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tween the observed properties of krypton and some
calculations, but systematic agreement in detail for all
thermal properties is lacking. For krypton, the situa-
tion can be considered good, however, when comparison

is made to that for other classes of solids. For the latter,
anharmonic effects being smaller are easier to approxi-
mate, and largely phenomenological theories with many
adjustable parameters are generally employed.

APPENDIX

Complete lattice-thermal-expansion data for two different specimens of solid krypton are given in Table VI.

TABLE VI. X-ray lattice-parameter thermal-expansion data from specimens Nos. 1 and 2. ao ——5.64587&0.00010 A.*.

T, 'K 104Aa/ae T, 'K 104Aa/ao T, 'K 10'Aa/ao T, 'K 104Aa/ao T, 'K 104Aa/ao T, 'K 104Aa/ao

4.30
4.30
4.30
8.45
9.95

12.28
14.61
19.44
19.45
24.28
28.05
31.97
35 92c

0.04a
0.05
0.03
0.95
1.78
3.36
5.43

12.10
12.12
20.23
27.85
36.26
45.60

Specimen No. 1

35.92 45.77
39.85 55.22
39.87 55.50
43.97 65.92
48.23 77.40
52.00 87.73
55.97 99.24
59.99 111.24
59 99 111.40b
59.99 111.49
63.99 123.74
67.99 136.72
71.98 149.95

76.01
80.00
83.98
88.01
92.13
96.02

100.02
104.14
108.05
111.98
113.97

163.84
178.14
192.73
208.48
224.69
241.02
257.81
276.30
295.52
315.31
325.99

2.5
3.2
4.25
4.25
5.93
8.68
9.86

12.28
15.14
18.00
21.16
24.02
26.95
29.96

0.01d—0.01
0.04
0.04
0.20
0.95
1.46
3.10
6.13
9.63

13.70
19.03
24.88
31.93

Specimen No. 2

32.98 38.79
35.98 45.57
38.99 53.28
42.01 60.85
45.00 68.59
47.98 76.96
51.98 87.97
56.00 99.49
59.97 111.46
63.99 123.33
69.98 143.44
74.00 156.90
78.03 171.17
82.00 185.73

86.02
90.00
94.04
94.15
98.02

102.00
106.00
107,01
107.07
108.87'
109'990
110.03
112.00
1.14.04

200.86
216.20
232.75
233.00e
249.44
266.54
285.25
290.38
290.60
299.46
305.38
305.39
315.45
326.34

a Ni Kai radiation (1.657910 A+) and (622) planes used on this and on succeeding data points, until otherwise specified.
b Co Xai radiation (1.788965 A~) and (620) planes used, as in Ref. a; refraction correction 0.00007 A+.
e Measurement made after cooling.
~ Cu Xai radiation (1.540562 A,*) and (640) planes used, as above.
e Fe Xai radiation (1.936042 g+) and (531) planes used, as above; refraction correction 0.00008 L+.

"W. Gotze, Phys. Rev. 156, 951 (1967). For another view, see P. F. Chaquard, The Anharmonsc Crystal (W. A. Benjamin, Inc. ,
New York, 1967).
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Pressure Derivatives of Second-Order Elastic Constants of MgO*
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The deviations of the second-order elastic constants from the Cauchy relation for some representative
alkali halides were successfully accounted for by Lowdin's theory of many-body forces of quantum-mechan-
ical origin. In the present paper, this theory is extended to include second-nearest-neighbor (nearest anion-
anion) interaction in MgO for the calculation of the pressure derivatives of the second-order elastic con-
stants. The calculated values, Bc&s*/Bp=1.4 and ctc44*/itp=0. 5, are compared with the empirical results.
While the qualitative agreement tends to support the theory that the many-body character of interionic
interactions is indeed responsible for the particularly large deviations observed in MgO, better quantitative
agreement would require a more elaborate calculation.

I. INTRODUCTION

'HK elastic constants of crystals and their depend-
ence on pressure are of considerable interest

because of the information on the interatomic forces
which they provide. In particular, deviations from the
Cauchy relations in ionic crystals indicate in certain
cases the presence of many-body forces of quantum
mechanical (QM) origin.

* Research supported by the National Science Foundation.

For cubic crystals under hydrostatic pressure p the
six Cauchy relations reduce to the equation' c»—c44
= 2p, where crs and c44 are the effective elastic constants
of the compressed crystal that determine, for example,
ultrasonic wave propagation. It is well established
theoretically that the Cauchy relations hold for centro-
symmetric crystal structures in the absence of therrnal-

' A. K. H. Love, The Mathematecat Theory of Etastscsty (Cam-
bridge University Press, Cambridge, 1934).
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and zero-point motion with no initial stresses present,
if the cohesive forces are two-body central forces. ' The
role of many-body forces in destroying the Cauchy
relation was 6rst pointed out by Lowdin'4 in a compre-
hensive QM treatment of the cohesive properties of
alkali halides. In this theory a Heitler-London —type
wave function for the electrons in the crystal is con-
structed from the Hartree-Fock (HF) functions of the
free ions. The theoretical results for the elastic constants
and for the deviation from the Cauchy relation agree
reasonably well with the experimental data, conhrming
the QM origin of the departures from the Cauchy
relations. Remaining discrepancies are partly due to
experimental error and to the uncertainty arising from
subtracting the eGect of thermal- and zero-point motion
from the experimental data. In addition, a series of
simplifying assumptions was made in the theory which
reduce its accuracy.

