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The third-order elastic constants of calcite at 0°C have been determined by measuring the stress and tem-
perature dependence of sound velocities in it by means of an improved pulse-superposition method (average
sensitivity of 2XX1077). Within the small temperature range considered (about 2°C), a nonlinear temperature
dependence which varies with pressure has been clearly observed. Out of 14 independent third-order moduli,
Ci14 and Ciaq are definitely positive, and all the others are negative, with ambiguities for Cis; and Cayy. The
approximate magnitude is equally large for Cii1, Case, and Cjyss, intermediate for Ciia, Cis, Ciig, Ciss, Ciss,
Cs44, and very small for Cias, Cia4, Cissy Crasy, Cass. The pressure derivative of the bulk modulus calculated
using these constants is in reasonable agreement with Bridgman’s data for the change in compressibility with
pressure. The contribution of the ion-core, short-range repulsive interaction C;;x® to the third-order elastic
constants has been evaluated for the carbonate and nitrate crystals of the calcite type using an inverse-power
potential. The repulsive contributions were found to be predominant over the other contributions to almost
all the third-order constants. Under the assumption that the remaining contribution is the electrostatic in-
teraction alone, and using the experimental data for calcite, complete sets of the third-order constants have
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been estimated for other carbonate crystals.

I. INTRODUCTION

LASTIC constants can provide insight into the
nature of the binding forces between atoms in a
crystal because they are represented through the deriva-
tives of the interatomic potentials. In the Born-model
evaluation of the cohesive energy of an ionic crystal, the
bulk modulus assesses the relative importance of the
long-range Coulombic and the short-range repulsive in-
teractions for the total cohesive energy as well as the
parameters of the ion-core repulsive potential.! The
Cauchy relations for the elastic constants test for the
existence of many-body forces in addition to the simple
two-body interactions.?? The analysis of the deviations
from Cauchy relations by means of a detailed quantum-
mechanical calculation of the elastic constants should
give us information about these many-body forces, that
is, whether they are primarily ion-overlap interactions,
covalent interactions, or an admixture of these.*% One
can also examine individual terms in the total inter-
atomic potential by systematically measuring the elas-
tic constants while changing such parameters as valence
electron density (electron-atom ratio), ion-core charge,
lattice constant, crystal structure, and so forth.
Third-order elastic constants are of special interest
because they are related to all anharmonic properties of
solids as the coefficients of the first-order anharmonic
terms in the interatomic potential. Thus they determine
anharmonic properties such as thermal expansion, tem-
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perature, and stress dependence of elastic constants,
behavior of the heat capacity above the Debye tem-.
perature, and phonon-phonon interactions. Thermal
expansion produces the difference between adiabatic
and isothermal elastic constants. The interaction be-
tween acoustic and lattice phonons explains one of
the mechanisms of ultrasonic attenuation in solids,
which is expressed in terms of third-order elastic con-
stants through the generalized Griineisen mode param-
eters.” Third-order elastic constants are also indispens-
able for finite elasticity theory,® where the elastic stress
is nonlinear with the elastic strain, and therefore, in
certain crystallographic planes in a crystal, the elastic
shear behavior is asymmetric with respect to the sense
of the shear displacement. Although the anharmonic
deviations from the harmonic properties are, in general,
small in magnitude, they are all qualitatively important
phenomena that cannot be understood in the framework
of the harmonic approximation. Furthermore, third-
order elastic constants can furnish knowledge about the
ion-core repulsive interactions and other potentials
which vary rapidly with the interionic separation, be-
cause these contributions usually become predominant
in the higher derivatives.

In recent years considerable attention has been given
both to the theoretical and experimental determination
of third-order elastic constants in solids. During this
time several ingenious experimental methods of high
sensitivity have been developed, which permit the reso-
lution of very small ultrasonic velocity changes. In the
same period theoretical computations of third-order
elastic constants were first carried out for alkali-halide
ionic crystals, because their cohesive energies can be
relevantly expressed in terms of the Born-model ap-

7W. P. Mason, in Physical Acoustics, edited by W. P. Mason
(Academic Press Inc., New York, 1965), Vol. IIIB, p. 235.

8 F. D. Murnaghan, Finite Deformation of an Elastic Solid (John
Wiley & Sons, Inc., New York, 1951).
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proximation.®~!? Then it was extended to diamond-like
crystals (Ge, Si) in which the six third-order elastic con-
stants were evaluated in terms of three force constants
fitted to match experimental values.!* The third-order
constants of fluorite crystals (CaF,, SrFs, BaF;) have
also been calculated on the basis of rigid-ion and dipole
shell models.!* Calculations have been attempted for
metallic crystals such as the alkalis,® noble,® and other
cubic ones!”'18 using a simple potential consisting of the
electrostatic attractive and repulsive, and Fermi energy
terms,!6:16:18 or the model Morse potential.l”
Experimental measurements of complete set of a third-
order elastic constants have now covered the following
materials: semiconductors (Ge,%-22 Sj,20:2! GaAs,?
phosphorus-doped #-type Si?%); ionic crystals (NaCl, 2526
KCL?% MgO,? BaF,?"); metals (Cu,?2 Ag? Au%,
B-brass,? Al'8); trigonal a-quartz®®; and several poly-
crystalline solids (Pyrex glass,®* polystyrene,®® iron,3!
steel,3? Al alloy,?? Mg,32 Mo,* W,?? and fused SiO, 22).
The experimental methods used were: McSkimin’s
pulse-superposition method?®? in Refs. 19, 21, 22, 23, 27,
and 30; the sing-around method developed by Forgacs?
in Refs. 20 and 29; the two-specimen interference
method® in Refs. 18, 26, and 28; the two-echo cancel-
lation method?®:3¢ in Ref. 25; the pulsed-oscillator con-
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F1e. 1. A cleavage rhombohedral pseudocell of calcite. For
clarity atoms are shown only at the corners and the center of this
cell; not shown are Ca atoms situated at the centers of the 6 faces
and COj3 groups at the centers of 12 edges.

tinuous-wave (cw)-echo cancellation method in Ref. 32;
and Blume’s phase-quadrature method®” in Ref. 24.

There are also a large number of measurements of the
hydrostatic pressure dependence of second-order elastic
constants. These have served to check certain linear
combinations of newly determined third-order con-
stants, and to provide nondirectional information about
anharmonic forces.

