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Third-Order Elastic Constants of Calcite*
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The third-order elastic constants of calcite at O'C have been determined by measuring the stress and tem-
perature dependence of sound velocities in it by means of an improved pulse-superposition method (average
sensitivity of 2X10 r). Within the small temperature range considered (about 2'C), a nonlinear temperature
dependence which varies with pressure has been clearly observed. Out of 14 independent third-order moduli,
C»4 and C»4 are de6nitely positive, and all the others are negative, with ambiguities for C»4 and C444. The
approximate magnitude is equally large for C»&, C»2, and C333 intermediate for Cj.~g, C~l3 CJ$4 C],33 Cj,55,

C344, and very small for C$$3 C$24 C],34 C$44 C444 The pressure derivative of the bulk modulus calculated
using these constants is in reasonable agreement with Bridgman's data for the change in compressibility with
pressure. The contribution of the ion-core, short-range repulsive interaction C;;P to the third-order elastic
constants has been evaluated for the carbonate and nitrate crystals of the calcite type using an inverse-power
potential. The repulsive contributions were found to be predominant over the other contributions to almost
all the third-order constants. Under the assumption that the remaining contribution is the electrostatic in-
teraction alone, and using the experimental data for calcite, complete sets of the third-order constants have
been estimated for other carbonate crystals.

I. INTRODUCTION

LASTIC constants can provide insight into the
~ nature of the binding forces between atoms in a

crystal because they are represented through the deriva-
tives of the interatomic potentials. In the Born-model
evaluation of the cohesive energy of an ionic crystal, the
bulk modulus assesses the relative importance of the
long-range Coulombic and the short-range repulsive in-
teractions for the total cohesive energy as well as the
parameters of the ion-core repulsive potential. ' The
Cauchy relations for the elastic constants test for the
existence of many-body forces in addition to the simple
two-body interactions. "The analysis of the deviations
from Cauchy relations by means of a detailed quantum-
mechanical calculation of the elastic constants should
give us information about these many-body forces, that
is, whether they are primarily ion-overlap interactions,
covalent interactions, or an admixture of these. 4 One
can also examine individual terms in the total inter-
atomic potential by systematically measuring the elas-
tic constants while changing such parameters as valence
electron density (electron-atom ratio), ion-core charge,
lattice constant, crystal structure, and so forth.

Third-order elastic constants are of special interest
because they are related to all anharmonic properties of
solids as the coeKcients of the erst-order anharmonic
terms in the interatomic potential. Thus they determine
anharmonic properties such as thermal expansion, tem-
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perature, and stress dependence of elastic constants,
behavior of the heat capacity above the Debye tem-
perature, and phonon-phonon interactions. Thermal
expansion produces the diGerence between adiabatic
and isothermal elastic constants. The interaction be-
tween acoustic and lattice phonons explains one of
the mechanisms of ultrasonic attenuation in solids,
which is expressed in terms of third-order elastic con-
stants through the generalized Gruneisen mode param-
eters. 7 Third-order elastic constants are also indispens-
able for finite elasticity theory, ' where the elastic stress
is nonlinear with the elastic strain, and therefore, in
certain crystallographic planes in a crystal, the elastic
shear behavior is asymmetric with respect to the sense
of the shear displacement. Although the anharmonic
deviations from the harmonic properties are, in general,
small in magnitude, they are all qualitatively important
phenomena that cannot be understood in the framework

of the harmonic approximation. Furthermore, third-

order elastic constants can furnish knowledge about the
ion-core repulsive interactions and other potentials
which vary rapidly with the interionic separation, be-

cause these contributions usually become predominant
in the higher derivatives.

In recent years considerable attention has been given

both to the theoretical and experimental determination
of third-order elastic constants in solids. During this
time several ingenious experimental methods of high

sensitivity have been developed, which permit the reso-
lution of very small ultrasonic velocity changes. In the
same period theoretical computations of third-order
elastic constants were first carried out for alkali-halide

ionic crystals, because their cohesive energies can be
relevantly expressed in terms of the Born-model ap-

' W. P. Mason, in Physical Acoustics, edited by W. P. Mason
(Academic Press Inc. , New York, 1965), Vol. IIIB, p. 235.

F. D. Murnaghan, Finite Deformation of an Ftastic Solid (John
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proximation. ' "Then it was extended to diamond-like
crystals (Ge, Si) in which the six third-order elastic con-
stants were evaluated in terms of three force constants
6tted to match experimental values. "The third-order
constants of fluorite crystals (CaFs, SrFs, BaFs) have
also been calculated on the basis of rigid-ion and dipole
shell models. '4 Calculations have been attempted for
metallic crystals such as the alkalis, "noble, "and other
cubic ones' "using a simple potential consisting of the
electrostatic attractive and repulsive, and Fermi energy
terms, ~s ' ' or the model Morse potential '

Experimental measurements of complete set of a third-
order elastic constants have now covered the following
materials: semiconductors (Ge " " Si "" GaAs, "
phosphorus-doped ts-type Si");ionic crystals (NaCl, ""
Kcl" MgO" BaFs") metals (Cu"" Ag" Au"
P-brass, "Al"); trigonal o.-quartz"; and several poly-
crystalline solids (Pyrex glass, " polystyrene, " iron, "
steel, "Al alloy, ' Mg, ' Mo, ' W," and fused SiO& ").
The experimental methods used were: McSkimin's
pulse-superposition method" in Refs. 19, 21, 22, 23, 27,
and 30; the sing-around method developed by Forgacs'4
in Refs. 20 and 29; the two-specimen interference
method' in Refs. $8, 26, and 28; the two-echo cancel-
lation method" '6 in Ref. 25; the pulsed-oscillator con-

' H. Bross, Z. Physik 175, 345 (1963).
"A.A. Nranyan, Fiz. Tverd. Tela 5, 177 (1963); 5, 1865 (1963)

LEnglish transl. : Soviet Phys. —Solid State 5, 129 (1963); 5,
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Solidi 18, 265 (1966)."P.N. Keating, Phys. Rev. 149, 674 (1966).
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(unpublished); and private communication."D. Gerlich, Phys. Rev. 168, 947 (1968)."Y.Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966)."K.Salama and G. A. Alers, Phys. Rev. 161, 673 (1967)."R. N. Thurston, H. J. McSkimin, and P. Andreatch, Jr., J.
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Am. 40, 1002 (1966).

"H. J. McSkimin, J. Acoust. Soc. Am. 37, 864 {1965).
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FIG. 1. A cleavage rhombohedral pseudocell of calcite. For
clarity atoms are shown only at the corners and the center of this
cell; not shown are Ca atoms situated at the centers of the 6 faces
and CO3 groups at the centers of 12 edges.

tinuous-wave (cw)-echo cancellation method in Ref. 32;
and Blume's phase-quadrature method'~ in Ref. 24.

There are also a large number of measurements of the
hydrostatic pressure dependence of second-order elastic
constants. These have served to check certain linear
combinations of newly determined third-order con-
stants, and to provide nondirectional information about
anharmonic forces.

At the present time, o.-quartz is the only noncubic
crystal for which a full set of third-order constants is
available. When one passes to a crystal with lower sym-
metry, the greater number of elastic constants requires
a greater number of experimental measurements to de-
termine the complete set. Thus experimental error is
more likely. Calcite is a trigonal crystal, typical of the
homologous series of carbonates, and is well known for
its optical birefringence. Calcite, whose structure is
given in Fig. 1, has unusual thermal-expansion coeK-
cients at room temperature. The linear-expansion coefB-
cient is large and positive in the direction of the three-
fold Z axis, and is small and negative in the directions
perpendicular to it (Table II B).Another characteristic
property of calcite crystal is that deformation twins
form in it easily. 's This might be reflected in a marked
di8erence in the nonlinear elastic behavior for shears
in the twinning direction and shears in the anti-
twinning direction. This nonlinearity may be deter-
mined by the e6'ective shear modulus, which is a linear
combination of the third-order elastic constants, given
as a function of either the shear stress or the shear
strain by finite elasticity theory. ' Furthermore, the
nature of the bonding between calcium ions and COI
radicals is not yet clarified, although it is known that
within CO3 radicals each carbon atom forms covalent
bonds with the surrounding three oxygen atoms by trig-
onal-planar electron-pair bonds. " Therefore, it has
been of considerable interest to measure the third-order

"R.J. Blume, Rev. Sci. Instr. 34, 1400 (1963).
'8 F. J. Turner, D. T. Griggs, and H. Heard, Bull. Geol. Sac.

Am. 65, 883 (1954).
'9 H. B.Gray, E/ectrons and Chemical Bonding (W. A. Benjamin,

Inc. , New York, 1965), p. 117.
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elastic constants in calcite and to investigate re-
lationships between its properties and its elastic
anharmonicity.

II. THEORETICAL FOUNDATION

A. Expressions for Elastic Constants

We use Brugger's definition of elastic constants. "In
any order, they can be dined as the coeKcients of the
terms in the elastic strain-energy density expanded into
a power series of Lagrangian strain components q;;. The

Lagrangian strain components q; s are expressed as

1 BX5 BX5—3;;I, i, j, k=1, 2, 3,
2 aa; rla;

where a; and xI, are the components of the Cartesian
coordinates of a material in the undeformed and de-
formed states, respectively. Summation over all re-
peated indices is hereafter implied.