The eGect of thermal and zero-point motion was
investigated by Leibfried and Hahn. "These authors
showed that in crystals with central forces thermal
motion causes deviations from the Cauchy relations
which are only small and opposite to those found in the
alkali halides, except in lithium halides. Thus the
departures from the Cauchy relations in these alkali
halides become larger if the vibrational contribution is
subtracted and must for the static lattice be ascribed
entirely to QM many-body forces.

Another mechanism for explaining departures from
the Cauchy relations was proposed by Herpin. ' It arises
from the electrostatic interaction of quadrupole mo-
ments which are induced due to the loss of cubic
symmetry in the strained crystal. Dick~ has designed
a simple model for estimating the effect arising from
QM exchange charges which arise in the region of
overlapping wave functions of neighboring ions. Re-
cently, HaussOhl' has discussed the empirical data for
a large variety of materials and has proposed qualitative
rules for the deviations from the Cauchy relations.

The pupose of the present paper is to investigate the
failure of the Cauchy relations in MgO by means of the
theory of Lowdin. Because the overlap of the wave
functions of adjacent oxygen ions was found to be
large it was necessary to extend Lowdin's formalism so
as to include next-nearest-neighbor (NNN) anion-anion
interaction. The choice of MgO was motivated by the
fact that for this material the deviation from the
Cauchy relation is much larger than for any alkali
halide. In addition, the elastic constants of oxide
compounds and their dependence on pressure are of
great importance in connection with the problem of the

' G. Leibfried and W. Ludwig, Solid State Phys. 12, 275 (1961).
P. O. Lowdin, A Theoretic al Investigation into Some Properties

of Iortsc Crystals (Almquist and Wiksell, U psala, 1948).
4 P. O. Lowdin, Advan. Phys. 5, 1 (1956 .' G. Leibfried and H. Hahn, Z. Physik 150, 497 (1958).' A. Herpin, J. Phys. Radium 14, 611 (1953).' B. G. Dick, Phys. Rev. 129, 1583 (1963).' S. Haussiihl, sPhys. Kondensierten Materie 6, 181 (1967).

constitution of the earth, and of all oxides MgO has
the simplest possible electronic and crystal structure.
The pressure dependence of the elastic constants is of
theoretical interest in itself because one would expect
that the deviations from the Cauchy relations increase
with increasing overlap of the electronic wave functions,
or with increasing pressure. Therefore, attention will

be focused in this paper on the pressure dependence of
the elastic constants.

While the present work was being completed, Calais
et al'. ' have reported calculations of the cohesive
properties and the elastic constants of MgO on the basis
of Lowdin's theory; however only nearest-neighbor
(NN) interaction is taken into account for the elastic
constants c» and c44, and only the zero-pressure values
of the elastic constants are calculated.

Experimental data on the elastic constants of MgO
and their dependence on temperature and pressure are
available from several investigators. '~" The room-
temperature values and the pressure derivatives ob-
tained by diferent investigators are substantially in
agreement. Marked differences in the temperature
variation exist, however, and will be discussed in
connection with the evaluation of the thermal contribu-
tion in Sec. II.

II. DEPENDENCE OF ELASTIC CONSTANTS ON
PRESSURE AND TEMPERATURE

The isentropic second-order elastic coustants of a
crystal at arbitrary pressure p and temperature T can
in the quasiharmonic approximation be represented as
the sum of two terms':

The erst term represents the elastic constants of the
static lattice. The second term contains the eGect of
thermal and zero-point motion and is usually much
smaller than the first term. The erst term consists of
a contribution from the cohesive forces of the crystal
and a second term which arises from the mechanical
work of the surface forces against the pressure'.

1 B'E
C;;~t*(p)=—

i +pD';st,
V Be,,Best/ e=o

where
D,p, I,=5;;8p)—8;I8,)—8;)8,I, (3)

and 8 is the cohesive energy of the crystal per mole at

' J. L. Calais, K. Mansikka, G. Petterson, and J. Vallin, Arkiv
Fysik 34, 361 (1967).

' M. A. Durand, Phys. Rev. 50, 449 (1936).
"S.Bhagavantam, Proc. Indian Acad. Sci. A41, 72 (1955).
"C.Susse, J. Rech. Centre Natl. Rech. Sci., Lab. (Paris) No.