At the present time, a-quartz is the only noncubic
crystal for which a full set of third-order constants is
available. When one passes to a crystal with lower sym-
metry, the greater number of elastic constants requires
a greater number of experimental measurements to de-
termine the complete set. Thus experimental error is
more likely. Calcite is a trigonal crystal, typical of the
homologous series of carbonates, and is well known for
its optical birefringence. Calcite, whose structure is
given in Fig. 1, has unusual thermal-expansion coeffi-
cients at room temperature. The linear-expansion coeffi-
cient is large and positive in the direction of the three-
fold Z axis, and is small and negative in the directions
perpendicular to it (Table IT B). Another characteristic
property of calcite crystal is that deformation twins
form in it easily.® This might be reflected in a marked
difference in the nonlinear elastic behavior for shears
in the twinning direction and shears in the anti-
twinning direction. This nonlinearity may be deter-
mined by the effective shear modulus, which is a linear
combination of the third-order elastic constants, given
as a function of either the shear stress or the shear
strain by finite elasticity theory.® Furthermore, the
nature of the bonding between calcium ions and COj;
radicals is not yet clarified, although it is known that
within COj radicals each carbon atom forms covalent
bonds with the surrounding three oxygen atoms by trig-
onal-planar electron-pair bonds.?® Therefore, it has
been of considerable interest to measure the third-order

3 R. J. Blume, Rev. Sci. Instr. 34, 1400 (1963).

8 F. J. Turner, D. T. Griggs, and H. Heard, Bull. Geol. Soc.
Am. 65, 883 (1954).

3 H. B. Gray, Electrons and Chemical Bonding (W. A. Benjamin,
Inc., New York, 1965), p. 117.
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elastic constants in calcite and to investigate re-
lationships between its properties and its elastic
anharmonicity.

II. THEORETICAL FOUNDATION

A. Expressions for Elastic Constants

We use Brugger’s definition of elastic constants.® In
any order, they can be defined as the coefficients of the
terms in the elastic strain-energy density expanded into
a power series of Lagrangian strain components 7;;. The
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Lagrangian strain components 7;;’s are expressed as

1/9x; Oxx
771'J'=—<—""'_" 51’:’) y 4 5, k=1,2,3, (1)
2 aa,; allj
where a; and x; are the components of the Cartesian
coordinates of a material in the undeformed and de-
formed states, respectively. Summation over all re-
peated indices is hereafter implied.

In the case of a trigonal crystal, the elastic-strain
energy density A® at 0°K is explicitly written up to
terms cubic in Lagrangian strains as follows:

AD(n) = B(n) — B(0) = B+ Ps+ - - - = Jcr1(nu®+ 1222+ Crom11me0
+ c1s(naamastnaan1n) + craf (11— n22) (2s+n32) + (a1t 113) (12t 121) } + 3C3amas’
+C44(17232+ n32+ 7]312+ 7]132)+‘1§(011—012) (77122+ n212)+%C11m113+%C112721121122+%Cus(’r)uznss‘i— 7)2221111)
F2Cr1am11%(n25+n32) + Crasniinasnss+ Craaf nunae(nas+ n32) + (23t ns2) (1221212 }
+3C1aanas?(n11+n22) + Crsanss{ (11— n22) (n2s+ ns2)+ (a1t m13) (M1t 721) }+ Craa{ nes®+132%)
- n22(n312F 1152 } + Cuss{ m22(n25*+ 1823 -+ 111(ms124 115%) } + 5 Ca2am203 4 $Cssn5°+ Caaanss{ (23>t 1227)
+ (13124118 } - Casa{§ (n25+182) 3 — (25 132) (31241152 } 3 (Cr1a+Criz— Caaa) nee®nur
+1(— Cur1a— 2C124) 222 (n25+ 132) + 1 (— 2C111— Cr12+3C02) 11 (1224 1212 + 3 (2C111— Cr12— Caza)
X 7]22(17122+ 7]212)+%(C113‘— C123)7733(77122+ 7)212)+‘%(C114+3C124)1111(7731+ 7713) (7112+ 7721)
+3(Cr1a— Cr2a)n22(msrtn15) (12 n21) + 5 (— Cras+ Ciss) (nes+ns2) (nartm1s) (metna)+ - - - (2)

The conventional contracted notation for the second-
and third-order coefficients is used. Therefore, a trig-
onal crystal has six second-order (usual) constants, and
14 third-order constants.*!

Now we wish to express the second- and third-order
elastic constants of a trigonal crystal in terms of the
interatomic potential under the assumption of two-
body, central-force interactions between the ions. We
exclude here the vibrational part of the free energy, so
that the expressions will be valid only at 0°K. The
elastic strain-energy density A® is given as the difference
in the potential-energy density of the crystal in the de-
formed and undeformed states. They are, in turn, ex-
pressed as the sums of the difference in all the inter-
atomic potentials between ion-pair in the respective
states:

1 1
()= 2 Gu(r™) =
Ve (1=0) 2Ve

2 bu(rw™),

) 3)
<I>(O) = Z, ¢’W(anmo) )
2V

c

where V, is the volume of the unit cell of the trigonal
crystal in the unstrained state, ¢,,(7,,™0) is the interac-
tion energy per ion pair between the uth ion in the mth
cell and the »th ion in the zeroth cell. 7, and R,,™°
are the interionic distances in the strained and un-

40 K. Brugger, Phys. Rev. 133, A1611 (1964).
1 K. Brugger, J. Appl. Phys. 36, 759 (1965).

strained states, respectively. Since we define the unit
cell of calcite to include only one molecule, 3" denotes
the summations over all the other ions around one Ca
ion, one C ion, and three O ions:

1
A=— 3 (Pu(rw™)—¢uw(Rw™)). (4

V €aCOs
Using the relations
R= a1+ asis+asis,
R2 = daagaag 5
r= ali1’+a2iz'+aai3’ = x1i1+x2i2+ x3i3 ’ (5)

dx; 0x;

ri= aaagla3= xaxgtsag, Iaﬁ—“—- ‘I:al’ig’= 3 3 y
Ao 048

aB,1=1,2,3

the difference in the square of the interionic separation
(»»—R?) is given by

r’—R*=a.a5(Iap—dap) , (6)

where 14, 1./, etc., are the basic vectors of the lattice in
the undeformed and deformed states. One can also ex-
press this in terms of the Lagrangian strain components
7Nap that are defined in Eq. (1):

72— R?=20,08Mag. O]

In Egs. (5), (6), and (7) the subscripts, u», and super-
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Taste I. Eleven modes and 33 hydrostatic and uniaxial measurements considered (e;=0.59576, 8;=0.80317,

a2=0.98512, B2=0.17185, cr =0.84294,

B3=0.53802, £=0.705252, =0.71167).