In the case of a trigonal crystal, the elastic-strain
energy density AC at 0 K is explicitly written up to
terms cubic in Lagrangian strains as follows:

A@(21) C (21) @(O) @2+@3+' '
2 Cll(rill +2)22 )+C12'gill)22

+c13('922rl33+'gssrlll)+ c14 j('gll '922) ('f28+ $82)+ ('$31+2)18) (r112+2121)}+sc83$83

+c44(2123 +'982 +2)81 +'913 )+2(cll c12)(2l12 +'921 )+eC111'gll +2C112'Qll 2122+2C113('gll 2)83+'922 'gll)

+2C1142111 ('928+ 2)32)+C123'gll'g222188+C124 j21112)22('g28+ll32)+ (2)23+'f32) ('f12 +2)21 )}
+2 C183r183 (2111+'f22)+C184983j (2111 '922) ('923+ rl32)+ ($81+'f13) (2112+2)21)}++144jr123 +'932 )
+'922(rl31 +2)18 )}+C155{2)22(2128+'f32 )+rill(2181 +7/13 )}+8C222'f22 + ec8882)33 +C3442l83j (2123 +'932 )
+ (2)81 +'9 18 )}+C444 j8 ('923+ '932) ('928+ 2132) (rl 31 + rl 13 )}+2 (Cl11+C112 C222) 2) 22 '911

+2( C114 2C124)2)22 (1723+2182)+4( 2C111 +112+3C222)'fall(2112 +'f21 )+4(2clll C112 C222)

X'f22('f12 +2121 )+2(C113 +123)'983(2112 +'921 )+2(C114+3C124)'gll('f31+'913)(r112+2121)

+2 (+114 C124)'f22('f31+'f13) (2)12+2121)+2 ( C144+ +155)($28+ 2132) (2181+r)18) (2112+921)+ ' '
~ (2)

The conventional contracted notation for the second-
and third-order coeKcients is used. Therefore, a trig-
onal crystal has six second-order (usual) constants, and
14 third-order constants. "

Now we wish to express the second- and third-order
elastic constants of a trigonal crystal in terms of the
interatomic potential under the assumption of two-

body, central-force interactions between the ions. We
exclude here the vibrational part of the free energy, so
that the expressions will be valid only at 0 K. The
elastic strain-energy density Ac is given as the di6erence
in the potential-energy density of the crystal in the de-

formed and undeformed states. They are, in turn, ex-

pressed as the sums of the difference in all the inter-
atomic potentials between ion-pair in the respective
states:

(3)

strained states, respectively. Since we de6ne the unit
cell of calcite to include only one molecule, P' denotes
the summations over all the other ions around one Ca
ion, one C ion, and three 0 ions:

Using the relations

R= all 1+u 212+a 358 )

R = Gaap8ap q

r= alii'+u212 +a313 =Xlll+X2I2+X318

~&i ~-'&i

= aaapIap= XaXp~ap& Iap=Za Zp =2 7 ' /' I

Ba Gap

42, P, i=1, 2, 3

the di6erence in the square of the interionic separation
(r'—E2) is given by

r' Rs=u ap(I—p 3p), — (6)

where V, is the volume of the unit cell of the trigonal
crystal in the unstrained state, P„„(r„„e)is the interac-
tion energy per ion pair between the pth ion in the neth

cell and the vth ion in the zeroth cell. r„, ' and R„„'
are the interionic distances in the strained and un-

where i, i, etc., are the basic vectors of the lattice in
the undeformed and deformed states. One can also ex-

press this in terms of the Lagrangian strain components
ll p that are defined in Eq. (1):

R = 2aaapgap (7)
44 K. Brugger, Phys. Rev. 133, A1611 (1964)."K.Brugger, J. Appl. Phys 36, 759 (1965).. In Eqs. (5), (6), and (7) the subscripts, 14v, and super-
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TAnLE I. Eleven modes and 33 hydrostatic and uniaxial measurements considered (n&=0.59576, P& =0.80317,
as=0 98512, Ps =0.17185,ng ——0.84294, PI ——0.53802, 0 =0.705252, 1=0.71167).

Mode No.
and

mode type

2 S'

3 S

4 QL~

5 QSR

6 S

7 L

8 S

9c S
10 QL

11 QS

12 S

Propagation
direction N

100

100

100

010

010

010

001

001
Okll

Okl

Polarization
direction U

Op1cx1

OcxJp]

Opma2

100

001

100

010

Onepa

Op3na

100

Mode symbol
of stress

1Hb
1Ab
18b
2H
2A
28
3H
3A
38
4H
4A
48
5H
SA
58
6H
6A
68
7H
7A
78
8H
8A
88

10H
10 A
108
11 H
11 A
118
12 H
12 A
128

not used

Compression
direction M

all
010
001

all
010
001

all
010
001

all
100
001

all
100
001

all
100
001

all
100
010

all
100
010

all
100
olk

all
100
os
all
100
os

a L =pure longitudinal, S =pure shear, QL =quasilongitudinal, QS =quasishear.
b H denotes hydrostatic stress, A and B uniaxial stress.
e Mode 9 was not used because of the large internal conical refraction.
d This propagation direction was selected normal to the cleavage plane of calcite.

scripts, m0, are understood. If we now expand AC in
Eq. (4) in a Power series in s (rs E')„„~,the second—C»

and the third 43 terms can be obtained, respectively, as

P (rs gs) nas]2

Dsy (r) ms

2t/ c caco3 2f

ria p ga'p''
4P', ~p arpr

Xt. 2' a-apa- ap D'4 "(r) l.=nl (8)
CaCO3

these expressions in Eq. (8) with the macroscopic deini-
tions of elastic constants, the second-order, c p p, and
third-order elastic constants, C p p p ', at 0 K are
expressed as a function of the interionic potential

8'C
~ 1

Cepa'p' 0

8' p8g p I „p 2V.

X P' a,apa, ap D'y„„(r)„,"'~ „=n,
CaCO3

@s= 2 2 2 n-pn- p n--p-
$2V ap e'p' e"p"

~apa'p'a" p"0

17(8g /pe&p&8rl~tip&~l s—Q

XL Q' a apa apa, ap D'@„„(r)~„g$,
CaCO3

I aaapaa'ap'aa" ap"D Ape(r)yv [ r 8 ~

2vc caco3

where D= (1/r) (d/dr) = (1/a ap) 8/8& p. By comparing Equations (9) and (2) immediately give the Cauchy re-
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B. Relations between Elastic Constants
and Sound Velocity

For the propagation of sound waves at zero stress,
substitution of plane-wave solutions into the equations
of particle motion gives eigenvalue equations for the
sound velocity:

pU2U, = A.ijUj,
~ij &ikj l+k+l )

(12)

where p is the density of the solid under consideration,
U is the velocity of ultrasound, and U, and E; are the
components of unit vectors in the directions of polariza-
tion and propagation, respectively. After fixing the
propagation directions of the sound waves, one can ob-
tain the eigenvalues for pU', and hence the relations
between pV' and the second-order elastic constants
c;»&. Explicit expressions for pV' for a trigonal crystal
can thus be found4' for the modes which are of experi-
mental interest (Table I).

In the strained state where sound waves propagate
through the stressed solid, the third-order elastic con-
stants Cij& come into the equations of particle motion
when the strains are finite. ' ""The corresponding ex-
pressions for pV' are functions of the Cijl, 's; and p and
V are now the density and velocity in the strained crys-
tal, respectively. According to the definitions of elastic
constants, " the CijI, 's are derivatives of the effective
second-order elastic constants with respect to the perti-
nent Lagrangian strain component. Hence, the change in
apparent pU' with stress p is more directly related to
the third-order elastic constants than pU' itself. How-
ever, it is not ea,sy to take the derivative of Eq. (12)
with respect to stress, because the polarization and
propagation directions are rotated and the density and

4' H. J. McSkimin, J, Acoust. Soc. Am. 34, 1271 (1962).
4' g. Seeger and O. Buck, Z. Naturforsch, 15a, 1056 (1960).

lations for the second- and third-order elastic constants
in a trigonal crystal at O'K. For the second-order con-
stants these are

~13 ~44 ) ~11 ~~12 )
0— 0 0 — 0

and for the third-order constants

C133 C344 ) C134 C444

C114 3C124 ) C113 C155 3C123 3C144 )

Clll +3C112 3C222 s Clll +C112 Clio +C222 ~

Hence, under the central-force assumption, there are
only four independent second-order (c»,cls,c14,c33) and
six independent third-order (Cll1 C112 C114 C133 C134 C333)
constants for a trigonal crystal. At temperatures other
than 0 K) of course, the contribution from the vibra-
tional free energy comes into play, so that these rela-
tions in Eqs. (10) and (11) are no longer valid even
under the two-body, central-force model. ""

the path length are also changed when stress is applied.
To allow for this, Thurston and Srugger44 have utilized
such convenient parameters as the "natural velocity"
8', the density p0 in the unstrained state, and the ex-
pression m;j corresponding to Xij but independent of the
rotation of the deformed material. S' is defined as twice
the path length in the unstressed state divided by the
round-trip transit time of sound wave in the stressed
state. Thus Eq. (12) becomes

P0$"U, = ZV,jUj. (13)

After taking derivatives of both sides of Eq. (13) with
respect to stress p and computing the term —$8(poW')/
Spf, they have arrived at very useful general expres-
sions connecting third-order elastic constants to the
natural velocity. For hydrostatic compression

—
t 8(poW2)/SP)„o= 1=+22tlFHc+GHc,

~HC ~aars +rUs )

GHc=&- .~C ...q.N~qU, U,
= —B„„~,S~Ã,U„U„

T~~ I)res ~'c'b)J v C'Q v+r Qs )

and for uniaxial compression

[a(poW2)/—ap]„=o=2wI'Uc+GU„

~UC ~abrs ~a~bUrUs)
GUC babas Casyrqs~a~Prrf3 qUrUs r

(14)

where w= (poW2) 4 =o= (p&2) ~=3= el„qP 1V~qU„U, ; sr
are the isothermal second-order compliance constants;
and Mi are the components of the unit vector in the
direction of the uniaxial stress (which is usually taken

TABLE II. (A) The chemical compositions, and (B) thicknesses
and linear thermal-expansion coefFicients of calcite specimens
used.

(A) Main impurities of the calcite specimens, in weight%.
Al Si Mn Sr Mg Fe ¹i Cu

0.1 0.06 0.038& 0.02 0.015' 0.006 0.004 0.002

(B) Thicknesses at O'C and thermal-expansion
coeflicients at room temperature.

Thickness at Linear thermal-expansion
O'C coe%cientb
(cm) (per 'C)

Specimen no.
and

direction

spec 1.
100(X)
010(V)
001(Z)

spec 2.

100(X)
Olk
Okl'

2.07264
1.80322
1.91371

2.22961
2.23897
1.97911

—4.9X10 '
—4.9X10 '
25.1X10 '

—4.9X10-6

10.8X10 '

a By flame emission; all the others by spectrographic powder-arc method.
b J. B.Austin, H. SaYni, and R. H. H. Pierce, Phys. Rev. 57, 931 (1940).
& This direction is normal to the cleavage plane of calcite.

R. N. Thurston and K, Brugger, Phys. Rev, 133, A)604
(1964),
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as perpendicular to the propagation direction N). Thus,
a linear combination of third-order elastic constants
has been directly related to the change of the natural
velocity W' with stress p. For a trigonal crystal,—$8(peW')/r)p]~ e=must be measured for at least 14
independent cases to determine the complete set of the
constants. Explicit expressions for —[r)(peW')/r)p J„e=
have been presented by Thurston, McSkimin, and
Andreach'o for e-quartz crystals for a set of 34 inde-
pendent cases: 10 cases for 10 modes under hydrostatic
pressure and 24 cases for 12 modes under uniaxial stress.
In the present experiments, 33 cases were considered:
one hydrostatic and two uniaxial cases for each of 11 in-
dependent modes. Furthermore, the propagation direc-
tion for modes 10, 11, and 12 (see Table I) was chosen
perpendicular to a cleavage plane in order to obtain a
well-defined crystal orientation. As a result, 24 (modes
1—8) of the 33 cases which we consider are equivalent to
those discussed by Thurston et al.