54, 23 (1961).
u E. H. Bogardus, J. AppL Phys. 36, 2504 (1965).
'40. L. Anderson and P. Andreatch, Jr., J. Am. Ceram. Soc.

49, 404 (1966).
"D.H. Chung, Ph.D. thesis, The Pennsylvania State Univer-

sity, 1966 (unpublished).
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a state corresponding to the compression caused by the
pressure upon which a deformation described by the
strain tensor e= (e,;) is superimposed. V is the molar
volume of the crystal at the pressure p, and 8;; denotes
the Kronecker symbol. The quantities defined in (2)
are called effective elastic constants. For crystals of
cubic symmetry the first term in (2) depends only on the
NN distance a. Therefore the first and second pressure
deviatives of the effective second. -order elastic constants
can be written in the form

(4a)

/8Cepi*
X

~

— —D,;~i (4b)
a

Here Bp and Bp' are the zero-pressure values of the bulk
modulus and its first pressure derivative, respectively,
and the index 0 always refers to the static lattice at
zero pressure. The quantity

(5)

is the contribution from the cohesive forces and will be
calculated in Sec. III as a function of the interionic
distance, and the first two pressure derivatives of the
effective elastic constants of the static lattice will be
evaluated according to (4).

The second term in (1) contains the temperature
dependence of the adiabatic elastic constants for any
given pressure. It is approximately proportional to the
vibrational energy and therefore for temperatures above
the Debye temperature directly proportional to the
temperature. This is the justification for the widely
used procedure (first suggested by Leibfried and Hahn')
to determine the elastic constants of the static lattice
by extrapolating the experimental data from the high-
temperature region linearly to T=0'K. The same
procedure must be used to determine the lattice
constant of the static lattice from measurements at
high temperature.

The zero-pressure values of the elastic constants of
the static lattice as determined from the experimental
data of diferent investigators are for Mgo listed in
Table I. The data of Anderson and Andreatch'4 could
not be used for this purpose since they cover only the
range from 79'K to room temperature. Although at the
lowest temperature measured the data for c~~ and c~. of
these authors are, rexpectively, 1 and 3% higher than
the data of Chung, " there is very good agreement at
room temperature. The room-temperature values for
c~~ and ci~ of both authors fall almost exactly between

TAnLE I. Static elastic constants of Mgo (in 10» dyn cm ').
(From linear extrapolation of high-temperature data to O'K. )

C11

34.80
32.27
31.88

8.57
10.80
10.00

c440

16.78
16.38
16.24

17.31
17.96
17.29

Ref.

10, 2
12
15

those of Durand' and of Susse, ' the deviations being
1 and 5%%uo, respectively. The room-temperature values
of c44 of three investigators agree, but those of Susse
are 1% higher. Since the slopes at high temperatures
are also slightly diRerent the discrepancies for the
extrapolated values of the static lattice are larger. The
discrepancy is particularly striking for c», where the
value obtained in Ref. 2 from Durand's data is 20%
smaller than the value obtained from Susse. This is
due to the fact that Durand's measurements covered
only the range 80—560'K, whereas those of Susse and
Chung are extended to 1480 and 1250'K, respectively.
Since the Debye temperature of Mgo is" about 950'K
it may be expected that the temperature dependence
of the elastic constants becomes linear at or above this
temperature. The measurements of all three authors
show that the linear range of c~~ starts at about 500'K
and that of c44 at about 700'K. According to Susse and
Chung, c» decreases linearly above 800'K; however,
Durand finds a constant positive slope between 90 and
560'K. The other two investigators'4 " that have
extended their measurements to low temperature con-
firm the positive temperature coeS.cient of c~~ below
room temperature. It must be concluded, therefore, that
c~2 passes through a maximum which occurs according
to Chung at about 300'K. Thus the static value of c~~

obtained from Durand's data is too low and incorrect
because it is not based. on the correct high-temperature
slope. All three static elastic constants as determined
from the data of Susse and of Chung agree quite well.
After a careful consideration of all factors involved it
was decided to choose the data of Chung for further
use in this paper.
In order to obtain the pressure derivatives of the
elastic constants of the static lattice the same method of
extrapolation of the data taken at high temperature
has to be used. Unfortunately, the only available
experimental data'3 '4 for the pressure derivatives refer
to 300 and 79'K. Since in this temperature range the
thermal contribution may not be expected to be propor-
tional to temperature, there is no direct way of deter-
mining the static values from the experimental data.
In the absence of experimental data at or above the
Debye temperature one could perform a lattice-
dynamical calculation, but this is beyond the scope of
the present paper. Therefore the unreduced experi-
mental data will be used for the comparison with the
theoretical results.