Mode No. .
and Propagation Polarization Mode symbol Compression
mode type direction N direction U of stress direction M
1 I» 100 100 1 HY all
14> 010
1Bv 001
2 S 100 0813 2H all
24 010
2B 001
3 S 100 0OcuiB1 3H all
34 010
3B 001
4 QL 010 OctzB2 4H all
44 100
4B 001
5 QS 010 0832 SH all
54 100
5B 001
6 S 010 100 6H all
64 100
6B 001
7 L 001 001 TH all
T4 100
7B 010
8 S 001 100 8H all
84 100
8B 010
9 S 001 010 not used
10 QL Okld OctsB3 10H all
104 100
10 B 0lk
11 QS Ok! 0833 11H all
114 100
11 B Ol%
12 S Ok! 100 12H all
124 100
12 B Ol%

a L =pure longitudinal, S =pure shear, QL =quasilongitudinal, QS =quasishear.

b H denotes hydrostatic stress, A and B uniaxial stress.
¢ Mode 9 was not used because of the large internal conical refraction.

d This propagation direction was selected normal to the cleavage plane of calcite.

scripts, m0, are understood. If we now expand A® in
Eq. (4) in a power series in 3 (72— R?),,™, the second P,
and the third ®; terms can be obtained, respectively, as

1 [1(r2—R2),,m 2
By— P T D)™
2V, caCO3 =R
1
= Z > NapNa’ g’
4V, o o’8’
X[ X' aatpaaagDu(r)|—r], (8)
CaCO3
D3= NafNa’p N’

12V, ‘B '8’ o'

X[ 2 Ga0ptarapaaag:D3u(r)|rmr],

CaCOg3

whére D= (1/r)(d/dr)= (1/aa5)d/01es. By comparing

these expressions in Eq. (8) with the macroscopic defini-
tions of elastic constants, the second-order, cagq4% and
third-order elastic constants, Cegargrarrg?, at 0°K are
expressed as a function of the interionic potential

‘i’#v(ruvmo) :
02® 1
Caﬂa’ﬁ"): (——'—_) =
0Mag0narp/ y=0 2V,

X X’ aaaﬂaa’aﬁ’pz‘i’ﬂv(")mmoxr=R;

CaCOg3
>ﬂ=0

*—ZV 2 0al80a s QaraprD3u(r) ™| s=r.
¢ CaCO3

)

3P
Caﬂalﬁla/lﬁll0= (—_—'—'%
anaﬂanalﬂl aﬂa’ 1%

Equations (9) and (2) immediately give the Cauchy re-
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lations for the second- and third-order elastic constants
in a trigonal crystal at 0°K. For the second-order con-
stants these are

c18%=¢4" ¢11°=3c12, (10)
and for the third-order constants
C1330= C3440, C1340= - C4440 ]
C114°=3C124% C113°=C155°=3C125°=3C14s, (11)

C1110+5C1120= 3C2220, C111°+ C’1120= C1130+ C2220 .

Hence, under the central-force assumption, there are
only four independent second-order (ci1,c13,¢14,¢33) and
SiX independent third—order (Cl11,C112,Cn4,C133,C134,C333)
constants for a trigonal crystal. At temperatures other
than"0°K, of course, the contribution from the vibra-
tional free energy comes into play, so that these rela-
tions in Eqgs. (10) and (11) are no longer valid even
under the two-body, central-force model.10:11

B. Relations between Elastic Constants
and Sound Velocity

For the propagation of sound waves at zero stress,
substitution of plane-wave solutions into the equations
of particle motion gives eigenvalue equations for the
sound velocity:

pV2U;=\;U;,

12
Nij= itV 1V, (12)

where p is the density of the solid under consideration,
V is the velocity of ultrasound, and U; and N, are the
components of unit vectors in the directions of polariza-
tion and propagation, respectively. After fixing the
propagation directions of the sound waves, one can ob-
tain the eigenvalues for pV2, and hence the relations
between pV? and the second-order elastic constants
cirj1. Explicit expressions for p¥? for a trigonal crystal
can thus be found*? for the modes which are of experi-
mental interest (Table I).

In the strained state where sound waves propagate
through the stressed solid, the third-order elastic con-
stants Cjjx come into the equations of particle motion
when the strains are finite.’1*3 The corresponding ex-
pressions for pV? are functions of the Cyji’s; and p and
V are now the density and velocity in the strained crys-
tal, respectively. According to the definitions of elastic
constants,? the C;’s are derivatives of the effective
second-order elastic constants with respect to the perti-
nent Lagrangian strain component. Hence, the change in
apparent pV? with stress p is more directly related to
the third-order elastic constants than pV? itself. How-
ever, it is not easy to take the derivative of Eq. (12)
with respect to stress, because the polarization and
propagation directions are rotated and the density and

42H. J. McSkimin, J. Acoust. Soc. Am. 34, 1271 (1962).
4 A. Seeger and O. Buck, Z. Naturforsch, 15a, 1056 (1960).
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the path length are also changed when stress is applied.
To allow for this, Thurston and Brugger* have utilized
such convenient parameters as the “natural velocity”
W, the density po in the unstrained state, and the ex-
pression w;; corresponding to A;; but independent of the
rotation of the deformed material. W is defined as twice
the path length in the unstressed state divided by the
round-trip transit time of sound wave in the stressed
state. Thus Eq. (12) becomes

poW2U7;= 'lUijUj. (13)

After taking derivatives of both sides of Eq. (13) with
respect to stress p and computing the term —[d(p¥?2)/
dp], they have arrived at very useful general expres-
sions connecting third-order elastic constants to the
natural velocity. For hydrostatic compression

—[3(poW?)/3p]p—0=1+2wFuc+Guc,
Frc=S$44:s"U,U,,
Gue="Saaus’ CuvpraalV oV U U
=—ByrgsV VU, U,,

(14)

— Boprgs=Sisus? Cuvpras
and for uniaxial compression
—[8(pW?)/8p]p—0=2wFyc+Guc,
Fyo=Sabrs" MM U, U,
Gue=Savur” Cuvpras M M yN N U, U,
where = (po/#2) ,—0= (pV?) pm0=Cpras "N pN U U s; sT
are the isothermal second-order compliance constants;

and M; are the components of the unit vector in the
direction of the uniaxial stress (which is usually taken

(15)

TaBLE II. (A) The chemical compositions, and (B) thicknesses
and linear thermal-expansion coefficients of calcite specimens
used.

(A) Main impurities of the calcite specimens, in weight%,.
Si Mn Sr Mg Fe Ni Cu

0.1 006 0.038 002 0.015> 0.006 0.004 0.002

(B) Thicknesses at 0°C and thermal-expansion
coefficients at room temperature.

Specimen no. Thickness at Linear thermal-expansion
0°C

and coefficient?
direction (cm) (per °C)

spec 1.

100(X) 2.07264 —4.9X10°¢

010(Y) 1.80322 —4.9X10°¢

001(2) 1.91371 25.1X107¢
spec 2.

100(X) 2.22961 —4,9X107¢

0l 2.23897

Okle 1.97911 10.8X107¢

a By flame emission; all the others by spectrographic powder-arc method.
b J. B, Austin, H. Saini, and R. H. H. Pierce, Phys. Rev. 57, 931 (1940).
¢ This direction is normal to the cleavage plane of calcite.