III. EXPERIMENTAL PROCEDURE

A. Specimen Preparation

Calcite has the same composition (CaCO3) as argo-
nite, but trigonal instead of orthorhombic crystal sym-
metry. Its structure is related to the NaCl structure, but
its lattice compressed along one of the threefold, body-
diagonal axes to accommodate the large planar CO3
ions. The conventional cleavage unit-cell contains four
molecules as does the NaCl structure and, though not
a true cell, it is often conveniently referred to for many
experimental purposes. Figure 1 illustrates the arrange-
ment of calcium, carbon, and oxygen atoms in a cleavage
rhombohedral pseudocell.

Several natural calcite crystals of optical quality were
supplied by the National Bureau of Standards for the
present work. Chemical analysis of them was performed
by Qame-emission, powder-arc spectrographic methods
with the results shown in Table II A. Three cubic speci-
mens (specimens 1, 2, and 3) were cut from one large
crystal (1.5X1.5X3 in.) with a wafering diamond saw.
The cutting stage permitted rough orientation of the
faces of the specimens. The three pairs of cube faces of
specimen 1 are each perpendicular to the X, I', and Z
axes of the calcite lattice, while specimen 2 has one pair
normal to X axis, another parallel to one cleavage plane,
and the third selected normal to the first two. Specimen
3 is identical in orientation and size with specimen 1 and
was used only to examine the sensitivity of the two-
specimen method. The Cartesian coordinate system was
chosen by the convention that the Z axis coincides with
the optic triad axis, the X axis is parallel to one of the
twofold symmetry axes, and the I' axis completes the
right-handed coordinate system as shown in Fig. 1.
These specimens were then accurately oriented and
Qattened. First they were polished Qat to about 5X10—4

in. by hand on a glass plate with aluminum-oxide powder
(9.5 li) and ethyl alcohol. Also, their orientations were

checked by the x-ray back-reQection method, until the
desired orientation was obtained within &0.1'. Then
the crystals were mounted on a cylindrical, aluminum
polishing holder with previously machined Qat edges
and a thickness slightly larger than the specimen. This
whole assembly was polished on a granite plate with
polishing oil and aluminum oxide until the specimen was
Qat and parallel to =3)&10 ' in. After the final polish-
ing, the orientations were checked and the thickness and
Qatness were measured with a Brown and Sharp elec-
tronic thickness gauge. Table II B shows the thick-
nesses and orientations of the two specimens (1 and 2)
together with their linear thermal-expansion coefficients
in the directions of sound-wave propagation.

Although plastic deformation due to slip can occur in
calcite at room temperature, the slip systems are few"
and the mobilities of dislocations are very low. 4' The
critical stress is usually much lower for twinning than
for slip near room temperature. "No dislocation motion
was observed in calcite by an etch-pit technique near
and below room temperature under the usual condi-
tions. '""In order, therefore, to avoid the diAiculty of
dislocation-modulus change due to unpinning of disloca-
tions, the maximum uniaxial compression stress was
kept below 50 kg/cm' in these experiments. This ap-
proximately corresponds to the minimum shear stress
required for twinning at room temperature. Thus, un-
like the case of metals, " a nonlinear change of sound
velocities with uniaxial stress was not detected in this
stress range.

B. Temperature and Stress Measurement

Temperature measurements were made with a cali-
brated Chromel-Advance thermocouple attached to the
specimen surface. This therrnocouple has a high thermo-
electromotive force (about 50 pV/'C). The temperature
of the specimen was varied by a small heating coil
placed around the specimen inside a temperature bath.
The voltage produced by the thermocouple was partially
balanced with a Rubicon model No. 2768 potentiometer,
and the unbalanced signal (&10pV) was amplified
(Leeds and Northrup DC amplifier) and then fed into
a chart recorder (Hewlett Packard model No. 71008/
71018), where the full-scale defiection (20 cm) corre-
sponded to 10-pV imbalance in the potentiometer. The
resolution of the temperature measurement was &1
&10 ' C for hydrostatic pressure and zero-stress runs;
and +3&(10 ' C for uniaxial compression runs. In the
case of hydrostatic pressure measurements, the tem-
perature was always read after thermal equilibrium had
been reached between the specimen and its ambient.

Specimens were compressed either hydrostatically or
uniaxially to cause a variation of sound velocity with
stress. The hydrostatic pressure was applied up to 120
kg/cm' in steps of 10 kg/cm' by using gaseous nitrogen

4~ R. E. Keith and J. J. Gilman, Acta Met. 8, t (1960).
4~ J. J. Gilman (private communication).
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as a pressure agent in a pressure vessel that was im-
mersed in an ice bath. A Heise Bourdon tube pressure
gauge with a capacity of 150 kg/cm' was used to read
the applied pressure to &0.05 kg/cm'. For the uniaxial
stress measurements a small hydraulic compression
machine was used with a dial gauge of about 100kg/cms
in capacity and an accuracy of &1 kg/cm'. The uniaxial
stress was changed between 0 kg/cm' and about 50
kg/cm' in steps of 5 kg/cm'. To make the stress uni-
form, a specially designed compression jig allowed
smooth rotations of the upper loading plate and pre-
vented oblique loading. Indium shims were inserted be-
tween the specimen and the upper and lower loading
plates. The jig was placed in an ice bath at O'C to mini-
mize temperature Quctuations of the specimen.

C. Sound-Velocity Measurements

Calcite crystals are fragile, so only relatively small
static stresses can be applied to them. To detect the
small velocity changes that result it is necessary to use
methods of the highest possible sensitivity. For absolute
sound-velocity measurements, four different methods
were used to accurately determine the second-order
elastic constants of calcite and to provide cross-checks
among the methods. The methods are: (1) direct pulse
echo, 4' (2) two-echo interference, "" (3) gated-carrier
echo-continuous-wave interference, and (4) improved
gated-carrier pulse superposition. ""For measuring
velocity changes with temperature or stress, the sensi-
tivities of the following four methods were studied:
(2), (3), (4), and (5) the two-specimen interference
method. " ' Method (4) was found to have the highest
sensitivity. One set of equipment (A) was built for four
methods L(1), (2), (3), and (5)], and another set (H)
was independently prepared for method (4).

The apparatus (A) is essentially a gated-carrier,
pulsed interferometer as used by Williams and Lamb"
and developed by Colvin. "The continuous rf carrier
wave generated by the frequency synthesizer (General
Radio 12-MHz synthesizer, type 1163-ASC) is fed into
the gated-amplifier circuit, where the continuous wave
is gated at two amplification stages by means of posi-
tively biased rectangular pulses from the dc pulse gen-
erated at a low repetition rate (=300 cps). The gated,
Bat-topped rf pulses with fixed pulse width are then sent
into the balancing network (Arenburg W3-100), the
purpose of which is twofold: to improve the rf pulse
shape and to increase the ratio of echo to direct-pulse
amplitude. The rf pulse from the balancing network is
used to excite the quartz transducer bonded to the cal-
cite specimen. Echoes received by the same transducer
are then transferred via the balancing network to the
dual-trace preampli6er (type 1A1) of a Tektronix 547
oscilloscope. The circuits for the gated ampliier and

'r H. B. Huntington, Phys. Rev. 72, 321 (1947).
'8 J. Holder (to be published).
4~ R. P. Espinola and P. C. Waterman, J. Appl. Phys. 29, 718

(1958).

the dc pulse generator used here are exactly the same as
described in Colvin. "But in this system a dc bias volt-
age was employed to provide two different dc pulse
levels for the two stages to increase the signal-to-noise
ratio. Also, the dc pulse generator was modified to gen-
erate either one or two pulses.

In method (1), several round-trip transit times be-
tween successive echoes are measured to determine the
average value. The measurements are made directly on
an oscilloscope that is calibrated with a time-mark gen-
erator (Tektronix 180A). Method (2) is fully described
elsewhere, ""but in this experiment the erst echo of
the second pulse is superposed upon an echo of the erst
pulse, where the two pulses are separated as far in time
as possible while still maintaining the destructive inter-
ference condition between the echoes. In method (3)"
the continuous rf signal from the frequency synthesizer
is sent to one channel of the oscilloscope preampli6er.
The second channel of the preampli6er receives a direct
pulse and its echo train detected by the transducer. The
two signals are added algebraically inside the preampli-
Qer and displayed on the oscilloscope. Six or seven inter-
ference frequencies, at which one selected echo is
exactly in antiphase with the continuous wave, are
measured with the synthesizer. This is repeated for two
selected successive echoes in this method. Although the
continuous wave and the gated pulse are generated by
the same oscillator, the effects of gating and differing
path lengths may cause some phase differences between
them. Therefore, in this method, one round-trip transit
time is calculated as the difference of the two delay
times for the two successive echoes. This apparatus (A)
can also be used for the two-specimen interference
method (5), as developed by Espinola and Waterman, 4s

and applied by Hiki and Granato. " However, this
method is only applicable to the relative measurements
of velocity.

The pulse-superposition method of McSkimin" "has
become most widely used for measuring both absolute
and relative sound velocities. """"~ However, the
gated-carrier pulse-superposition method, "in which the
rf pulses with different initial phases are generated by
gating a coherent continuous wave, is less frequently
used" than the pulsed-oscillator pulse-superposition
method, "in which identical but not phase-coherent rf
pulses are produced. In the present work an improved
gated-carrier pulse-superposition method (4) was also
used. The apparatus (8) for this method was developed
by J. Holder's of this laboratory, and procedures for
obtaining the optimum sensitivities for calcite were
developed by the author. Its circuit diagram, however,
is essentially the same as McSkimin's, ~ including the
frequency modulation technique for improved sensi-

' This method appears to be somewhat analogous to those de-
scribed in H. J. McSkimin, J. Acoust. Soc. Am. 30, 314 (1958);
J. de Klerk, Rev. Sci. Instr. 36, 1540 {1965)."H. J. McSkimin and P. Andreatch, Jr., J. Acoust. Soc. Am.
41, 1052 (1967).
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FIG. 2. Phase difference and number of
cycles of rf frequency after one round-trip
transit time at two interference conditions
f and f~~~ Si.nce the magnitude of
E/(fn fo )—/foa)$ or E/(fa+& fo—)/fo j 1s
less than 1.5&(10 ~, the phase di6'erence
from the special case (p =s; phase-shift cor-
rection term is zero) for these interference
conditions is very small and the number of
carrier cycles is diGerent, only by less than
1.5X10 ' from (rl+$) cycles of the special
case. From this 6gure it is clearly known that
the phase correction term can be neglected
to determine the integer value n.
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tivity. The carrier frequency is modulated by coupliug
a low modulation frequency ac signal (40—60 cps, 3 V)
from an external source to the frequency synthesizer.
The amplitude of the surruned echoes is oscillated at
twice the modulation frequency as the amplitude moves
along the "resonance curve"" of echo amplitude versus
carrier frequency, because the modulated carrier fre-
quency oscillates about the constructive interference
frequency of the superposed echoes. (The modulation
range of the carrier frequency is about +100 cycles. )
The echo oscillation is an exactly symmetric, sinusoidal
curve on an oscilloscope when the carrier frequency is
set correctly to the frequency of the "resonance peak"
(this is the desired critical interference frequency) pro-
vided that the "resonance curve" is symmetric around
the peak frequency. Since the echo shapes were not ex-
actly rectangular and each echo contained only 10—20
cycles (the pulse width was variable over 1-2 psec in
this method), the repetition rate frequency must be ad-
justed as the carrier frequency changes in order to keep
the phase condition critically matched. Discussion of
this is given in the Appendix.