"G. K. White and O. L. Anderson, J. Appl. Phys. 37, 430
(1966).
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Here N is considered as a column vector with compo-
nents (nq, rtm, rts), and J is the deformation gradient
tensor which is related to the strain tensor e according to

where the following notations are used:

eg ——2e' Q (1/a"+')A g(k)Bp, (11b)

(J J),;=Ze..yr, ,
The daggered quantities in (7) and (8) denote the
transpose of a matrix.

From Eq. (7) it is easily seen that among the 12
possible pairs of ionic distances between nearest anions
of the strained lattice, only six of them are distinct
and are given by

a(1)= a[2(1+e~+e3+e4)]'12,
a(2) =a[2(1+e~+e~—e4) Jt2,

a(3)= a[2(1+eg+e3+eg)]'I'
a(4) = a[2 (1+eg+ es—es)]'~',

a(3)=a[2 (1+eg+ eg+ ee)]'",
a(6) =a[2(1+el+e2—ee)]'".

(9)

They are obtained by letting e2= 1,m3= 1, m&= 0; e&= 1,
e3= —1, eg=0; as'= 1, e3= 1, e2=0; mj. = 1, n3= —1,
n2 ——0) ng ——1, n2=1, F3=0; eg= 1) n2= —1) e3=0 into
Eq. (7).In Eq. (9), the contracted notation of the strain
components e;; is used; e,;= ~~(1+8,,)e„, where ij ~ p is
related to 11—+1, 22 —&2, 33 —&3, 23 —+4, 13—+5
and 12~ 6.

The interaction energy arising from many-body
forces between the ions is given by' (e in the following
expression is the electronic charge)

2 Z(4''(r&) It', (ri))(4;(r~) I
2' e,/r~, Ie'(r&)) (10)

i j t)

n
8= Q MI, eg,

4a' I
(iia)

where the brackets have the usual meaning as in
evaluating integrals of matrix elements. g, are HF
electronic wave functions associated with different
ions (p; and g, in the above expression have the same
coordinate r& because one of them can always be
expanded with respect to the other), w, denotes the
valency of the ions, and r&, is the distance from a
point r~ to an arbitrary point occupied by the gth ion.
The summation of i and j runs over all electronic states
of the ions considered. The prime in the summation
over g indicates to exclude the ion with respect to which
the summation is to be performed. As in the case of
alkali halides, it will be assumed in carrying out the
integration in Eq. (10) that most of the contributions
come from the region where r=a. This is justified
because the wave function diminishes rapidly beyond
this region. Analogously to Lowdin s calculation, one
of the g functions is expanded in terms of the n func-
tions, and 1/r~, in terms of spherical harmonics. Then
the energy per unit volume E for NNN interaction
having e sets of 3f& equivalent neighbors can be
written as

A~(k) = 2wX ' P QQ;(r~), P;(r~)) U(k);; q, (11c)

'Vg

Bg Q' ——P(, (coseg),
&ag

(11d)

U(k);;, ~
——X ' P Z't„™(PI„(x),P,~(x)P)M(x))

t=iM/

&((n&[NLM: a;;(k),r], r" 'f„q(r)), (11e)

Z t
z~ = [(2l+1)(21+1)(t—n$)!(L—M)!/

16m (t+m)!(I+M)!]"' (11f)

2t+1 (t—M)! '+"
n([NLM: a;;(k),r]= — f~z(r)

2ar (t+M)!

XPr~(eg)P, ~(eg)dR, (11g)

(11h)z1 (r2 a2 Jt2)/2aJt,

z2= (r'+a' E')/2a—R.

g2 1 Q2

[(A.(1)+A.(2))(B~(2)+B~(3))
2 8 8

+(A ~(3)+A~(4))(B~(1)+B~(3))

+(A~(5)+A~(6))(B~(1)+B~(2))].=0 (12)

Here B~(rt) with I=1, 2, 3 represents lattice sums
[Eq. (iid) carried out with respect to three possible
z axes, namely, z(i)=a(1+2eq)'" z(2)=a(1+2e )'"
and z(3) =a(1+2e3)'"].Since for each Aq(k), there are
two corresponding Bz(N), Eq. (12) follows. Observing
that while all of Bq(n) are function. s of all six strain
components, each Az(k) depends only on three of the
six components, Eq. (12) can be differentiated directly

Pz~(x) is Legendre's associated function and NLM,
mhn refer to the usual quantum numbers associated
with each wave function. f t(r) represents the radial
wave functions multiplied by the radial distance r. R is a
radial distance measured from the center of the neighbor
ion. 8, in B~ is the angle between the line extending
from the origin to a nearest cation and the line joining
the origin with an arbitrary gth ion. Since in the actual
computation the o. functions play a central role, all o.

functions used are listed in Appendix A.
According to Eqs. (5) and (11) and by noting that

according to (9) there are six distinct ionic distances
between nearest anion pairs in the strained lattice, the
expression for c„„",the QM part of the elastic constant
c„„due to NNN interactions, takes the form
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Be18e2

=-4.1730
BBp(2) BBp(1)

Be1 8e2

=—1.1653

TABLE II. Lattice sums in Eqs. (13) and (14). TAnxx IV. Elastic constants cpp and cpp of NaCl (in 10" dyn
cm~) for zero pressure from tabulated (Lowdin) and analytical
HF wave functions. (a=5.20 a.u. was used for the ionic distance
in both cases.)