4 13 N. Thurston and K. Brugger, Phys. Rev. 133, A1604
(1964), ‘ '
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as perpendicular to the propagation direction N). Thus,
a linear combination of third-order elastic constants
has been directly related to the change of the natural
velocity W with stress p. For a trigonal crystal,
—[8(pW?)/8p]p—0 must be measured for at least 14
independent cases to determine the complete set of the
constants. Explicit expressions for —[8(po2)/p ]p=0
have been presented by Thurston, McSkimin, and
Andreach® for a-quartz crystals for a set of 34 inde-
pendent cases: 10 cases for 10 modes under hydrostatic
pressure and 24 cases for 12 modes under uniaxial stress.
In the present experiments, 33 cases were considered:
one hydrostatic and two uniaxial cases for each of 11 in-
dependent modes. Furthermore, the propagation direc-
tion for modes 10, 11, and 12 (see Table I) was chosen
perpendicular to a cleavage plane in order to obtain a
well-defined crystal orientation. As a result, 24 (modes
1-8) of the 33 cases which we consider are equivalent to
those discussed by Thurston et al.

III. EXPERIMENTAL PROCEDURE
A. Specimen Preparation

Calcite has the same composition (CaCOs) as argo-
nite, but trigonal instead of orthorhombic crystal sym-
metry. Its structure is related to the NaCl structure, but
its lattice compressed along one of the threefold, body-
diagonal axes to accommodate the large planar COs
ions. The conventional cleavage unit-cell contains four
molecules as does the NaCl structure and, though not
a true cell, it is often conveniently referred to for many
experimental purposes. Figure 1 illustrates the arrange-
ment of calcium, carbon, and oxygen atoms in a cleavage
rhombohedral pseudocell.

Several natural calcite crystals of optical quality were
supplied by the National Bureau of Standards for the
present work. Chemical analysis of them was performed
by flame-emission, powder-arc spectrographic methods
with the results shown in Table IT A. Three cubic speci-
mens (specimens 1, 2, and 3) were cut from one large
crystal (1.5X1.5X3 in.) with a wafering diamond saw.
The cutting stage permitted rough orientation of the
faces of the specimens. The three pairs of cube faces of
specimen 1 are each perpendicular to the X, ¥, and Z
axes of the calcite lattice, while specimen 2 has one pair
normal to X axis, another parallel to one cleavage plane,
and the third selected normal to the first two. Specimen
3 is identical in orientation and size with specimen 1 and
was used only to examine the sensitivity of the two-
specimen method. The Cartesian coordinate system was
chosen by the convention that the Z axis coincides with
the optic triad axis, the X axis is parallel to one of the
twofold symmetry axes, and the ¥ axis completes the
right-handed coordinate system as shown in Fig. 1.
These specimens were then accurately oriented and
flattened. First they were polished flat to about 5X10—*
in. by hand on a glass plate with aluminum-oxide powder
(9.5 1) and ethyl alcohol. Also, their orientations were
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checked by the x-ray back-reflection method, until the
desired orientation was obtained within =4-0.1°. Then
the crystals were mounted on a cylindrical, aluminum
polishing holder with previously machined flat edges
and a thickness slightly larger than the specimen. This
whole assembly was polished on a granite plate with
polishing oil and aluminum oxide until the specimen was
flat and parallel to =3X 1075 in. After the final polish-
ing, the orientations were checked and the thickness and
flatness were measured with a Brown and Sharp elec-
tronic thickness gauge. Table II B shows the thick-
nesses and orientations of the two specimens (1 and 2)
together with their linear thermal-expansion coefficients
in the directions of sound-wave propagation.

Although plastic deformation due to slip can occur in
calcite at room temperature, the slip systems are few?
and the mobilities of dislocations are very low.*> The
critical stress is usually much lower for twinning than
for slip near room temperature.®® No dislocation motion
was observed in calcite by an etch-pit technique near
and below room temperature under the usual condi-
tions.*>46 In order, therefore, to avoid the difficulty of
dislocation-modulus change due to unpinning of disloca-
tions, the maximum uniaxial compression stress was
kept below 50 kg/cm? in these experiments. This ap-
proximately corresponds to the minimum shear stress
required for twinning at room temperature. Thus, un-
like the case of metals,* a nonlinear change of sound
velocities with uniaxial stress was not detected in this
stress range.

B. Temperature and Stress Measurement

Temperature measurements were made with a cali-
brated Chromel-Advance thermocouple attached to the
specimen surface. This thermocouple has a high thermo-
electromotive force (about 50 uV/°C). The temperature
of the specimen was varied by a small heating coil
placed around the specimen inside a temperature bath.
The voltage produced by the thermocouple was partially
balanced with a Rubicon model No. 2768 potentiometer,
and the unbalanced signal (10 uV) was amplified
(Leeds and Northrup DC amplifier) and then fed into
a chart recorder (Hewlett Packard model No. 7100B/
7101B), where the full-scale deflection (20 cm) corre-
sponded to 10-uV imbalance in the potentiometer. The
resolution of the temperature measurement was =1
X10~%°C for hydrostatic pressure and zero-stress runs;
and £=3X107%°C for uniaxial compression runs. In the
case of hydrostatic pressure measurements, the tem-
perature was always read after thermal equilibrium had
been reached between the specimen and its ambient.

Specimens were compressed either hydrostatically or
uniaxially to cause a variation of sound velocity with
stress. The hydrostatic pressure was applied up to 120
kg/cm? in steps of 10 kg/cm? by using gaseous nitrogen

4 R. E. Keith and J. J. Gilman, Acta Met. 8, 1 (1960).
46 J. J. Gilman (private communication).
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as a pressure agent in a pressure vessel that was im-
mersed in an ice bath. A Heise Bourdon tube pressure
gauge with a capacity of 150 kg/cm? was used to read
the applied pressure to #=0.05 kg/cm?. For the uniaxial
stress measurements a small hydraulic compression
machine was used with a dial gauge of about 100 kg/cm?
in capacity and an accuracy of =1 kg/cm?. The uniaxial
stress was changed between 0 kg/cm? and about 50
kg/cm? in steps of 5 kg/cm? To make the stress uni-
form, a specially designed compression jig allowed
smooth rotations of the upper loading plate and pre-
vented oblique loading. Indium shims were inserted be-
tween the specimen and the upper and lower loading
plates. The jig was placed in an ice bath at 0°C to mini-
mize temperature fluctuations of the specimen.

C. Sound-Velocity Measurements

Calcite crystals are fragile, so only relatively small
static stresses can be applied to them. To detect the
small velocity changes that result it is necessary to use
methods of the highest possible sensitivity. For absolute
sound-velocity measurements, four different methods
were used to accurately determine the second-order
elastic constants of calcite and to provide cross-checks
among the methods. The methods are: (1) direct pulse
echo,*” (2) two-echo interference,®>% (3) gated-carrier
echo-continuous-wave interference, and (4) improved
gated-carrier pulse superposition.’®*8 For measuring
velocity changes with temperature or stress, the sensi-
tivities of the following four methods were studied:
(2), (3), (4), and (5) the two-specimen interference
method.28:4® Method (4) was found to have the highest
sensitivity. One set of equipment (A) was built for four
methods [(1), (2), (3), and (5)], and another set (B)
was independently prepared for method (4).