In the pulse-superposition method a large number of
echoes are superposed upon each other and even high-
number echoes with relatively small amplitudes can
influence the interference condition. The deviation of
the echo envelope from the exponential attenuation
made it necessary to check the possible existence of an
extra phase change for these echoes due to some distor-
tion upon reQection. To do this, interference frequencies
were measured at the same temperature for various sets
of superposed echoes (some multiple p" of round-trip
delay time=2, 3, 4, 5, 6, 7) and were found to be the
same within experimental error.

An X-cut or F-cut tuned quartz transducer (10
Mc/sec) of xs-in. diam was cemented to the specimen
surface with salol, and was operated near the resonance
frequency of the transducer. In the absolute-velocity
measurements, several interference frequencies were

picked up near the resonance frequency, while in the

relative measurements, the change in the interference
closest to the resonance frequency was followed as tem-
perature or stress changed.

Let us now turn to the principle of the absolute-
velocity measurement. We consider only the principle of
method (2), because the principles for methods (2), (3),
and (4) are essentially the same. When a destructive
interference condition is exactly satisfied for one round-
trip delay time, the phase difference between the two
successive echoes is an odd integer times z.

(16)

which is equivalent to

(17)

because the phase angle P on reflection at the trans-
ducer face of the specimen is given by'5

@„=7rIL1 2K(f„—fP)/—f(Pj (18)

for the interference near the transducer resonance fre-
quency fP, where f„ is the carrier interference fre-
quency, v is one round-trip delay time of the echo, ~ is
the phase change caused at the free surface of the speci-
men, e is an integrer associated with the number of rf
cycles for one round trip, and IC is the ratio of the
acoustic impedance of the transducer to that of the
specimen. Since the central two interference frequencies
f„and f~& are always chosen within 100 kc from fP
(=10r cps) in this experiment, K/(f„—fon)/fP j in Eq.
(17) is less than 1.5X10 ' (K&1.5 for calcite). For the
next higher interference frequency f +t we have

f-+tr = (~+1+s) KL(f~t —fo')/fo—'j (19)

and Kf(f~t fon)/fo" j is aga—in very small. Figure 2
shows the difference of the number of rf cycles, which is
almost one, and of the phase changes for one round trip
for these two interference conditions. Since e is a large
integer (about 100 for shear waves and about 50 for
longitudinal waves), the phase-correction term in Eqs.
(17) and (19) can be safely neglected for the experi-
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mental determination of )s and ted+1:

B+s far p

I+1+s =fn+1 T ~

Then, since hf„—=f ~r—f, we have"

r)+a= f~/~fn)

(20)

(21)

(22)

and when this is combined with Eq. (17)s'

&=1/&f —K(1/fo —1/f.). (23)

There is no ambiguity for expressions (22) and (23) if
the correct integer value for e can be selected; but even
if ambiguity remains, the maximum error for e and 7.

caused by the neglection of the phase-correction term
should be less than about 5 &10 '.

On the other hand, subtraction of Eq. (17) from Eq.
(19) gives

r(f +i—f ) =1 (Klfo'—)(f-+i—f-)
and from this,

(24)

e+-', =(f /Af ) K, — (25)

~= 1/~f- Klfo". — (26)

In Eqs. (25) and (26) the ratio of the second (phase-
correction) term to the first term is quite large (1—

2%%uo)

as compared with that (= sX10 ') in the original Eqs.
(17) and (19), and therefore Eqs. (25) and (26) have an
unreasonably large contribution from the phase-shift
correction term. However, these are invalid expressions
derived from the subtraction between two almost equal
quantities, both having errors. This has not been pointed
out in the literature. ""In fact, Eq. (24) means that
one tries to determine v. using only one cycle with a large
uncertainty (K/fP)(f„+r f„)=1.5—2—X10 '. The cor-
rection term K[(f„fP)/fon$ —is small compared to
(rs+ rs) cycles in Eq. (17), but the corresponding correc-
tion term (K/fo") (f„+i f„)is not n—egligibly small com-

pared to one cycle in Eq. (24). As a result, we have to
use Eqs. (22) and (23) to compute I and r. In the actual
practice, when Eqs. (25) and (26) were used in methods

(2), (3), and (4), the resultant transit times were always
smaller by 1—2'P& than those measured by the direct
pulse-echo method (1), whereas Eqs. (22) and (23) gave
a very small difference. From Eq. (23) the sound velocity
can be calculated by knowing the thickness of the
specimen.

A knowledge of the change in the natural velocity 8'
with stress p, i.e., —LB(poW')/Bpj„o is necessary to
determine third-order elastic constants. Since the nat-
ural velocity is experimentally known to depend linearly
on stress, the expression

1BW 1 hf

W BT f)T fo
(30)

In Eqs. (29) and (30), fo is the reference-interference fre-
quency either at zero stress, or at the reference tem-
perature, and f).f is the change with either stress or tem-
perature. Consequently, it is only necessary in the
anharmonic measurement of elastic constants to mea-
sure the fractional change in the interference frequency
with either stress or temperature. This cannot be con-
veniently done using the true velocity V, because 6V/Vo
is not proportional to f) f/fo.

The accuracy of absolute-velocity measurements in
terms of the reproducibility of v was found to be as fol-
lows: 6X10 ' for method (2), 2X10 ' for method (3);
a little better than 2X10 ' for method (4); and 1X10 '
for method (1). The accuracy of measurement of the
interference frequencies, however, was 1X10 ' for

80.0

O
sc

~l&

o 6G0
LLI

400

'C

CJ

20.

is equivalent to

2m 68' 2m A7.
()ooW')'n-o =-

pWo pro
where kVO and ~0 are the natural velocity and the round-
trip transit time at p=0, and w=(poWs)~=o as given
before. Using Eq. (17), Eq. (28) may be written within
experimental accuracy as

()soW ) =o= (2to/p) (~f/fo) (29)

Similarly, the temperature dependence of the natural
velocity is given by

1 8(poW') 2 (BW

(o )r'),= — ap —,-o )r k ap), —,
(27)

5s This expression is essentially equivalent to I f„/r), f„use=d
for the constructive interference by H. J. McSkimin in Ref. 54.
Discussion about this expression and Eq. (23) will be given in a
separate short note.
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~&G & Change in natura1 velocity with
temperature for modes I, 6, and 7.
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TAnLE III. Second-order elastic constants ce (in 10"dyn/cm') and compressihilities x~01, Ktt Kl
(in 10 r~ cms/dyn) of calcite at room temperatures

Present work
isothermal 4 method 4 method 3 method 2 method 1

Pulse-echo
methodb

Other methods (isothermal)
e

C11

CI2

C13

C14

C33

f44

14.523
5.486
5.249—2.032
8.433
3.290

Kvcl

K[] (parallel to Z axis)
xr (perpendicular

to Z axis)

14.535
5.501
5.280—2.031
8.564
3.289

Present
adiabatic 4

1.386
0.818

0.284

14.291
5.383
4.918—2.037
8.474
3.403

g
1.367
0.822

0.273

14.706
5.560
5.121—2.057
8.656
3.402

h
1.35

14.339
5.395
5.659—2.011
8.481
3.350

l
1.39

14.45
5.71
5.34—2.05
8.31
3.265

b
1.396
0.858

0.269

13.74
4.40
4.50—2.03
8.01
3.42

c
1.53
0.883

0.337

13.71
4.56
4.51—2.08
7.97
3.42

d
1.55
0.882

0.330

16.22
4.53
6.35
3012
9.77
4.29

e
1.22
0.66

0.28

16.95
5.93
7.25—2.87

10.46
4.14

f
1.103
0.625

0.239

a Maximum error due to linear extrapolation to room temperature was less than 0.05'p0. ««1=2 (sxa+su) +4sI8+ssS Ktl =2s13+s3s KJ =$II+$$2+SI8.
b L. Peselnick and R. A. Robie, J.Appl. Phys. 34, 2494 (1963).
o J. Bhimasenachar, Proc. Indian Acad. Sci. 22, 199 (1945).
d W. Voigt, Lekrbuch der Js.risgallphysik (B.G. Teubner, Berlin, 1910),p. 754.
e Reference 60.
& Reference 61.
I P. W. Bridgman, Am. J. Sci. 10, 483 (1925).
h E. Madelung and R. Fuchs, Ann. Phys. 65, 289 (1921).
1L. H. Adams, E. D. Williamson, and J. Johnston, J. Am. Chem. Soc. 41, 12 (1919).

method (2), 3X10 s for method (3), and 2X10 r for
method (4). Therefore, only method (4) had smaller
errors than the phase-shift correction term (= s X 10 ')
neglected in Eq. (22).

The sensitivities of methods (2), (3), (4), and (5) in
the relative-velocity measurements were also investi-
gated for the temperature dependence of the natural
velocity for various modes. The average values and
ranges obtained are as follows: 2X10 ' (1X10 '—1
X10 4) for method (2); 2X10 s (SX10 r—SX10 s) for
method (3); 2X10 (SX10 '—3X10 ) for method
(4); and 2X10 ' (SX10 '—5X10 ') for method (5). In
Fig. 3 the very good sensitivity of method (4) can be
seen for three modes. Note that these accuracies and
sensitivities are relevant only to the measurements on
calcite crystals, as the sensitivity depends strongly on
the attenuation of the sample. " The attenuation en-
velope for calcite was never of the smooth, exponential
type, and the attenuation increased with applied stress
which reduced considerably the sensitivity of the two-
specimen method (5) as compared with the result
(5X10 ') obtained by Hiki and Granato. " Internal-
conical refraction was also observed in calcite for the
pure modes 8 and 9 with the propagation direction
along the threefold axis."The semiangle of the refrac-
tion cone was so large (31 40') for calcite in comparison
with other trigonal crystals (quartz, 17'13'; sapphire,
9'3') that mode 9 could not be used even with good bond
because of the very small deteriorated echoes.

To test the applicability of the improved pulse-
superposition method (4) to absolute and relative ve-
locity measurements, the absolute velocity at room tem-
perature and the temperature dependence of the elastic
constants at 0 C in germanium were measured for one
particular mode N= [001],U= [001j.The results were
4.9120X10' cm/sec for the longitudinal velocity and

"P.C. Waterman, Phys. Rev. 113, 1240 (1959).