$2Q
=0.0

8eIBe~

&Qp &Qp—= — —= —3.4960
e1 Be~

BBp(2) BBp(1)
=5.9490

BeI

Bp(1)=Bp(2) =Bp(3) = 3.496

clap (Lowdin)
c&p (analytic)
c44 (Low din)
cpp (analytic)

Electrostatic
part

1.399
1.399
1.399
1.399

QM
part

—0.417—0.388
0.126
0.118

Theoretical
value

0.982
1.011
1.525
1.517

BQ2 BQg—=—= 16.2166
BeI Beg

$2Q
=—4.1730

Be4'

Bp (1)=Bp (2) =Bp (3) =0.0

$2Q
=23.7960

Be4'

approximation that the series converge sufficiently
fast as to allow truncation at k=2, gives for the 6nal
expressions

cts"= (e's/2a') L
—8.3462 o

—6.4093a (dA o/da)

+22.1656(1/a) (dies/da)

+1.748a'(d'2 o/da') j, (15)
with respect to the strain components to obtain the
expressions for c1~" and c44" in the following form:

( O'QI„a c)As
P(1/a") &al +-

a4 kaetae, o 4 aa

BQs BQs BBy,(2) BBs(1)
X + + +

2e

—2e1 e1 e1 ~e2 —0

8 Ag BAI4
+ a' —a (Qs/12)o (13)

2a Ba

2e cl Qp
c44"—— P(1/a") As

a4 884

8 Ag RAID

+ a' —a (Qs/12) o, (14)
Ba Ba

Tmxx III. Exponents and normalization coefEcients in analytic
HF adapted functions as given in Eq. (17).

0 ~(2s}

o~(2e)

aMg~(2S)

aMg~(2s)

Mg fl (2p)

gs 7.700
A s -10,3813

as

Ar

11.6586
79.6158
10.3251
19.23955

i = 1

by 1.490
B; —0.13332
bs 0.714

Bs 0.11617

bs 3.8100
Bs 34.56014
bs 2.7226
Bi 7.0360

2.802
—6.21035

3.412
8.74998

4.4808
22.795

1.776
—2.9479

1.384
1.49205

7.9907
21.348

'These functions were obtained by a variational method by Morse-
Voung-Haurwitz {Ref.21) and subsequently corrected by Tubis (Ref. 22).

where Q&=B&(1)+Bs(2)+Bs(3).
Some of the lattice sums appearing in the above

expressions are identical except for sign di8erences with
those computed by Lowdin by means of the Kvjen
method. Others can be easily derived as linear combina-
tions of already known lattice sums. Values thus
determined are listed in Table II. Substitution of these
values into Eqs. (13) and (14), together with the

Table V. Scaling factors X+ and X for MgO determined from the
static elastic constants cpp and cpp of Table I (Ref. 15).

X+

2.355 0.470

» J. C. Sister, Phys. Rev. 42, 33 (1932)."P.O. Lowdin, Phys. Rev. 90, 120 (1952)."P.O. Lo*mdin, Phys. Rev. 163, 1746 (1956)."R.E. Watson, Phys. Rev. 111, 1108 (1958).
~'P. M. Morse, L. A. Young, and E. S. Haurwitz, Phys. Rev.

48, 948 (1935).
"A. Tubis, Phys. Rev. 102, 1049 (1956).

cpp"——(e tt/2a4) L
—8.3462 o+47.592 (1/a')As

—1.748a (dA o/da)+1. 748a'(d A o/dao) $ (16)

Here s=
l s, l.

All calculations in Lodwin's work were carried out
by means of numerical integration. This was necessary
because most of HF functions are given in tabulated
form. However, in many calculations of atomic and
molecular properties, analytic solutions are often
more convenient. For this reason, we have used HF
adapted analytic wave functions of exponential type.

Slater'7 6rst developed analytic forms of HF wave
functions by 6tting the tabulated functions with
hydrogen-like exponentials employing the method of
successive approximation. This method has sub-
sequently been generalized as well as refined by
Lowdin' ' and applied to many light and intermediate
atoms including Na+, Cl, Mg+'(2p). As for the 0—' ion,
Watson" has carried out an analytic solution of the
HF equation for 0—' in solids using a "stabilizing"
sphere of +1 charge having a width equal to the radius
of the ion, 2.66 a.u. The eGect of such a well is to
preserve the "correct" potential within the sphere while
destroying the repulsive potential due to the net
charge of —1 outside the ion boundary. For the is and
2s functions of Mg+', Morse et al."have given similar
functious obtained by a variation method. Their
calculations were later corrected by Tubis. "Ke have
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TABLE VI. Electrostatic and QM contribution to c&2 from NN
and NNN interactions (in 10"dyn/cm'). C12 denotes the sum of
c~2', c1~" and the electrostatic part (ES).