The apparatus (A) is essentially a gated-carrier,
pulsed interferometer as used by Williams and Lamb?®
and developed by Colvin.?¢ The continuous rf carrier
wave generated by the frequency synthesizer (General
Radio 12-MHz synthesizer, type 1163-A5C) is fed into
the gated-amplifier circuit, where the continuous wave
is gated at two amplification stages by means of posi-
tively biased rectangular pulses from the dc pulse gen-
erated at a low repetition rate (=300 cps). The gated,
flat-topped rf pulses with fixed pulse width are then sent
into the balancing network (Arenburg WB-100), the
purpose of which is twofold: to improve the rf pulse
shape and to increase the ratio of echo to direct-pulse
amplitude. The rf pulse from the balancing network is
used to excite the quartz transducer bonded to the cal-
cite specimen. Echoes received by the same transducer
are then transferred via the balancing network to the
dual-trace preamplifier (type 1A1) of a Tektronix 547
oscilloscope. The circuits for the gated amplifier and

47H. B. Huntington, Phys. Rev. 72, 321 (1947).

48 J. Holder (to be published).

( 4‘; 1§ P. Espinola and P. C. Waterman, J. Appl. Phys. 29, 718
1958).
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the dc pulse generator used here are exactly the same as
described in Colvin.?® But in this system a dc bias volt-
age was employed to provide two different dc pulse
levels for the two stages to increase the signal-to-noise
ratio. Also, the dc pulse generator was modified to gen-
erate either one or two pulses.

In method (1), several round-trip transit times be-
tween successive echoes are measured to determine the
average value. The measurements are made directly on
an oscilloscope that is calibrated with a time-mark gen-
erator (Tektronix 180A). Method (2) is fully described
elsewhere,?53 but in this experiment the first echo of
the second pulse is superposed upon an echo of the first
pulse, where the two pulses are separated as far in time
as possible while still maintaining the destructive inter-
ference condition between the echoes. In method (3)%
the continuous rf signal from the frequency synthesizer
is sent to one channel of the oscilloscope preamplifier.
The second channel of the preamplifier receives a direct
pulse and its echo train detected by the transducer. The
two signals are added algebraically inside the preampli-
fier and displayed on the oscilloscope. Six or seven inter-
ference frequencies, at which one selected echo is
exactly in antiphase with the continuous wave, are
measured with the synthesizer. This is repeated for two
selected successive echoes in this method. Although the
continuous wave and the gated pulse are generated by
the same oscillator, the effects of gating and differing
path lengths may cause some phase differences between
them. Therefore, in this method, one round-trip transit
time is calculated as the difference of the two delay
times for the two successive echoes. This apparatus (A)
can also be used for the two-specimen interference
method (5), as developed by Espinola and Waterman,*
and applied by Hiki and Granato.?* However, this
method is only applicable to the relative measurements
of velocity.

The pulse-superposition method of McSkimin®-5 has
become most widely used for measuring both absolute
and relative sound velocities.!?:?-2.27.% However, the
gated-carrier pulse-superposition method,® in which the
rf pulses with different initial phases are generated by
gating a coherent continuous wave, is less frequently
used® than the pulsed-oscillator pulse-superposition
method,® in which identical but not phase-coherent rf
pulses are produced. In the present work an improved
gated-carrier pulse-superposition method (4) was also
used. The apparatus (B) for this method was developed
by J. Holder*® of this laboratory, and procedures for
obtaining the optimum sensitivities for calcite were
developed by the author. Its circuit diagram, however,
is essentially the same as McSkimin’s,® including the
frequency modulation technique for improved sensi-

50 This method appears to be somewhat analogous to those de-
scribed in H. J. McSkimin, J. Acoust. Soc. Am. 30, 314 (1958);
J. de Klerk, Rev. Sci. Instr. 36, 1540 (1965).

51 H. J. McSkimin and P. Andreatch, Jr., J. Acoust. Soc. Am.
41, 1052 (1967).
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tivity. The carrier frequency is modulated by coupliug
a low modulation frequency ac signal (40-60 cps, 3 V)
from an external source to the frequency synthesizer.
The amplitude of the summed echoes is oscillated at
twice the modulation frequency as the amplitude moves
along the “resonance curve”® of echo amplitude versus
carrier frequency, because the modulated carrier fre-
quency oscillates about the constructive interference
frequency of the superposed echoes. (The modulation
range of the carrier frequency is about =100 cycles.)
The echo oscillation is an exactly symmetric, sinusoidal
curve on an oscilloscope when the carrier frequency is
set correctly to the frequency of the “resonance peak”
(this is the desired critical interference frequency) pro-
vided that the “resonance curve” is symmetric around
the peak frequency. Since the echo shapes were not ex-
actly rectangular and each echo contained only 10-20
cycles (the pulse width was variable over 1-2 usec in
this method), the repetition rate frequency must be ad-
justed as the carrier frequency changes in order to keep
the phase condition critically matched. Discussion of
this is given in the Appendix.

In the pulse-superposition method a large number of
echoes are superposed upon each other and even high-
number echoes with relatively small amplitudes can
influence the interference condition. The deviation of
the echo envelope from the exponential attenuation
made it necessary to check the possible existence of an
extra phase change for these echoes due to some distor-
tion upon reflection. To do this, interference frequencies
were measured at the same temperature for various sets
of superposed echoes (some multiple p3* of round-trip
delay time=2, 3, 4, 5, 6, 7) and were found to be the
same within experimental error.

An X-cut or Y-cut tuned quartz transducer (10
Mc/sec) of -in. diam was cemented to the specimen
surface with salol, and was operated near the resonance
frequency of the transducer. In the absolute-velocity
measurements, several interference frequencies were
picked up near the resonance frequency, while in the

relative measurements, the change in the interference
closest to the resonance frequency was followed as tem-
perature or stress changed.

Let us now turn to the principle of the absolute-
velocity measurement. We consider only the principle of
method (2), because the principles for methods (2), (3),
and (4) are essentially the same. When a destructive
interference condition is exactly satisfied for one round-
trip delay time, the phase difference between the two
successive echoes is an odd integer times 7:

2r far—p—m=(2n—m, (16)
which is equivalent to
far=(n+3)=K[(fa— fo®)/ fo¥], (17

because the phase angle ¢, on reflection at the trans-
ducer face of the specimen is given by3?