—0.1182X10 s/ C for (1/crt) (der t/d T) . This tempera, —

ture dependence compares quite well with the measure-
ments (—0.11X10 '/ C and —0.12X10 '/'C) ' made
at 0 C by Fine and McSkimin, respectively, which are
cited by Leibfried and Ludwig. "The absolute velocity
agrees within 0.04% with the value of McSkimin et al. :
4.9138X10' cm/sec. "

The effects of the transducer and its bond on the ve-
locity and temperature dependence of the interference
frequency were also checked by method (4) for one
longitudinal mode (mode 1) of calcite. A second trans-
ducer with almost the same resonance frequency was
placed on the opposite crystal surface. No large change
in the echo transit time due to the echo penetration was
observed, but errors caused by resonance between the
two transducers prevented an exact estimation of the
phase shifts. The effect on the temperature dependence
lay within the experimental error.

The following values were used for the density of cal-
cite p„ the density of quartz pz, and the sound velocities
in X- and Y-cut quartz crystals Vr„Vp (all at room tem-
perature): p, = 2.712 g/cc, '" pz =2.6485 g/cc, Vr,
=5.749X10' cm/sec, and Vr ——3.918X10' cm/sec. "
To get p, at 0 C an extrapolation based on the volume
expansion coefficient (13.14X10 s/C ) "was used. The
resonance frequencies of the transducers (measured at
room temperature) were also extrapolated to OC using
McSkimin's data s (—2.006X10 '/C for X cut, and
8.482X10 '/C for Y cut).

64 H. J. McSkimin, J. Appl. Phys. 24, 988 (1953); M. E. Fine,
ibid. 26, 862 (1955).

5 G. Leibfried and W. Ludwig, Solid State Phys. 12, 275
(1961)."H. J. McSkimin and P. Andreatch, Jr., J. Appl. Phys. 34, 651
(1963).

'7 D. L. Graf, Am. Mineralogist 46, 1283 (1961).
53 J. L. Rosenholtz and D. T. Smith, Am. Mineralogist 34,

846 (1949).
59 H. J. McSkimin and P. Andreatch, J. Acoust. Soc. Am. 34,

906 (1962).
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TABLE V. Third-order elastic constants of
calcite at O'C (in units of 10"dyn/cm') s

16.0

I2.0

8.0

IOH

IH

Cli1
C112
C113
C114
C123
C124
C133

—5.79+0.17—1.47+0.14—1.93+0.06
2.18+0.15—0.41+0.12
0.10+0.06—2.39+0.11

C184
C144
C155
C222
C333
C344
C444

0.82+0,05—0.69~0.12—1.39&0.07-6.75&0.19—4.98+0.13—1.95+0.06
0.33~0.10
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B. Analysis of the Data and the Third-Order
Elastic Constants

If the thermal-expansion coefficients of calcite are
known, the temperature dependence of the second-order
elastic constants at 0 C can be calculated from the data
in Figs. 3 and 4. The fractional temperature change of
p t/"' for any mode is given by

1 fI(p V')
= 2A+2cr —y,

pV' BT

where A is the temperature dependence of the natural

TABLE IV. Comparison of temperature coeKcients of the second-
order elastic constants of calcite (in units of 10 '/'C).

Present work' Reddy and Ramamurthy
at O'C Subrahmanyam and Reddy'

8 lnclt/l9T
8 lnc12/BT
8 1ncts/8T
a lnci4/aT
8 1ncss/BT
8 lncs4/aT

—3.898—5.273—4.825—2.838-1.462—2.753

15.5
48.4
36.8
9.79

16.7
3.46

89.3—175.8
138.8—38.01
89.87
28.37

& The linear thermal-expansion coefficients a in Table I, and the volume
thermal-expansion coeKcient y of Rosenholtz eS al. (~13.14X10 6// C)
(Ref. 58), were used in Eq. (31).

b Average values between 0 and 200'C, Ref. 60.' Average values between 0 and 30 C, Ref. 61.

I'ro. 6. Change in natural velocity with hydrostatic pressure.

positive values for the coeScients but negative coeS-
cients were also observed for the three shear modes 3H,
11H, 12H (Fig. 6).

Cases 4A and SH were not taken into account in this best-fit evaluation.

TABLE Vj:. Pressure derivatives of the thermodynamic and the
conventional second-order elastic constants of calcite at O'C.

Bll
B12
B13
B14
B33
B44
B66'

3.59
0.88
2.64—1.31
5.47
2.20
1.35

sert/aP
l9cts/Bp
Bcjs/l3p
Bc14/BP
8css/Bp
ac44/ap
sess/Bp

3.02
2.05
3.19
1025
2.80
0.92
0.49

~B&, (B;~s&) are the thermodynamic pressure derivatives dehned as
paia4/av;;a„s~)/aper.

s Bee and aces/ap are not independent derivatives.

IS: 's P. J. Reddy and S. V. Sabrahmanyam, Acta Cryst. 13, 493
(1960)."L.Ramamurthy and P. J. Reddy, J. Phys. Chem. Solids 28,
2131 (1967).

velocity for that mode at 0 C, at is the linear thermal
expansion coefIl.cienf. in the direction of sound-wave
propagation, and y is the volume thermal-expansion
coefBcient. The logarithmic temperature dependences of
c;; are thus calculated and given in Table IV, along with
the data by Reddy and Subrahmanyam' and Rama-
murthy and Reddy, "which were converted from (1/sg)
X(r)s@/r)T). Although the present results refer to 0 C,
while the latter two are the average, respectively, be-
tween 0 and 200 C and between 0 and 30 C, neverthe-
less one can readily see the large discrepancies between
the three measurements; all the temperature coefFicients
arej~negative for the present measurement, whereas they
are all positive for the data by Reddy and Subrah-
manyam and large positive and negative for those by
Ramamurthy and Reddy.

Computation of the third-order elastic constants has
been carried out from the data in Figs. 5 and 6 using the
expressions (Eqs. (14) and (15)j for —Lfl(paW')/cl pj„e
similar to those used by Thurston et ul."For 24 cases
(modes 1—8) the expressions were equivalent to theirs,
but for the other nine cases (modes 10-12) independent
expressions were expanded from Eqs. (14) and (1$).
Eleven hydrostatic measurements can give only six in-
dependent relations corresponding to the pressure deri-
vatives of the six second-order constants. Twenty-two
uniaxial measurements were sufhcient to determine 14
third-order constants of calcite with crosschecks. Never-
theless eleven hydrostatic-pressure runs were made to
furnish additional crosschecks. Fourteen third-order
elastic constants of calcite at 0 C were thus determined
with a least-squares best fit. Out of the 33 independent
cases, large uncertainties were involved in the determi-



912 H. KA GA

TABLE VII. Temperature dependence of linear combinations
of the third-order elastic constants of calcite at O'C (in units of
10 '/'C).

TAM, E VIII. Comparison of the isothermal-bulk moduli and
their pressure derivatives at room temperature.

Symbols

Bll
B12
B13
B14
B33
844
B66

& This is not an. independent expression.

Expression for B;;
sl (C111+C112) s3C113

11(C111+2C113 C232) S3C123—$1(C113+C123) S3C133—S1(C114+C124) S3C134—2s1C133—s3C333—sl (C144+C165)—s3C344—
3 LS1(C232—C113)—S3 (C113—C12 3)3'

~Bsj'

Bg BT

4.81
3.77

17.12
10.22
2.24
6.09
0.84

Br(isothermal)

Present work

dyn
7.156X10"—

cm'

Bridgman'

dynb
7.315x10"

cm'

4 828c 4.174b

Reference 63.
b These were calculated as 1/A1 and 2Am/A12, respectively, for B~ and

$8B/8p)~ 0 from measurements of the change in compressibility with
pressure —he/770 =A 1p —A 2@2.

&The pressure derivative of the adiabatic bulk modulusat O'C. The
pressure derivative of the isothermal bulk modulus at room temperature in
this case is different only by 1—2'P&.

nation of (1/W)(AW/p) for cases 4A and 8H, so these
were not taken into account in the best fit. No weighting
of the data was used because this gave minimum stan-
dard deviations compared with other weighting schemes.
The hydrostatic measurements were not necessarily
more reliable than the uniaxial ones in the determination
of (1/W) (DW/p), although the over-all change in hW/p
was relatively larger. The best-6t third-order constants
are tabulated in Table V. The relatively large probable
errors seem to result because the stress range was limited
(one order of magnitude smaller than for quartz), and
because many coeScients had to be simultaneously
fitted.

The pressure derivatives of the thermodynamic
second-order elastic constants B,,(B„„,& defined by
$8(8'C/831;831;)s/BPjr or by Eq. (14) ""are con-
venient physical quantities. Compared with third-order
constants, they are directly connected to changes in the
natural velocities with hydrostatic pressure, and a rela-
tively small number of them (six for a trigonal crystal)
gives full information about such first-order anharmonic
properties as the conventional pressure derivatives of

pv2—
pp d, (1+43„) (1+~&)'=ppW' —, (33)

where p and po are the density of the specimen, respec-
tively, under pressure p and zero pressure; d, is twice

the second-order elastic constants Bc,,/Bp, and the
change in compressibility with pressure. In Table VI
the six 8;,'s were evaluated from the set of third-order
constants of Table V using the relation

B' = E(B/Bp)(~'@/B~'B~ )jr
si(Ci;, +—Cs,;) spC3... —(32)

where si ——sii +sip +sip and sp ——2sip +sap . The con-
ventional pressure derivatives of the second-order con-
stants Bc;;/4)p can also be computed from B;; or linear
combinations of third-order constants as follows: The
true sound velocity in the specimen under pressure is
expressed (using the fractional change in volume 7„, and
the longitudinal strain n„ in the propagation direction
caused by pressure p) as

TABLE IX. Rhombohedral angle 8; lattice constants u, d; repulsive force law exponents e», n», n», and force constants p11, @12 @22
of calcite-type crystals' (3333= 11, +33=17.6x10 "erg cm", and the distance b is 1.08 A for the carbonates and 0.70 A for NaNO3).