TABLE VIII. Derivatives of the cohesive contribution to the
elastic constants c1~ and c44 vrith respect to interionic distance
(in 10'1 dyn/cm').

a(a.u. ) ES NN(~ ') NNN(c

3.9680
3.9630
3.9580
3.9530
3.9480
3.9380

16.5000
16.5840
16.6680
16.7530
16.8380
17.0090

—4.9977—5.0518—5.1047—5.1601—5.2142—5.3262

—1.5023—1.5064—1.5105—1.5146—1.5188—1.5272

10.0000
10.0258
10.0528
10,0783
10.1050
10.1556

f2, (r) =r P A; exp( —a;r) —r' Q Ii; exp( —b;r), (17)
1

( (1r) = r' Q 8; exp( —b;r),

where the parameters A;., a, , 8,, and b; are listed in
Table III. Kith these functions, together with the n
functions shown in Appendix A, the quantities Ao and
A2 in Eqs. (15) and (16) and their derivatives with
respect to ionic distance can be calculated analytically.
The most extensively used integral formulae for this
computation are shown in Appendix B.

In order to see how much the results obtained by the
two methods differ, we first repeated the calculation of
ci~ and c44 for NaCl and compared with the results of
Lowdin (Table IV).

We now proceed to determine the scaling factors
X+ and P for MgO introduced in the overlap integrals
which occur in all of the quantities A ~, . Since the pressure
derivatives of the elastic constants refer to the rate at
which the elastic constants vary with changes in ionic
distance, they depend primarily on the rate at which
the overlap of the wave functions va.ries with ionic
distance. Therefore, they are almost independent of the
initial (zero-pressure) values of the elastic constants.
To make use of this fact, let d1~ and d44 represent the
QM parts of the empirical values of c12 and c44, respec-
tively, which can be obtained by simply subtracting

checked that even the 2p function of Mg+ obtained from
the variation principle is almost identical with that of
the corresponding HF solution.

All of the HF adapted functions used in the present
calculation can be written in the following forms:

f1,(r) =- r P A; exp( —a;r),

ac„)
aa j4

—20.5 —77.1

TABLE IX. Calculated pressure derivatives of elastic constants
(from quantum theory) and of bulk modulus (from Born-Mayer
theory) and experimental data.

!

(8 „.*)
(&p 4

Theory
Expt. ' (300'K)
Expt. ' (300'K)
Expt. ' (78 K)

12

1.39
1.78
1.84
1.51

0.48
1.20
1.06
1 ~ 14

3.40
4.16
4.50
4 74

the electrostatic contribution from the empirical values.
Then the solution of the following simultaneous linear
equations determines the values of P+ and X

C12 +C12 = d12 )
I II

C44 +C44 = d44 ~

I II

The single and double primes denote QM contribu-
tions from NN and NNN interactions, respectively.
c1~' and c44' are calculated exactly in the same manner
as for the alkali halides. For the determination of the
non-Coulomb contributions d12 and d44 the static
elastic constants c12 and c44 of Chung" as given in
Table I and the NN distance as ——2.096 A which follows
from the thermal-expansion data of Skinner" were used.
The results of these computations are shown in Tables
V—VII.

From the data in the last columns of Tables VI and
VII the 6rst and second derivatives of the static elastic
constants with respect to interionic distance were
determined. The results are shown in Table VIII.
Finally, the pressure derivatives of the effective
elastic constants are calculated from these data accord-
ing to Eqs. (4) by using the static bulk modulus of
Table I, Ref. 1S. The results are listed in Table IX
together with the available experimental data, . Since
it is apparent from Ta,bles VI and VII that the second
derivatives of the elastic constants with respect to the
interionic dista. nce are much less accurate than the first
derivatives, the second pressure derivatives are also
much less a,ccurate than the erst pressure derivatives

TABLE VII. Electrostatic and QM contribution to c44 from
NN and NNN interactions (in 10"dyn/cm'). c44 denotes the sum
of c44', c44" and electrostatic part (ES). Theory 0.18" —0.11' —0.20

a(a.u.)