¢n=n[1—2K(fu— foF)/ fo®] (18)

for the interference near the transducer resonance fre-
quency foF, where f, is the carrier interference fre-
quency, 7 is one round-trip delay time of the echo, = is
the phase change caused at the free surface of the speci-
men, » is an integrer associated with the number of rf
cycles for one round trip, and K is the ratio of the
acoustic impedance of the transducer to that of the
specimen. Since the central two interference frequencies
fn and faq1 are always chosen within 100 kc from fo®
(=107 cps) in this experiment, K[ (f.— fo®)/fo*] in Eq.
(17) is less than 1.5X10-2 (KX 1.5 for calcite). For the
next higher interference frequency f,.i1 we have

frrr=(+143) = K[(farr— foB)/ fo®]  (19)

and K[(fa+1— fo®)/fo®] is again very small. Figure 2
shows the difference of the number of rf cycles, which is
almost one, and of the phase changes for one round trip
for these two interference conditions. Since # is a large
integer (about 100 for shear waves and about 50 for
longitudinal waves), the phase-correction term in Egs.
(17) and (19) can be safely neglected for the experi-
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mental determination of # and n-1:

n+3= for, (20)
n+1+3= for. (21)
Then, since Afn= fat1— fa, We haves?
n+5= fu/Afn, (22)
and when this is combined with Eq. (17)%
r=1/Afa—K(1/fo"—1/fa). (23)

There is no ambiguity for expressions (22) and (23) if
the correct integer value for # can be selected; but even
if ambiguity remains, the maximum error for #» and
caused by the neglection of the phase-correction term
should be less than about 2X1073.

On the other hand, subtraction of Eq. (17) from Eq.
(19) gives

T(fn+1'-fn) =1— (K/fOR) (fn-l—l_f'ﬂ) ) (24)

and from this,
n+3=(fa/Afn)—K, (25)
7=1/Afa— K/ foE. (26)

In Egs. (25) and (26) the ratio of the second (phase-
correction) term to the first term is quite large (1-29%,)
as compared with that (=%X107?) in the original Eqgs.
(17) and (19), and therefore Egs. (25) and (26) have an
unreasonably large contribution from the phase-shift
correction term. However, these are invalid expressions
derived from the subtraction between two almost equal
quantities, both having errors. This has not been pointed
out in the literature.?®%¢ In fact, Eq. (24) means that
one tries to determine 7 using only one cycle with a large
uncertainty (K/ fo®)(far1— fa) =1.5—2X 1072 The cor-
rection term K[ (f.— fo®)/fo®] is small compared to
(n+1) cycles in Eq. (17), but the corresponding correc-
tion term (K/ foB) (far1— fn) is not negligibly small com-
pared to one cycle in Eq. (24). As a result, we have to
use Egs. (22) and (23) to compute # and 7. In the actual
practice, when Egs. (25) and (26) were used in methods
(2), (3), and (4), the resultant transit times were always
smaller by 1-29, than those measured by the direct
pulse-echo method (1), whereas Eqgs. (22) and (23) gave
avery small difference. From Eq. (23) the sound velocity
can be calculated by knowing the thickness of the
specimen.

A knowledge of the change in the natural velocity W
with stress p, i.e., —[8(poW?)/8p]p—0 is necessary to
determine third-order elastic constants. Since the nat-
ural velocity is experimentally known to depend linearly
on stress, the expression

<poVVlZ>p=o[a(p;;V2)]p=o=%(%V;)pxo @)

52 This expression is essentially equivalent to 7= f,/Af, used
for the constructive interference by H. J. McSkimin in Ref. 54.
Discussion about this expression and Eq. (23) will be given in a
separate short note.
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is equivalent to

20 AW 2w Ar
(pW?) pmo=——=——,
? Wo

(28)

where W and 7¢ are the natural velocity and the round-
trip transit time at p=0, and w=(p?),—o as given
before. Using Eq. (17), Eq. (28) may be written within
experimental accuracy as

(poW?) p=0= (2w/p)(Af/ fo). (29)

Similarly, the temperature dependence of the natural
velocity is given by

1 oW

1 Af

—_——=— (30)
W oT AT f,
In Egs. (29) and (30), fois the reference-interference fre-
quency either at zero stress, or at the reference tem-
perature, and Af is the change with either stress or tem-
perature. Consequently, it is only necessary in the
anharmonic measurement of elastic constants to mea-
sure the fractional change in the interference frequency
with either stress or temperature. This cannot be con-
veniently done using the true velocity V, because AV/V,
is not proportional to Af/ fo.

The accuracy of absolute-velocity measurements in
terms of the reproducibility of 7 was found to be as fol-
lows: 6X10~3 for method (2), 2)X10~3 for method (3);
a little better than 2)X 10~ for method (4); and 1X10~2
for method (1). The accuracy of measurement of the
interference frequencies, however, was 1X10~% for
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F16. 3. Change in natural velocity with
temperature for modes 1, 6, and_7.
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TasLE III. Second-order elastic constants ¢;; (in 10! dyn/cm?) and compressibilities «yol, K11, 1
(in 1072 cm?/dyn) of calcite at room temperature.®
Present work Pulse-echo Other methods (isothermal)
isothermal 4 method 4 method 3 method 2 method 1 methodP c d e
cu 14.523 14.535 14.291 14.706 14.339 14.45 13.74 13.71 16.22 16.95
12 5.486 5.501 5.383 5.560 5.395 5.71 4.40 4.56 4.53 5.93
13 5.249 5.280 4918 5.121 5.659 5.34 4.50 4.51 6.35 7.25
c14 —2.032 —2.031 —2.037 —2.057 —2.011 —2.05 —2.03 —2.08 —3.12 —2.87
C33 8.433 8.564 8.474 8.656 8.481 8.31 8.01 7.97 9.77 10.46
Cu 3.290 3.289 3.403 3.402 3.350 3.265 3.42 342 4.29 4.14
Present
adiabatic 4 g h i b c d e f

Kvel 1.386 1.367 1.35 1.39 1.396 1.53 1.55 1.22 1.103
kit (parallel to Z axis)  0.818 0.822 cee e 0.858 0.883 0.882 0.66 0.625
«1 (perpendicular

to Z axis) 0.284 0.273 0.269 0.337 0.330 0.28 0.239

» Maximum error due to linear extrapolatjon to room temperature was less than 0.05%. kvol =2 (s11-+s12) +4518 4533, K11 =2513 533, k1 =511 +512F515.

b L. Peselnick and R. A. Robie, J. Appl. Phys. 34, 2494 (1963).
¢ J. Bhimasenachar, Proc. Indian Acad. Sci. 22, 199 (1945)

d'W. Voigt, Lekrbuch der Kristallphysik (B. G. Teubner, Berlin, 1910), p. 754.

e Reference 60.

t Reference 61.

g P, W, Bridgman, Am. J. Sci. 10, 483 (1925).

b E, Madelung and R. Fuchs, Ann. Phys. 65, 289 (1921).

iL. H. Adams, E. D. Williamson, and J. Johnston, J. Am. Chem, Soc. 41, 12 (1919).

method (2), 3X10-¢ for method (3), and 2X10~7 for
method (4). Therefore, only method (4) had smaller
errors than the phase-shift correction term (=2X10-3)
neglected in Eq. (22).