CaCO3

CdCO3

MnCO3

—,'(MgCa) CO3

FeCO3

ZnCO3

MgCO3

NaNO3

8(obs.)
101'55'

102'30'

102'50'

102'53'

103'4.5'

103'28'

103'21.5'

102'42.5'

c and
db(A)

4 99c
1.417
4.92
1.371
4.77
1.3132
4.78
1.3127
4.70
1.282
4.64
1.247
4.61
1.244
5.070d
1.402

F1] and
44»(erg cm"« ')

9
2.45X1O-7

~ ~ ~

10
O.176X10-so

~ ~ ~

~ ~ ~

11
5.84X10-»

11
0.232X10 "

tb12 and
4433(erg cm"» ')

10
2.07X10 so

10
1 76X10—so 4 40X10—so

10 ii
1 OOX10 " 2.40X10 ss

10
1.05X10 " 2.50X10 "

10
o 77X10 1.71X10—ss

10 11
0.62X10 " 1.43X10—ss

~ ~ ~ 11
1 51X1.0 ss

~ ~ ~ 11
2.55X10—ss

a g and a were taken from S. Chapman, J. Topping, and J. Morrall, Proc. Roy. Soc. 111,25 {1926)except for CaCOg and NaNOg, and the force-law
exponents and force constants from Refs. 65, 66, and 67.

b d was calculated from d =aL1/(4 sin'8/2) ——,'g I .
H. Chessin and W. C. Hamilton, Acta Cryst. 18, 689 (1965).

d H. E. Swanson, N. T. Gilfrick, and M. I. Cook, Natl. Bur. Std. (U. S.) Circ. 539, 50 (1956).

"R.N. Thurston, J. Acoust. Soc. Am. 37, 348 (1963).
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the specimen thickness in the propagation direction,
and r is the round-trip delay time. Since the crystal sym-
metry is conserved, the derivative of Eq. (33) with re-

spect to p is given as

[p& ] v=o=[poW ) v=3+(poW') =o

x[2(B~./Bp). =o+2sg+so]) (34)

or using Eq. (14) for [poW')'v=o and w= (poW')„=3,

[p&3],=o——GHc —1

+ w(2 is+ s+o2(Bn /vBP) vo 2F—Ho). (35)

In Eq. (35) the left-hand side is directly related to
Bc„/Bp evaluated at p=0. If, for example, the propa-
gation direction is along one of the three axes (X,F,Z)
in calcite, the pressure derivative of the principal strain

(Bnv, „/Bp) (i=1, 2, 3) is given by

(B~ v/Bp). =o= —s' (36)

with so ——so for a trigonal crystal. From Eqs. (35) and

(36), (Bc»/Bp) v o is therefore calculated as

(Bc»/BP) v=3 I3» 1+——(s3——2s,)c». (3&)

A set of (Bc;;/Bp)„, for=calcite calculated from Eq.
(35) with the third-order elastic constants is included in

Table VI. The pressure derivatives of the second-order

elastic constants 8@ and Bc;;/Bp are all positive except
for 8~4 and Bc~4/Bp, which are negative.

It was noticed that the temperature coefficients of the
natural velocities under pressure were signi6cantly dif-

ferent from those at zero pressure. Since poB" at pres-

sure p is experimentally given by

p W'= w+ p( 1—2w—F o G—),
the main difference seems to arise from the contribution
of the second term; that is, from the change in the pres-
sure coeKcient with temperature. Hence, one can cal-
culate the temperature dependence of the second term
(which is, of course, proportional to p), and compare it
with that of the first term. Under a hydrostatic pressure
of about 100 kg/cm', the second-term contribution
amounted to 20 to 40% of the total effective tempera-
ture dependence for modes 10 and 11.It was a little less
than 10%, but definitely larger than the experimental
errors, for the other modes. Furthermore, the tempera-
ture dependences of the thermodynamic-pressure de-
rivatives BB,;/BT were calculated and are given in
Table VII. All the coe%cients (1/8@)(BB,;/BT) are
positive and much larger than the coeKcients (1/c;;)
)& (Bc;;/BT).

Except for the temperature dependences of the sec-
ond-order constants"" and some pressure measure-
ments by Bridgman, "there have been no data reported
on the anharmonicity of calcite for comparison with the
present results. Bridgman" 6tted changes in the com-
pressibility of calcite by a quadratic expression —bv/vo
=A~P —A3P', where hv is the change in volume from
the initial volume vo at zero pressure, to the pressure p,
and A& and A2 are the constants obtained by this 6t.
In order to compare the third-order constants of Table
V with Bridgman's results, the pressure derivative
(M3/Bp)„=o of the effective bulk modulus 8 was calcu-
lated from both measurements. In Bridgman's notation
it is 223/A~', whereas in the present notation

(B&/Bp).=3= —2&'((1/&)+ (1/0') I0[&»+&io—4&F3+2&33
—6+ (s3—2s&) (c»+ciao)+ 2(2s&—3s3)c33+4soc»)—(c»+c&3—4c»+ 2c33) [f&33—1+(2sq —3so)c33]

&& (c»+ca)+coo[A~+833+ (so—2s~) (c~~+cn))—4c~3(8~3+1—socio) J}}, (39)

where'=1/(2s&+so) and p=c33(c»+c]3)—2c~o'. Values
of both (BB/Bp)v=o and the isothermal bulk modulus
8 are compared with those of Bridgman in Table VIII.
The agreement between the two (BB/Bp)„=o values is
good. Therefore, a reasonable set of third-order elastic
constants for calcite has been obtained in the present
work.

V. DISCUSSlON

For alkali-halide crystals the contribution from the
closed ion-core repulsive interactions to the third-order
elastic constants is predominant as compared with
other factors. ' " Therefore, it is of some interest to
calculate this contribution C;;1,~ to the third-order con-
stants and compare it with experiment. Although a sub-
stantial contribution may come also from the electro-
static interactions, ' " attention will be confined here
to the former contribution (the exact evaluation of the

electrostatic contribution is a more complicated problem
because of the nature of the long-range force). The iso-
morphous series of carbonate crystals of the calcite type
(including one nitrate crystal) CaCO&, CdCO3, MnCO3,
—,'(MgCa)CO3, FeCO3, ZnCO3, MgCO3, NaNO3 will be
considered.

In the calcite structure there are six different ion-pair
types, but the carbon (or nitrogen) atoms are deeply
buried inside oxygen triads so the carbon atoms will not
be considered explicitly and the number of ditI'erent ion
pairs is reduced to three: metal-ion —metal-ion (M-M),
metal-ion —oxygen-ion (M-O), and oxygen-ion —oxygen-
ion (O-O).

To describe the repulsive potentials $~(r), inverse
power functions may be used. ' "If r is the ion-separa-

"P. W. Bridgman, Am. J. Sci. 10, 483 (1925).
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tion distance, they are given by

4' ( )=&/( —1)](1/ " ')

stant can be explicitly written down from Eq. (9):

(40) Clll = (2V ) (ya) f g llsull(r)

with the force constants p and the force-law exponents
ss given by Lennard-Jones and Dent. s~ss

We denote the repulsive potential, its exponent, and
its force constant for the M-M ion pair by pip(r),
nil, and p», those for the M-0 ion pair by Qls (r),
rs», and u», and those for the O-O ion pair by Pss (r),
m22, and @2~. In Table IX, these constants are tabulated
for eight calcite-type crystals.

Let us first calculate the repulsive contributions C,;I,~

to the third-order elastic constants for CaCOs, s(MgCa)-
COg, MgCO3, and NaNO3. The cleavage unit cell of
calcite has been shown in Fig. 1, and Fig. 7 presents its
projection along the trigonal axis onto the xy plane
where the CO3 groups are in a hexagonal array. The
rhombohedral angle 8 and the structural distances a, d,
and b are indicated in one of these figures. The distance
between two calcium atoms or two CO3 groups is a, the
distance between two neighboring atomic layers of
calcium and CO3 groups along the trigonal axis is d,
and the distance between the repulsive force centers of
the carbon and oxygen atoms of the same CO3 group is
b. The same approach used by Lennard-Jones and
Dent' to calculate the repulsive potential energy of one
molecule is followed. The total repulsive contribution
C;;I,"is divided into three contributions: the interaction
between one M ion and all the other M ions C;;~~™M;
the interaction between one M ion and all the CO3
groups C;;sn ' (or the inverse, C;;sls s I); and
the interaction between one COg group and the rest
Csg, c . Thus,

C;; a=C;, z I-I+2C. . z, M-cos+C. .„B,cos-cos (41)

where the factor 2 in the second term arises from the fact
that there are two equal contributions, C;;j,™3 and

C;,I," 3 M for one molecule. In calculating these terms,
contributions up to the next-nearest group interactions
are included. If the coordinates of ions at (al,as, as) are
denoted by (ll, ls, ls) with respective unit lengths sa,
sVSa, and d, as in Fig. 7; and the third derivatives of the
repulsive potential are denoted by u,P(r)=—Dsg;;n(r)
=—pu(rs;;+1)(ts;,+3)/r"'&'+s; then the repulsive con-
tribution [Eq. (41)] to each third-order elastic con-

4 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, Oxford, 1954), p. 19."J.E. Lennard-Jones and B. M. Dent, Proc. Roy. Soc. (Lon-
don) 112, 230 (1926)."J.E. Lennard-Jones and B. M. Dent, Proc. Roy. Soc. (Lon-
don) 113,673 (1927).

s' J. E. Lennard-Jones and B. M. Dent, Proc. Roy. Soc. (Lon-
don) 113,690 (1927).

's J. E, Lennard-jones, Proc. Roy. Soc. (London) 4109, 504
(1925).

+2 Q ll'uls(r)+ g ll'uss(r) },
M-CO3 CO3-CO3

Cl»"= (2V,,) '(-', a)'('sV3'a)'f g ll'll'ull(r)

+2 p ll'ls'uls(r)+ Q ll'ls'uss(r) },
M-CO3 CO3-CO3

+2 Q ls'u»(r)+ Q ls'uss(r) },
M-CO3 CO3-CO3

Csss'=(2V. )-'d'f g l,su»(r)
M-M

+2 Q ls'u»(r)+ P ls'uss(r) },
M-CO3 CO3-CO3

Cits B
—Clss 8—(2V )-1(la)4ds

X f p ll'ls'ull(r)+2 Q ll'ls'uls(r)
M-CO3

+ Q ll'ls'uss(r) },
CO3-CO3

C»4~= (2V,) '(sa) (slv3a)d

X f Q ll'lslsu»(r)+2 Q ll'lslsu»(r)
M-CO3

+ Q ll'lslsuss(r) },
CO3- C03

Clss"= Cl&sls= (2V )-'(—a)s(l~a)sds

X f Q ll'ls'ls'ull(r)+2 Q ll'ls'ls'u»(r)
M-CO3

+ Q ll'lsslssuss(r) },
CO3- CO3

Clss =(2V&) (—a) (—VSa) d

X{p ll ls'lsull(r)+2 p ll'ls'lsuls(r)
M-CO3

+ Q ll'ls'lsuss(r) }, (42)
CO3-CO3

Clss =Cs44 =(2V ) '( a) d

X{Q ll'ls'u»(r)+2 Q ll'ls'uls(r)
M- CO3

+ Q llslssuss(r) },
C03-CO3

Clss C444 = (2V.) '(-'V3a)'d'

X{Q ls ls ull(r)+2 P ls ls uls(r)
M-M M-CO3

+ P lsslssuss(r) },
CO3-CO3

Csss =(2V.) '(s'V3a)'f Q lssull(r)
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Q-Ion

0

x t Ca-Ice

b~ Xa

J (&-AXIS)
2

PI(X- AXIS) 0

I"zo. fI'. Projection onto a COI plane normal to the trigonal axis
of calcite. All of the ions in the cleavage unit cell of Fig. 1 that
were considered in the calculation of the text are shown. C ions
are not shown for clearness. Solid circles (0) clustered in groups
of three near the intersections of the solid lines denote oxygen
atoms lying in the COI projection plane; open circles (o) and
crosses (PC) denote calcium atoms, one atomic layer below and
above it, respectively; solid circles around the calcium atoms de-
note oxygen atoms two layers above and below it; and the square
at the center of the hexagon denotes two calcium atoms three
layers above and below it.

where I;;(r)—=u@ (r„„) is understood, and the unit cell
volume is V,=2ro' sin'0, where ro is the nearest-neigh-
bor distance between the centers of an M ion and a
COs group, being given by a/2 sing. The summations in
Eq. (42) are to be taken over the ion pairs at nearest and
next-nearest groups, i.e., only for the ions shown in Fig.
7. Numerical results for the individual terms C;,~~ M M,

2C"~" M ', C;;~~ 3 3 are shown in Table X for
CaCOs and MgCOs. (Results for s(MgCa)COs and
NaNO& are given in Table XI only for the total contri-
butions C;;P.)