3.9680
3.9630
3.9580
3.9530
3.9480
3.9380

E$

16.5000
16.5840
16.6680
16.7530
16.8380
17.0090

2.1654
2.1913
2.2183
2.2454
2.2737
2.3291

—2.4354—2.4481—2.4607—2.4736—2.4866—2.5128

NN(c44') NNN(c44") &44

16.2300
16.3272
16.4256
16.5248
16.6251
16.8253

(10 "dyn ' cm') 0.08' —0.30'

a Reference 13.
b Reference 24.
& Reference 14.
d Reference 25.
e Purely QM calculation.
f Experimental first pressure derivative of Ref. 24 used in Eq. (4b),

"B.J. Skinner, Am. Mineral. 42, 39 (1957).
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and therefore, at best, only estimates. It may be seen,
however, from Eq. (4b) and the numerical data of
Table VIII that the second pressure derivatives are
the difference of two positive terms, and that the
second term in (4b) depends only on the first pressure
derivatives and may be several times larger than the
first term. Since it is necessary to determine this term
more accurately, the second pressure derivatives were
also calculated by using the experimental room-temper-
ature values of the first pressure derivatives of Ref. 24.
These data are purely isothermal quantities and were
calculated from the third-order elastic constants of
Ref. 14.2'

For the sake of completeness the first and second
pressure derivative of the bulk modulus were calculated
from the classical model of ionic crystals based on
Coulomb interaction and exponential two-body central
force repulsion between first nearest neighbors" and are
included in Table IX. Actually, the expression for the
pressure dependence of the bulk modulus does not
change if second NN repulsion is included, as long as
the repulsive exponents for first and second nearest
interaction are the same. Since the repulsive exponent is
determined from the experimental bulk modulus the
second NN interaction is included approximately in
the theoretical data for the pressure derivatives.

It goes without saying that it is inconsistent to use
the QM data and the results based on the point ion
model alongside. On the other hand, it is well known
that the simple classical model not only accounts
satisfactorily for the cohesive energy of ionic crystals
with cubic symmetry but also for the equation of state
at high pressure. "This implies that the bulk modulus,
its first and, perhaps, its second pressure derivative are
correctly described in this model. In order to provide
additional evidence, the pressure derivative of the
Griineisen constant is calculated in Appendix C from
the second pressure derivative of the bulk modulus,
and it is shown that the result is of the same order as
the experimental value.

IV. DISCUSSION AND CONCLUSION

It is apparent from Table VI that the QM contribu-
tions to c~~ arising from first and second nearest neigh-
bors are of opposite sign as the Coulomb term and
reduce it by about 40%%uq. The data in Table VII show
that for c44 the QM NN, and NNN contributions are
both as big as about 15'%%u~ of the Coulomb term, but of
opposite sign, so that; the total elastic constant c44 is
given to 98—99% by the Coulomb term. Note that two-

'-4 G. R. Barsch and Z. P. Chang, Phys. Status Solidi 19, 139
{1.967).

"The data at 78'K of Ref. 14 have been revised $0. L. Ander-
son (private communication) g.

~6 M. Born and M. Goeppert-Mayer, edited by H. Geiger. and
K. Scheel, Handblch der I'hysik {Julius Springer, Berlin, 1933},
Pol. 24, Part 2, p. 623.

"H. G. Drickamer, R. W. Lynch, R. L. Clendenen, and
E. A. Perez-Albuerne, Solid State Phys. 19, 735 {1966).

body central forces between NN do not contribute to
the elastic constants c~2 or c44."Thus the large contribu-
tions contained in Tables VI and VII must arise from
three-body forces of central type. The situation is the
same as in the alkali halides' ' where NN three-body
forces give a negative contribution to c~~, and a small
positive one to c44. The situation in Mgo is diferent,
however, insofar as the NN contribution to c~2 is 13
times larger than in NaF (which is isoelectronic with

Mgo) and that to c44 is eight times larger than in NaF. '
Also, the NN contribution to c44 is over-compensated
in Mgo by the NNN contribution (which consists of
two- and three-body terms). Thus because of the large
NNN term the non-Coulomb forces give in MgO a
negative contribution to c44, whereas it is positive in
the alkali halides. '

Comparison between experimental and theoretical
pressure derivatives in Table IX indicates that the
agreement is satisfactory for c», but rather poor for c44.

This may be due to the fact that the non-Coulomb
contribution is the difference of two terms of about
equal magnitude, but opposite sign. Apparently the
rate of change of this difference is underestimated in
the present calculation, but it does have the right sign.
This can be seen by comparing the present theoretical
value with the value of 0.25 arising from the Coulomb
contribution only.

The main source of error, however, must be ascribed
to the use of the free ion HF functions which are
modified here only through the isotropic scaling factors,
which are assumed to be the same for all orbitals and
independent of pressure. The true scaling factors which
relate the wave function in the crystal to the free-ion
HF function must be expected to be orientation-
dependent. This then explains why the isotropic scaling
factors apparently are a reasonable approximation for
t, ~2, but not for c44, whereas the deformation described
by c~~ is the Poisson contraction in which NN bond
angles are preserved, c44 is a shear modulus which rejects
the stiffness against bond angle changes.