The sensitivities of methods (2), (3), (4), and (5) in
the relative-velocity measurements were also investi-
gated for the temperature dependence of the natural
velocity for various modes. The average values and
ranges obtained are as follows: 2X107% (1X10-5—1
X107%) for method (2); 2X1076 (5X10-"—5X10-) for
method (3); 2X10~7 (5X10-8—3X10"7) for method
(4); and 2X1075 (5X10~6—5X10-%) for method (5). In
Fig. 3 the very good sensitivity of method (4) can be
seen for three modes. Note that these accuracies and
sensitivities are relevant only to the measurements on
calcite crystals, as the sensitivity depends strongly on
the attenuation of the sample.”” The attenuation en-
velope for calcite was never of the smooth, exponential
type, and the attenuation increased with applied stress
which reduced considerably the sensitivity of the two-
specimen method (5) as compared with the result
(5X1076) obtained by Hiki and Granato.?® Internal-
conical refraction was also observed in calcite for the
pure modes 8 and 9 with the propagation direction
along the threefold axis.?® The semiangle of the refrac-
tion cone was so large (31°40") for calcite in comparison
with other trigonal crystals (quartz, 17°13’; sapphire,
9°3’) that mode 9 could not be used even with good bond
because of the very small deteriorated echoes.

To test the applicability of the improved pulse-
superposition method (4) to absolute and relative ve-
locity measurements, the absolute velocity at room tem-
perature and the temperature dependence of the elastic
constants at 0°C in germanium were measured for one
particular mode N=[0017], U=[0017]. The results were
4.9120X10% cm/sec for the longitudinal velocity and

8 P. C. Waterman, Phys. Rev. 113, 1240 (1959).

—0.1182X1073/°C for (1/cu)(dc11/dT). This tempera-
ture dependence compares quite well with the measure-
ments (—0.11X1073/°C and —0.12X10~3/°C) % made
at 0°C by Fine and McSkimin, respectively, which are
cited by Leibfried and Ludwig.5 The absolute velocity
agrees within 0.049, with the value of McSkimin et al.:
4.9138X105 cm/sec.®

The effects of the transducer and its bond on the ve-
locity and temperature dependence of the interference
frequency were also checked by method (4) for one
longitudinal mode (mode 1) of calcite. A second trans-
ducer with almost the same resonance frequency was
placed on the opposite crystal surface. No large change
in the echo transit time due to the echo penetration was
observed, but errors caused by resonance between the
two transducers prevented an exact estimation of the
phase shifts. The effect on the temperature dependence
lay within the experimental error.

The following values were used for the density of cal-
cite p., the density of quartz pr, and the sound velocities
in'X- and Y-cut quartz crystals Vr, Vr (all at room tem-
perature): p,=2.712 g/cc,’” pr=2.6485 g/cc, Vi
=5.749X10% cm/sec, and V7y=3.918X105 cm/sec.’?
To get p. at 0°C an extrapolation based on the volume
expansion coefficient (13.14X10-/C°) % was used. The
resonance frequencies of the transducers (measured at
room temperature) were also extrapolated to °0C using
McSkimin’s data® (—2.006X10-5/C° for X cut, and
8.482X105/C° for Y cut).

” . . .
ibid.%é,Jé 61\2/Ic(§19<§t;1)1n, J. Appl. Phys. 24, 988 (1953); M. E. Fine,
. ;:5 8 Leibfried and W. Ludwig, Solid State Phys. 12, 275
(1;66(51 J. McSkimin and P. Andreatch, Jr., J. Appl. Phys. 34, 651
o 1%'. L. Graf, Am. Mineralogist 46, 1283 (1961).

88 J. L. Rosenholtz and D. T. Smith, Am. Mineralogist 34,
846 (1949).

8 H. J. McSkimin and P. Andreatch, J. Acoust. Soc. Am. 34,
906 (1962).
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IV. EXPERIMENTAL RESULTS
A. Experimental Data

The adiabatic second-order elastic constants ¢;;, and
the compressibilities vo1, k11, k1, Of calcite were measured
at 0°C by the four methods (1), (2), (3), and (4), using
the eleven propagation and polarization modes listed
in Table 1. The results were extrapolated to room tem-
perature and are given in Table III together with the
isothermal constants calculated from the results of
method (4) and the data of other investigators. The four
sets are in good agreement with each other, but the
values from method (4) have least errors (=~2X107*).
Note that the values of c11, ¢12, ¢13, and css are consist-
ently higher and more mutually similar for pulse-echo
methods than the others (Table III).

Figures 3 and 4 show the temperature dependences
of the natural velocities for the various modes. These
measurements were done for the temperature range of
0 to 2°C with method (4). The deviations of the plotted
points from the smooth curves are very small. Even for
this small range of temperature, nonlinear dependence
was observed for modes 10 and 11 (Fig. 4).5° Therefore,
one must be careful to choose an appropriate tempera-
ture coefficient when a temperature correction is made.
[The stress effect is usually two orders of magnitude
smaller in (kg/cm)~! than the temperature effect in
°C-1] As another example, the temperature coefficient

KAGA

172

12.0 T T T T T

10.0

o
o

o
o

&
o

N
o

o

|
n
o

CHANGE IN NATURAL VELOCITY Av\:l x 108
A
o

-6.0F o

-80r > . e
L]
-10.0

T
1

*Ni28

-12.0

T
1

3a
I 1

1 1 1
0 0 20 30 40 50
UNIAXIAL STRESS P (kg/cm?)

Fi1c. 5. Change in natural velocity with uniaxial compressive stress.

of the natural velocity was —1.837X104/°C at 0°C
and —2.045X10~%/°C at room temperature for mode 4.
t One hydrostatic and two uniaxial compression mea-
surements were performed for each of the eleven modes
also using method (4). The results for the dependence of
the natural velocity on uniaxial stress for 22 cases is
shown in Fig. 5, and on hydrostatic pressure for 11
cases in Fig. 6. The points near the origins of the graphs
deviate from straight lines (probably because of changes
in the bond properties during initial loading), so speci-
mens with transducers attached were prestressed several
times prior to making measurements. Because a large
increase in temperature (2-3°C) accompanied hydro-
static compression of the specimens, the interference
frequencies were measured after the temperature had
stabilized near the initial temperature. (The tempera-
ture dependence of interference frequencies was differ-
ent under stress from that under zero stress and it was
not linear even for a range of 2 or 3°C.) In the uniaxial
stress runs, the specimen temperature changed only 0.2
to 0.3°C for the entire stress range. In the uniaxial ve-
locity measurements the stress coefficients for each
shear mode except mode 6 were split into positive and
negative values according to the stress directions (4 or
B), whereas for the longitudinal modes (1, 4, 7, 10) they
had only one sign regardless of the stress direction
(Fig. 5). In the hydrostatic velocity measurements, on
the other hand, all longitudinal modes had rather large,
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positive values for the coefficients but negative coeffi-
cients were also observed for the three shear modes 3H,
11H, 12H (Fig. 6).