In Table X, C,;&" M M is very small in magnitude in
comparison with the other terms, being less than 1% of
the total C;;I,".Thus, by neglecting the 6rst term in Eq.
(41) the total repulsive contributions C;;sn for CdCOs,
MnCO3, FeCO3, and ZnCO3 have been obtained and
are given in the second row of each crystal in Table XI.
(In this table only the data for m&s= 10 in the case of
CdCOs and rsrs ——11 in the case of MnCOs, s (MgCa) CO;„
FeCOs, ZnCOs are presented. )

Some qualitative properties of the third-order elastic
constants of calcite can be pointed out. In Table V two
constants (Crt4 and Crs4) among 14 are definitely posi-
tive; the others are negative or nearly zero. This dBers
from O.-quartz, where all 14 constants are negative or
nearly zero."Calcite has nearly equal, large negative
values for Cj~~, C2~2, and C333, intermediate values for
Cggg C$$3 C$$4 C$33 C$55 and C344 and almost vanishing
values for Ctss Cts4 Cts4, Ct«, and C44&. It may be seen
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TABLE XI. Semiempirical estimation of the third-order elastic constants for some carbonate
crystals of the calcite type (in units of 10"dyn/cm'). '

Crystals Cli1 C112 C113 C114 C123 C124 C133 C134 C144 C155 Cg22 C344 C444

CaCOg —5.79 —1.47 —1.93

6.78 0.96 3.52—12.57 —2.43 —5.45
—0.14 1.41 —0.67

2.32 —1.82 0.77

2.18 —0.41 0.10

2.47—4.86

—2.39 0.82 —0.69 —1.39 —6.75 —4.98

—0.63 1.13 4.06 5.65 7.84
1.45 —1.82 —5.45 —12.40 —12.82

2.91 1.78—4.86 —1.45

—1.95 0.33

CdCO3

MnCO3

7.22 1.02 3.72 —0.15 1.49 —0.71—14.89 —2.86 —6.24 2.55 —2.08 0.85

—7.67 —1.84 —2.52 2.40 —0.59 0.14

8.17 1.15 4.22 —0.17 1.69 —0.80—19.08 —3.68 —7.43 2.68 —2.48 0.89

—10.91 —2.53 —3.21 2.51 —0.79 0.09

—3.23

2.96 —0.75 1.35 4.86 6.77 9.39 3.49 2.13—7.96 1.73 —2.48 —7.43 —18.80 —25.93 —7.96 —1.73

—5.00 0.98 —1.13 —2.57 —12.03 —16.53 —4.47 0.40

2.61 —0.67 1.20 4.30 5.98 8.30 3.08 1.88—5.84 1.58 —2.08 —6.24 —14.66 —16.69 —5.84 —1.58

0.91 —0.88 —1.94 —8.68 —8.39 —2.76 0.30

-', (MgCa) COI

8.10 1.14 4.18 —0.17 1.67 —0.80—19.11 —3.68 —7.53 2.74 —2.51 0.91

—11.01 —2.54 —3.35 —2.57 —0.84 0.11

2.93 —0.75 1,34 4.82 6.71 9.31—7.96 1.75 —2.51 —7.53 —18.83 —25.65

—5.03 1.00 —1.17 —2.71 —12.12 —16.34

3.46 2.11—7.96 —1.75

—4.50 0.36

FeCo3

8.67 1.22 4.48 —0.18 1.79 —0.85—20.69 —4.05 —7.47 2.40 —2.49 0.80
3.14 —0.80 1.44 5.16 7.18 9.96 3.70 3.26—9.01 1.60 —2.49 —7.47 —20.48 —32.47 —9.01 —1.60

—12.02 —2.83 —3.00 2.22 —0.70 —0.05 —5.87 0.80 —1.05 —2.31 —13.30 —22.51 —5.31 0.66

ZnCO3 —15.36 —3.54 —3.90 2.35

9.12 1.28 4.71 —0.19—24.48 —4.82 —8.61 2,54
1.89 —0.90—2.87 0.85

—0.98 —0.05

3.30—11.13

—7.83

—0.84
1.75

0.91

1.51 5.43 7.56 10.49 3.89 2.38—2.87 —8.61 —24.29 —41.93 —11.13 —1.75

—1.36 —3.18 —16.73 —31.44 —7.24 0.63

MgCO3

9.36 1.32—27.38 —5.39

—18.02 —4.07

4.83—9.64

—4.81

—0.19
2.90

2.71

1.94 —0.92—3.21 0.97

—1.27 0.05 —8.79 1.15 —1.66 —4.07 —19.41 —34.40 —8.19 0.43

3.39 —0.86 1.55 5.57 7.76 10.76 3.99 2.44—12.18 2.01 —3.21 —9.64 —27.17 —45.16 —12.18 —2.01

NaNO3 C; Ip —3.84 —0.89 —1.64 0.61 —0.55 0.20 —1.66 —0.04 —0.55 —1.64 —4.01 —4.60 —1.66 -0.04

a The first row for each crystal is CsfIs', the second row is Csea&, and the third row is the total third-order elastic constant Cs&g.
b Cs&7s& and Cafe were not estimated for NaNO3.

in Table X that these differences in magnitude stem
mainly from the differences in the repulsive contribu-
tions C;,A, . One interesting point is that the signs of
the measured constants C;;~ coincide with the signs of
C;,I,

~ except for C444 whose value is small and com-
parable with the experimental error. It seems, therefore,
that the contribution from the short-range repulsive in-
teraction plays an important role in determining the
C;,~ of calcite just as in the alkali halides' —' and the
noble metals. "

The relative importance of the various terms in Eq.
(41) can be found from Table X. In calcite the second
term 2C;;~~ ' has the largest contributions, the
third term C;;I,~ 3 3 the next largest contributions,
and the first term C;;I, ' ' the negligibly small con-
tributions to all C;,I,

~ except for C333", where the rela-
tive weights of 2C@l,~ a 3 and C,p,~ 3 3 are re-
versed. In passing from CaCO3 towards MgCO3, the
relative importance of the third term is emphasized

more and more with a decrease in the lattice constants,
and in MgCO3 the third term is larger than the second
term for Cg].g Cg]2 C].3$ C222 C333 and CQ44

Fol CaCO3, CyyI, =Cg22 =C333, and as we go towards

MgCO3, this relation begins to break down and C333"

surpasses the other two, but the approximate equality
C~~~~=C222 holds for all the carbonates and NaNO3
(Table XI). Therefore, the compressional elastic con-
stants C;;; (i=1, 2) of all the carbonates is nearly iso-
tropic in two directions (X and F) at least up to the
third order, that is, approximately isotropic in the xy
plane. This interestingly corresponds to the isotropic
linear thermal expansion coe%cient in this plane (Table
I).

Calcite has three negative pressure coefficients of the
natural velocity, (1/1V)DW/p for modes 3E, 11H, and
12H (Fig. 6). As to the pressure dependence of the true
velocity 8(pV')/8p, only two coefficients (8/8p)(c«+c&,
)&tanv) for 3jV, (tanv=1. 34813) and (8/8p)t s(css+c44
+2ct4)j for 12P, are negative. These negative coeK-
cients are due to the fairly large negative 8c&4/8p and
hence, to the positive third-order constants C~~4, Cy24,

Cts4 (especially to large Ctt4) through the expression
8c$4/8p= —stct4 —st(CJt4+Ctsg) ssCts4, The negative
pressure dependence for calcite-type crystals is of some
interest, being analogous to the negative 8c44/8p of some
NaCl-type crystals with large ionic radii. ""

"K.M. Kolnvad, P. B. Ghate, and A, I„Ruoff, Phys. Status
Solidi 21, 507 (1967).
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TAsLE XII. Test of the Cauchy relations for the second-
(10"dyn/cm') and the third-order elastic constants (10"dyn/cin')
in calcite and n quartz (in parentheses). '

E

-20—

O

Symbolsb

GIB/C44

Cl 1/3C32

C183/CB '4

C134/ —«44

C314/3 C1 2 4

Corresponding
numerical values

5.280 3.289
(1.191) (5.820)

14.535 16.503
(8.680) (2.112)

—2.39 —1,95
(—3.12) (—1.10}

0.82 —0.33
(0.02) (2. /6)

2.18 0.30
(—1.63) (—0.45)

C133/Cl 55/3 C144/3 C123 —1.93 —1.39 —2.0/
{0.12) (—2.00} (—4.02)

—1.23
(—8.82)

C111+5C112/3C222

Clll+C112/C113+C222

—13.14 —20.25
(—19.35) (—9.92)

—7.26 —8.68
(—5.55) {—3.20)

~O n
~ O~~,

~O O& ~O

4~%% ~e 4COq OCO Ot-0
t I I I I

y X

C II4

+3
4.5

I I

4.6 4.7 4.8 4.9 5.0, 5. I

LATTICE CONSTANT a (A)

I"IG. 8. Variation of the third-order elastic constants with lattice
constant u for the isomorphous series of the calcite-type crystals
(open symbols and crosses). The solid symbols are additional data
associated with 112=11for CdCOB, 2422= 10 for MnCOB, —,'(MgCa)-
COg, FeCO3, ZnCO3.