In order to verify whether the departure from the
Cauchy relation increases with pressure we consider,
following Lowdin, the expression D= Lc44*(p) —cls (p)
+2pj/$c»*(p)+c44*(p) j, which is zero if the Cauchy
relation is fulfilled. Kith the zero-pressure values from
Tables VI and VII and the theoretical pressure deriva-
tives from Tables VI and VII and the theoretical
pressure derivatives from Table IX one obtains for
p=0, D= 0.238; and for. p= 100 kbar, D= 0.256, hence
a 15% incres, se in absolute magnitude.

Although the theoretical values of the second pressure
derivatives of Table IX cannot be considered as more
than rough estimates they are useful for estimating the
pressure at which marked deviations from a linear
pressure dependence of the elastic constants may be
expected to occur. Using the experimental data for the

"A. May, Phys. Rev. 52, 339 {1937).
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in alkali halides is in fact observedd h 6 t pressure derivatives, The same tendency as in a a i a1 cs an t c ls
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bulk modulus deviates 15%, of CaO 29 =6 65
) 60%%u, and &(10"dyn cm ', correspon
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~

—+ +— f„( )R R'dR
r4 5r2 5g2 a4

f (R)R4dR
32 ka'r4 a'r' a4

35
fso(R)RPdR,

328M

f (R)RdRnp(310: a,r) =— ——— dR-
4r a2

dR f (R)RdR—(310:,) =————
~

dR
3

fpy(R)R'dR,
8a'r2

—
)

— —+ +— f„(R)RdR
15 1 2 3r

ap(310:a,r) =—
~

——+ —— dR
32& r' 3r 3aP a

f g(R)R'dR+ fpg(R)R'dR,+ pl
32a4r'32 cf cr

~ 1. Ph s. M, 5424 (1967).~9 H. K. Hite, R. J. Kearney, J. App . ys.



LALA AN D G. R. BAUSCH

I210( 3 1
f»(R)R'dR+ —!—

64 a'r464 (5aor' ao 64 a'r4 a'r

3 a 2 r') f„(R 3 1
1)

16 r' a a'
ng(3:, )= ———-+—

i
dR

3
fop (R)R'dR,

16a'r'

r2

768 r4

6 1 105( 1 1
fog(R)R'dR+

~

—+ f»(R)R'dR+ +— si
192 ka'r4 a'r'384 t ar4 5a'r' a'

105 1
f»(R)R'dR.

768 a'r4

APPENDIX B

. ~11~ 't i easily seen that for the evaluation
d 3 and their derivatives with respec o

ionic distance, the following general type o
'

g
need be evaluated:

(R~e' ~dR) e o"r"dr

Derivative o wif I 'th respect to a is then given by

g M„;,{ P U, (1)atL2' '+'e" (H+ f/a)
i= 1 j=0 S=l(a

—"(+f/ )j—(—)"L "'(b+j/ )U+ ( )

—e- 2 U.(2)a'(c+f/a) jI (133)

+ and q= a—r. Equation (1) can bewhere p= a~r an
integrated into the form

I=I~+Is,

j 2Is= (—1)"2 2 ~- tL«p(ab)a'U~+~( )
j.-l j=0

where

—exp(ca) P U, (2)a~j, (82b)
s=l

~-; =(—1)'-Ca'
-t=, =~~'/L(~ j)jj-

g~=,= (—1)'+'~ /{ (m —'+1)!c'3
U, (t)= (—1)'+'kl/L(k —s+1)!h'(t)], (t=1,2)

h(1)=c+b,
h. (2)= c b, —

k=m+e —j—i+1,
f=k —s+j+1,

FI=2c+b.

A:+1

I„=P P M„;,Lexp(IIa) P 2"-'+'U, (1)at
s~li~ 1 j=0

I'+1—exp(ca) Q U, (1)afj, (82a)

APPENDIX C

In order to veri y e'f the order of magni. tude of the second
dd

' '
f the bulk modulus as calculateressure derivative o e

orn-Ma er theory the pressure coefhcient
of the Griineisen parameter will be estimate y using
this value and compared with the experimental value.

McDonald relation in a form which is valid for ar itrary
pressure. "The result is

V'= —
I
= o~o"+ I3o'.

ap&,
'

6a,

From the theoretical data of Table IX one obtains for'= —1.15, which refers to the static lattice.
The ex erimental value can be ca cu a e ylated b differen-
tiating the defining relation y= p "„ia in

' ' =8' C ) with respect
to pressure an conved . rting the pressure derivatives of
the vo ume1 thermal expansion coefficient an t e
spec~ c eap

'n h t C into temperature derivatives o e
~ ~bulk modu us an ed th thermal expansion coefficients,

respective y. sing
'

i e in1 .3' U
'

the numerical data compiled in
Ref. 24 one o tains at 300"K y'= —1.44, in fair agree-
ment wit t e a ove es

''
n h b estimate for the static lattice.

32'0 J. S. Dugdale an d D. K C. McDonald, Phys. Rev. 89, 83

7 117 1962)."W. C. Overton, Jr., J. Chem. Phys.


