 (1952).

19 P, 0. Loéwdin, Phys. Rev. 163, 1746 (1956).

20 R. E. Watson, Phys. Rev. 111, 1108 (1958).

2P, M. Morse, L. A. Young, and E. S. Haurwitz, Phys. Rev.
48, 948 (1935).

22 A. Tubis, Phys. Rev. 102, 1049 (1956).
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TasLE VI. Electrostatic and QM contribution to ¢;» from NN
and NNN interactions (in 10" dyn/cm?). ¢12 denotes the sum of
c12', €12’ and the electrostatic part (ES).
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TasLe VIII. Derivatives of the cohesive contribution to the
elastic constants ¢;; and ¢y with respect to interionic distance
(in 10 dyn/cm?).

a(a..u.) ES NN(Elz’) NNN (612") C12

3.9680 16.5000 —4.9977 —1.5023 10.0000
3.9630 16.5840 —35.0518 —1.5064 10.0258
3.9580 16.6680 —35.1047 —1.5105 10.0528
3.9530 16.7530 —5.1601 —1.5146 10.0783
3.9480 16.8380 —5.2142 —1.5188 10.1050
3.9380 17.0090 —5.3262 —1.5272 10.1556

checked that even the 2p function of Mg+ obtained from
the variation principle is almost identical with that of
the corresponding HF solution.

All of the HF adapted functions used in the present
calculation can be written in the following forms:

J1s(r)=7» Z Ajexp(—air),
Jfas(r)=7 Z Aiexp(—ap)—r? Z Biexp(—bir), (17)

fap(r) =723 Biexp(—bir),

where the parameters 4;, a,, B;, and b; are listed in
Table III. With these functions, together with the «
functions shown in Appendix A, the quantities 4o and
A4, in Egs. (15) and (16) and their derivatives with
respect to ionic distance can be calculated analytically.
The most extensively used integral formulae for this
computation are shown in Appendix B.

In order to see how much the results obtained by the
two methods differ, we first repeated the calculation of
c12 and ¢4 for NaCl and compared with the results of
Lowdin (Table 1V).

We now proceed to determine the scaling factors
At and A_ for MgO introduced in the overlap integrals
which occur in all of the quantities 4. Since the pressure
derivatives of the elastic constants refer to the rate at
which the elastic constants vary with changes in ionic
distance, they depend primarily on the rate at which
the overlap of the wave functions varies with ionic
distance. Therefore, they are almost independent of the
initial (zero-pressure) values of the elastic constants.
To make use of this fact, let di2 and d44 represent the
QM parts of the empirical values of ¢; and ca4, respec-
tively, which can be obtained by simply subtracting

TasLe VII. Electrostatic and QM contribution to cs¢ from
NN and NNN interactions (in 10! dyn/cm?). ¢4 denotes the sum
of ¢44’, cs4’" and electrostatic part (ES).

a(a.u.) ES NN (644’) NNN (644”) C44

3.9680 16.5000 2.1654 —2.4354 16.2300
3.9630 16.5840 2.1913 —2.4481 16.3272
3.9580 16.6680 2.2183 —2.4607 16.4256
3.9530 16.7530 2.2454 —2.4736 16.5248
3.9480 16.8380 2.2737 —2.4866 16.6251
3.9380 17.0090 2.3291 —2.5128 16.8253

dcya Ac44 %44 %4y
Qof — Aol — ao? agf ——
da /o da /o aa? /o @ /o

—20.5 —-77.1 71 74

the electrostatic contribution from the empirical values.
Then the solution of the following simultaneous linear
equations determines the values of A, and A_:

o'+’ = dia,
cad' s’ = dua. (18)

The single and double primes denote QM contribu-
tions from NN and NNN interactions, respectively.
c12” and cyd’ are calculated exactly in the same manner
as for the alkali halides. For the determination of the
non-Coulomb contributions dy» and dy the static
elastic constants ¢j» and ¢4 of Chung'® as given in
Table I and the NN distance ao=2.096 A which follows
from the thermal-expansion data of Skinner? were used.
The results of these computations are shown in Tables
V-VIIL.