Now let us examine the Cauchy relations which are
commonly used to test the nonionic nature of binding
forces in ionic crystals. ' ' Calcite is composed of Ca
ions and CO3 groups, where the CO3 radicals are tightly
bound within themselves by the formation of a planar
triad of electron-pair bonds, " i.e., covalent bonds, as
in the tetrahedral bonds of CH4 or diamond-like crys-
tals. However, since this covalent nature does not
come into play, the elastic properties of calcite may
depend only on the bond characters between Ca ion and
Ca ion, Ca ion and CO3 radical, and COg radical and
CO3 radical. The CO3 triads do not have spherical sym-
metry so noncentral forces must act between them, and
this should be reQected in deviations from the Cauchy
equalities. The Cauchy relations for a trigonal crystal
are given by Eqs. (10) and (11), and the experimental
values are arranged in Table XII to make it easy to see
their deviations. Also shown in parentheses in Table XII
are experimental data obtained by Thurston et al. ' for
42-quartz (a comparative trigonal crystal). The Cauchy

Reference 30.
b Slash means equality on the left-hand side, but not necessarily on the

right-hand side.

relations are not well satisfied in calcite, but the devia-
tions are much less than for 42-quartz. Judging from the
fact that these deviations are not much different except
for two cases (C3$4—3C324, Crtt+5C232 ——3C222) from
those in such ionic crystals as I iF and MgO ' ' as well
as NaCl ""the bond properties of calcite may be
largely ionic.

If we assume that in the ionic-crystal Born-model
approximation only the electrostatic and short-range
repulsive terms are significant, then the difference be-
tween the observed C;,I, and the calculated C;,A,

" for
calcite can be attributed to the "electrostatic" contri-
bution C;,~'. Since for all the carbonates the electro-
static interatomic potential g'(r„„) is the same for the
corresponding ion pairs and the rhombohedra1 angle 8
is approximately equal (Table IX), the corresponding
lattice sums in Eq. (42) are identical for all the car-
bonates of the calcite type. (Here, we exclude the case
of NaNO;. ) We can thus estimate the "electrostatic"
contribution by only changing the lattice constants a,
d and the unit cell volume V, in Eq. (42), where N,P(r)

DBBt3,"24(r) is replaced by—I (r) =Dsrt2 (r). The r—esults
calculated in this manner are given in the erst row of
each crystal in Table XI. By adding the 6rst row C;;&'
and the second row C;;A,~ of each crystal, the total third-
order constants C;;& were semiempirically estimated in
the third row. The variations of C~~~, C222, C333, and
C~~4 for the carbonate series are illustrated in Fig. 8,
where the values calculated with another force law ex-
ponent m~2= 11 for CdCO3, m~2= 10 for MnCO3,
rs(MgCa) COs, FeCO3, and ZnCOs are also plotted. It is
noteworthy (Table XI and Fig. 8) that the variation of
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negative C,,& is very large (about 3 to 6 times), whereas
that of positive C,,& (Ci14 Ci24 Ci34 C444) is almost zero.

Lennard-Jones and Dent'" have selected tti2 11——for
CdCO3 and MnCO3 as a more favorable exponent, but
could not assign an appropriate m~2 to FeCO3 and
ZnCO3. The higher-order elastic constant is a very con-
venient quantity, especially in examining the short-
range, interatomic potential owing to its predominant
contribution. If our exponents and force constants for
CaCOg and MgCO8 (Table IX) are correct, Fig. 8 seems
to indicate that m~2 is 10 for CdCO3 and 11 for MnCO3,
2(MgCa)CO3, FeCO3, and ZnCO3 in order to connect
the points of the values C;;I, by smooth curves.

Perhaps the most useful result of the calculation of
the repulsive contribution is that the experimental
third-order constants (Table V) are confirmed as a rea-
sonable set of values for calcite since the experimental
and calculated values have the same relative magnitudes
and signs (except C444). To further analyze the experi-
mental data, a detailed calculation including the elec-
trostatic contribution is needed.
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APPENDIX: GATE SHIFT OF THE
GATED-CARRIER METHOD

Consider in the gated-carrier pulse-superposition
method only the two echo trains out of many super-
posed-echo-trains which are all in phase with one
another (Fig. 9).The upper figure (a) is the last applied
(superposed) direct pulse and its echo-train and the
lower (b) is the one applied a long time earlier whose
echoes still do not vanish and are contributing to the
interference condition. The number of cycles in one echo
is reduced to 6ve cycles for clarity instead of 10—20
cycles in the actual case. Under this initial interference
condition the hatched cycles in echo A are exactly in
phase with those in echo B. Now when the external
conditions are changed and the sound velocity is in-
creased, the echoes in (b) advance to the left Lto the
dotted envelopes of (b)) according to decrease in the
transit time (the amount of this shift is different from
echo to echo), and the hatched cycles in echo 3 are
shifted to the open solid cycles in the dotted envelop.
Echo B is no longer in phase with echo A in this situa-
tion. In order to keep the interference condition, the

Sg (I Gt gl

Ggg Gl Gg

DIRECT
PULSE

Fro. 9. Deviation from the exact interference condition due to gate
shift in the gated-carrier pulse-superpositoin method.

carrier instead of repetition-rate frequency is changed
(increased in this case) in the gated-carrier method.
Then, when the carrier frequency is increased, the phase
of echo A proceeds relative to the phase of echo B and
the carrier cycles in echo A move to the open solid
cycles, where the interference condition is again satis-
fied between the two echoes, A and B. However, if the
gate position for echo A is kept at the same place, then
not only the first half cycle p of echo 8 and the last half
cycle q of echo A are left without interference, but also
the interference between the open solid cycles enclosed
by the solid envelop of echo A and those enclosed by the
dotted envelop of echo B does not give rise to the same
interference pattern as that in the previous interference
condition. This is because each open solid cycle of echo
A is different in size and shape from the corresponding
hatched cycle of the same echo. That is, the different
echo amplitude would be expected to appear in this new
interference condition. If the gate position is slightly
adjusted to the left, from G1 to G2 (higher repetition
rate), exactly the same size and shape for each cycle of
echo A can be obtained and the same interference pat-
tern of the superposed echoes is produced again (the
open dotted cycles of echo A).

In the actual practice the number of rf cycles, f„r, for
one round trip is about 100. If the velocity is increased
by 10 '(hr = —10 '), then the change in the number of
cycles is about 10 ' cycles for one round trip. In the
pulse-superposition method, normally many echoes are
superposed depending on the energy loss of the speci-
men, and in calcite even more than 20 echoes were ob-
served for many modes used. If we assume that echo B
in (b) is the 20th echo of this echo train, then the change
in the number of cycles for 20 round trips, i.e., the shift
of the echo due to this change of velocity is about 0.2
cycles. In this schematic figure this has been taken to be
0.5 cycles. If it is thought that not only one but many
echoes are shifted from one another in this way in this
method, though the degree of shift is different for all
echoes, it is expected that this phenomenon might cause
a large effect on the interference condition.

In fact, a sizable effect has been observed in measur-
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ing the interference-carrier frequency when the repeti-
tion-rate frequency was adjusted. Also, when th, is ad-
justment was not made, high-frequency noise signals
close to but a little off the repetition-rate frequency were
observed being superposed upon the echo oscillation.

This frequency was associated with this gate shift and
could be calculated from the above idea.

In conclusion, this eRect is attributed to the non-
rectangular shape of echoes and the small number of
cycles (10-20 cycles) involved in one echo.
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A variational calculation of the curve of ground-state energy versus density for solid neon is presented
using a two-parameter wave function which takes correlations between pairs of atoms into account. A Monte
Carlo method is used for the computation of the energy expectation value, the ground-state pressure, and
the single-particle distribution function. The Lennard-Jones interatomic potential is assumed throughout,
and various potential parameter values are discussed. If carefully determined experimental parameters are
used, a pressure-versus-density curve is obtained which is in good agreement with experiment.

I. INTRODUCTION

~

~

~

MONG the rare-gas crystals, solid helium and
solid neon stand apart because of the important

zero-point motion of their atoms. This is most marked
for solid helium, which must be considered as a "quan-
tum crystal" and has received considerable theoretical
interest. Solid neon presents the same quantum char-
acter although to a lesser extent than solid helium,
because the neon atomic mass is about five times larger
than the He4 atomic mass.

Throughout this paper as well as in most of the
previous work it is assumed that the interaction between
the rare-gas atoms can be described by the Lennard-
Jones potential

s (r) =4eg(o/r)" —(o/r) s$. (l)
The relative importance of quantum eRects can be

characterized by the value of the dimensionless param-
eter

h.= ts/o (me)'",

where m is the mass of an atom in. the lattice. For He4,
A. is worth about 0.4, whereas for neon A. equals about
0.08. Recently, Brown' has presented expressions for
the ground-state energy and pressure of rare-gas solids
including terms up to order A'. Using these expressions
and the experimental values of the sublimation energy
and the lattice parameter of solid neon at O'K, he
determined the Lennard-Jones potential parameters e

and o. The values obtained by Brown are given in
Table I together with the values determined by second-
virial coefficient measurements in the gas phase' and

* Present address: Laboratoire de Physique Thdorique et Hautes
Energies Bh,timent 211, Faculty des Sciences, 91-0rsay, France.

t Laboratoire associe au Centre National de la Recherche
Scienti6que.' J. S. Brown, Proc. Phys. Soc. (London) 89, 987 (1966).' J. de Boer and A. Michels, Physics 5, 945 (1938).

TmLE I. Lennard-Jones potential parameters.

o (A)
e('K)

Brown'

2.786
36.76

2nd virialb

2.74
35.6

Bernardes'

2.74
36.2

a Reference 1.
b Reference 2.
e Reference 3.

3 N. Bernardes, Phys. Rev. 120, 807 (1960).' L. H. Nosanow and G. L. Shaw, Phys. Rev. 128, 546 (1962).' W. J. Mullin, Phys. Rev. 134, A1250 (1964).

the values used by Bernardes' and by Nosanow and
Shaw4 in their calculations which will be discussed later.
The three sets of values are seen to diRer by a few
percent. One of the purposes of this paper is to study
the influence of these diRerences on the calculated
ground-state properties.

Apart from Brown's lattice-dynamics approach in-
c1uding anharmonic terms, most other theoretical cal-
culations of solid neon ground-state properties are
variational. Bernardes, ' as well as Nosanow and Shaw, 4

used a trial wave function which is a product of single-
particle wave functions, each spherically symmetric
around a lattice site. Nosanow and Shaw solved the
Hartree equation for this problem and thus obtained
the lowest possible ground-state energy in the single-
particle approximation. Their results are given together
with others in Table II. The fact that; using the same
approximation, Bernardes obtained a lower energy with
a one-parameter single-particle trial wave function can
only be due to an error in his caclulations.

Table II clearly shows that there remains a 20
cal/mole difference between the Hartree ground-state
energy and experimental results. In order to explain
this diGerence Mullin' tried to take the correlations
between atoms into account by using a Jastrow times