From the data in the last columns of Tables VI and
VII the first and second derivatives of the static elastic
constants with respect to interionic distance were
determined. The results are shown in Table VIIL.
Finally, the pressure derivatives of the effective
elastic constants are calculated from these data accord-
ing to Egs. (4) by using the static bulk modulus of
Table I, Ref. 15. The results are listed in Table IX
together with the available experimental data. Since
it is apparent from Tables VI and VII that the second
derivatives of the elastic constants with respect to the
interionic distance are much less accurate than the first
derivatives, the second pressure derivatives are also
much less accurate than the first pressure derivatives

TasLE IX. Calculated pressure derivatives of elastic constants
(from quantum theory) and of bulk modulus (from Born-Mayer
theory) and experimental data.

uv 12 44 B

Theory 1.39 0.48 3.40
dcw* Expt.»b (300°K) 1.78 1.20 4.16

Expt.©d (300°K) 1.84 1.06 4.50
ap /o Expt.od (78°K) 1.51 1.14 4.74
3%, *

Theory 0.18¢ —0.11° —0.20

(1071 dyn~t cm?) 0.08¢ —0.30f

a Rererence 13.

b Reference 24.

< Reference 14.

d Reference 25.

e Purely QM calculation.

f Experimental first pressure derivative of Ref. 24 used in Eq. (4b),

2 B. J. Skinner, Am. Mineral. 42, 39 (1957).
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and therefore, at best, only estimates. It may be seen,
however, from Eq. (4b) and the numerical data of
Table VIII that the second pressure derivatives are
the difference of two positive terms, and that the
second term in (4b) depends only on the first pressure
derivatives and may be several times larger than the
first term. Since it is necessary to determine this term
more accurately, the second pressure derivatives were
also calculated by using the experimental room-temper-
ature values of the first pressure derivatives of Ref. 24.
These data are purely isothermal quantities and were
calculated from the third-order elastic constants of
Ref. 14.%

For the sake of completeness the first and second
pressure derivative of the bulk modulus were calculated
from the classical model of ionic crystals based on
Coulomb interaction and exponential two-body central
force repulsion between first nearest neighbors? and are
included in Table IX. Actually, the expression for the
pressure dependence of the bulk modulus does not
change if second NN repulsion is included, as long as
the repulsive exponents for first and second nearest
interaction are the same. Since the repulsive exponent is
determined from the experimental bulk modulus the
second NN interaction is included approximately in
the theoretical data for the pressure derivatives.

Tt goes without saying that it is inconsistent to use
the QM data and the results based on the point ion
model alongside. On the other hand, it is well known
that the simple classical model not only accounts
satisfactorily for the cohesive energy of ionic crystals
with cubic symmetry but also for the equation of state
at high pressure.?” This implies that the bulk modulus,
its first and, perhaps, its second pressure derivative are
correctly described in this model. In order to provide
additional evidence, the pressure derivative of the
Griineisen constant is calculated in Appendix C from
the second pressure derivative of the bulk modulus,
and it is shown that the result is of the same order as
the experimental value.

IV. DISCUSSION AND CONCLUSION

It is apparent from Table VI that the QM contribu-
tions to ¢i» arising from first and second nearest neigh-
bors are of opposite sign as the Coulomb term and
reduce it by about 40%,. The data in Table VII show
that for css the QM NN, and NNN contributions are
both as big as about 159, of the Coulomb term, but of
opposite sign, so that the total elastic constant c44 is
given to 98-999, by the Coulomb term. Note that two-

(1‘“ % R. Barsch and Z. P. Chang, Phys. Status Solidi 19, 139
967).

26 The data at 78°K of Ref. 14 have been revised [O. L. Ander-
son (private communication)].

26 M. Born and M. Goeppert-Mayer, edited by H. Geiger and
K. Scheel, Handbuch der Physik (Julius Springer, Berlin, 1933),
Vol. 24, Part 2, p. 623.

2" H. G. Drickamer, R. W. Lynch, R. L. Clendenen, and
E. A. Perez-Albuerne, Solid State Phys. 19, 135 (1966).
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body central forces between NN do not contribute to
the elastic constants ¢y or c44.2® Thus the large contribu-
tions contained in Tables VI and VII must arise from
three-body forces of central type. The situation is the
same as in the alkali halides®* where NN three-body
forces give a negative contribution to c¢is, and a small
positive one to c4u. The situation in MgO is different,
however, insofar as the NN contribution to ¢s is 13
times larger than in NaF (which is isoelectronic with
MgO) and that to cysis eight times larger than in NaF.4
Also, the NN contribution to c44 is over-compensated
in MgO by the NNN contribution (which consists of
two- and three-body terms). Thus because of the large
NNN term the non-Coulomb forces give in MgO a
negative contribution to ¢, whereas it is positive in
the alkali halides.*

Comparison between experimental and theoretical
pressure derivatives in Table IX indicates that the
agreement is satisfactory for ¢is, but rather poor for cys.
This may be due to the fact that the non-Coulomb
contribution is the difference of two terms of about
equal magnitude, but opposite sign. Apparently the
rate of change of this difference is underestimated in
the present calculation, but it does have the right sign.
This can be seen by comparing the present theoretical
value with the value of 0.25 arising from the Coulomb
contribution only.

The main source of error, however, must be ascribed
to the use of the free ion HF functions which are
modified here only through the isotropic scaling factors,
which are assumed to be the same for all orbitals and
independent of pressure. The true scaling factors which
relate the wave function in the crystal to the free-ion
HF function must be expected to be orientation-
dependent. This then explains why the isotropic scaling
factors apparently are a reasonable approximation for
12, but not for c4; whereas the deformation described
by ¢i2 is the Poisson contraction in which NN bond
angles are preserved, ¢4 is a shear modulus which reflects
the stiffness against bond angle changes.

In order to verify whether the departure from the
Cauchy relation increases with pressure we consider,
following Lowdin,* the expression D= [cas*(p)—c12*(p)
+2p1/[ere®(p)+cas®(p)], which is zero if the Cauchy
relation is fulfilled. With the zero-pressure values from
Tables VI and VII and the theoretical pressure deriva-
tives from Tables VI and VII and the theoretical
pressure derivatives from Table IX one obtains for
$p=0, D=0.238; and for p=100 kbar, D=0.256, hence
a 159, increase in absolute magnitude.

Although the theoretical values of the second pressure
derivatives of Table IX cannot be considered as more
than rough estimates they are useful for estimating the
pressure at which marked deviations from a linear
pressure dependence of the elastic constants may be
expected to occur. Using the experimental data for the

28 A, May, Phys. Rev. 52, 339 (1937).
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zero-pressure values and the first pressure derivatives,
and the theoretical second-pressure derivatives. one
finds that at 1 Mbar the bulk modulus deviates 159,
the shear modulus ¢,=3(c13—ca4) =% (B—c12) 60%, and
the shear modulus css 209, from the values calculated
from a linear relationship. This should have important
implications in the analysis of seismic velocity versus
depth profiles for the mantle of the earth. Since the
NNN interaction is pronounced in all oxide compounds,
one should expect similar deviations for other oxides
too, if the pressure is measured in relative units and
referred to the bulk modulus.

As far as the departures from the Cauchy relations in
other oxides (of the rocksalt type) are concerned, one
may expect a behavior similar to that in alkali halides,
i.e., a decreasing deviation with increasing cation size
for substances with identical anions. This tendency was
attributed by Léwdin to the fact that the QM contribu-
tions are proportional to an inverse fourth power law
of the NN distance. This situation is not changed if
NNN interaction is included because according to
Tables VI and VII the absolute magnitude of these
effects decreases with increasing interionic distance.

o(300:a,7)= (I/Zar)/f3o(R)dR,

«1(300:

+105< 1 + / 2
32 \a%* a4r2 ) Juo(K)

15 r
ca@00:0) = () [man="( =4
16\ a&* 3ar 16\ar?
35/a* 3 r? 10571
3(300:a,7) = _<_+— ) f30(R)dR— ——-—(—-—
32\rt  5r2 Sa2 at 7"
fa1(R)

@o(310:

o
=)

15<a2 1 7

—dR+"“—‘ /fal(R)RdR

3
R+~ f

fa(R)
«1(310:

a2(3 10.

r)=—I -+

+
32 3r 3a?

a
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1,3

2 H. E. Hite, R. J. Kearney, J. Appl. Phys. 38, 5424 (1967).
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+
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The same tendency as in alkali halides is in fact observed
in the sequence MgO-CaO. The static elastic constants
of CaO are® ¢13=06.65X10" dyn/cm™? and c4=7.40
X 10" dyn cm™2, corresponding to a comparatively small
deviation from the Cauchy relation. The unusually
large deviation occurring in MgO must therefore be
ascribed to the small cation-anion radius ratio.
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APPENDIX A

The « functions used in the calculation are listed.
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APPENDIX B Derivative of 7 with respect to @ is then given by

From Eq. (11), it is easily seen that for the evaluation
of Ao and A, and their derivatives with respect to
ionic distance, the following general type of integration
need be evaluated:

a P
= / / (R™e*BdR)eb rndr ,
0 q

Equation (1) can be

(B1)

where p=a+r and ¢g=a—r.
integrated into the form

I=1,+1s,

m+1 n

I,=3 Y Mjlexp(Ha) Z 2kt (1)a’

=1 j=0

—exp(ca) kil Us(1)a’], (B2a)
Ig=(— 1)"7%1 z::o M il exp(ab)aiUsia(2)
k+1
—exp(ca) 2. Us(2)a’], (B2b)
where
Maij=(—1)7 :Cigi,
Ci=nl/[(n—7)'j'],
g= (=) m!l/[(m—i+1)lk],
Ust)=(—1)Pkl/[(k—s+ D) (O)], (=12)
h(1)=c+b,
h(2)=c—b,
k=m+n—j—i4+1,
f=h—stit1,

H=2c+b.

al

m+l n

P =2 X Ml Z Us(Da/[ 2+~ +e e (H+ f/a)
a =1 j=0
—e*(c+f/a)J— (= 1)"[a%e? (b+j/a) Ups1(2)

k+1

—e 2 Us(2)a/ (c+f/a)]} .

s=1

(B3)

APPENDIX C

In order to verify the order of magnitude of the second
pressure derivative of the bulk modulus as calculated
from the Born-Mayer theory the pressure coefficient
of the Griineisen parameter will be estimated by using
this value and compared with the experimental value.

The pressure coefficient of the Griineisen parameter
may be obtained by differentiating the Dugdale-
McDonald relation in a form which is valid for arbitrary
pressure.® The result is

ay 1
<~—> =1By'+—By'.
ap/ o 0

From the theoretical data of Table IX one obtains for
MgO +'=—1.15, which refers to the static lattice.
The experimental value can be calculated by differen-
tiating the defining relation y=B38/(pC,) with respect
to pressure and converting the pressure derivatives of
the volume thermal expansion coefficient and the
specific heat C, into temperature derivatives of the
bulk modulus and the thermal expansion coefficients,
respectively.® Using the numerical data compiled in
Ref. 24 one obtains at 300°K v'= —1.44, in fair agree-
ment with the above estimate for the static lattice.

g

30] S. Dugdale and D. K. C. McDonald, Phys. Rev. 89, 832
(1953
31 W C. Overton, Jr., J. Chem. Phys. 37, 117 (1962).