B. Analysis of the Data and the Third-Order
Elastic Constants

If the thermal-expansion coefficients of calcite are
known, the temperature dependence of the second-order
elastic constants at 0°C can be calculated from the data
in Figs. 3 and 4. The fractional temperature change of
pV? for any mode is given by

1 a(eV?

oV? oT

=24+2a—7, (31)

where 4 is the temperature dependence of the natural

TaBLE IV. Comparison of temperature coefficients of the second-
order elastic constants of calcite (in units of 107¢/°C).

Present work®  Reddy and  Ramamurthy
at 0°C Subrahmanyam® and Reddy®
9 Incu /0T —3.898 15.5 89.3
9 Incyo/dT —5.273 48.4 —175.8
9 Incis/0T —4.825 36.8 138.8
3 Incis/0T —2.838 9.79 —38.01
9 Incgs/dT —1.462 16.7 89.87
9 Incyy/8T —2.753 3.46 28.37

THIRD-ORDER ELASTIC CONSTANTS OF CALCITE
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TasLE V. Third-order elastic constants of

calcite at 0°C (in units of 10'? dyn/cm?).»
Ci —35.7940.17 Cias 0.8240.05
Cuz —1.4740.14 Cras —0.69+0.12
Cus —1.93+0.06 Ciss —1.3940.07
Cius 2.18+0.15 Caza —6.75+0.19
Cias —0.41+0.12 Csss —4,984-0.13
Cias 0.103:0.06 Caas —1.9540.06
Cias —2.39+0.11 Claa 0.33+0.10

a Cases 44 and 8H were not taken into account in this best-fit evaluation.

velocity for that mode at 0°C, « is the linear thermal
expansion coefficient in the direction of sound-wave
propagation, and v is the volume thermal-expansion
coefficient. The logarithmic temperature dependences of
cs; are thus calculated and given in Table IV, along with
the data by Reddy and Subrahmanyam® and Rama-
murthy and Reddy,* which were converted from (1/s;;)
X (0s;/9T). Although the present results refer to 0°C,
while the latter two are the average, respectively, be-
tween 0 and 200°C and between 0 and 30°C, neverthe-
less one can readily see the large discrepancies between
the three measurements; all the temperature coefficients
arelnegative for the present measurement, whereas they
are all positive for the data by Reddy and Subrah-
manyam and large positive and negative for those by
Ramamurthy and Reddy.

Computation of the third-order elastic constants has
been carried out from the data in Figs. 5 and 6 using the
expressions [ Eqs. (14) and (15)] for —[9(poW¥2)/3p ] p=0
similar to those used by Thurston et al.3° For 24 cases
(modes 1-8) the expressions were equivalent to theirs,
but for the other nine cases (modes 10-12) independent
expressions were expanded from Egs. (14) and (15).
Eleven hydrostatic measurements can give only six in-
dependent relations corresponding to the pressure deri-
vatives of the six second-order constants. Twenty-two
uniaxial measurements were sufficient to determine 14
third-order constants of calcite with crosschecks. Never-
theless eleven hydrostatic-pressure runs were made to
furnish additional crosschecks. Fourteen third-order
elastic constants of calcite at 0°C were thus determined
with a least-squares best fit. Out of the 33 independent
cases, large uncertainties were involved in the determi-

TaBLE VI. Pressure derivatives of the thermodynamic and the
conventional second-order elastic constants of calcite at 0°C.

Bu” 3.59 6611/6? 3.02
Blz 0.88 aClz/aP 2.05
B 2.64 dcis/p 3.19
By —131 9614/9p —1.25
B33 547 6533/6p 2.80
B44 2.20 6644/317 0.92
Besb 1.35 0659/(9?" 0.49
a Byy(Bijkl) are the thermodynamic pressure derivatives defined as

b
[a(d2®/dnijdne))/3p]r.
ss and dces/dp are not independent derivatives.

a The linear thermal-expansion coefficients « in Table I, and the volume
thermal-expansion coefficient 7 of Rosenholtz et al. (=~13.14X1078/°C)
(Ref. 58), were used in Eq. (31).

b Average values between 0 and 200°C, Ref. 60.

o Average values between 0 and 30°C, Ref 61.

3 6‘JP) J. Reddy and S. V. Sabrahmanyam, Acta Cryst. 13, 493
(1960

1 L. Ramamurthy and P. J. Reddy, J. Phys. Chem. Solids 28,
2131 (1967).
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TasLe VII. Temperature dependence of linear combinations
of the third-order elastic constants of calcite at 0°C (in units of

1072/°C).

[_i_ 3B;;

Symbols Expression for B;; B;; T
By —51(Ci1+Cui2) —s3Cu3 4.81
Bje —51(C1114-2C112— Ca22) — 53C123 3.77
Bis —51(Cr13+Ci2s) —53C133 17.12
By —51(C1141C124) —53C134 10.22
Bg; —251C133—53C333 2.24
By —51(C1aa+Cis5) —53C344 6.09
B —3[51(Ca22—C112) —53(C113— Ci23) J* 0.84

s This is not an independent expression.

nation of (1/W)(AW/p) for cases 44 and 8H, so these
were not taken into account in the best fit. No weighting
of the data was used because this gave minimum stan-
dard deviations compared with other weighting schemes.
The hydrostatic measurements were not necessarily
more reliable than the uniaxial ones in the determination
of (1/W)(AW /), although the over-all change in AW /p
was relatively larger. The best-fit third-order constants
are tabulated in Table V. The relatively large probable
errors seem to result because the stress range was limited
(one order of magnitude smaller than for quartz), and
because many coefficients had to be simultaneously
fitted.

The pressure derivatives of the thermodynamic
second-order elastic constants B;j(Bp. defined by
[8(a2®/d7:99,)s/3p1r or by Eq. (14),°062 are con-
venient physical quantities. Compared with third-order
constants, they are directly connected to changes in the
natural velocities with hydrostatic pressure, and a rela-
tively small number of them (six for a trigonal crystal)
gives full information about such first-order anharmonic
properties as the conventional pressure derivatives of

H. KAGA
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Tagre VIII. Comparison of the isothermal-bulk moduli and
their pressure derivatives at room temperature.

Present work Bridgman®
. dyn dynb
BT(isothermal) 7.156X1011— 7.315 X101 —
cm? cm?
4.828¢ 4.174>

5]
9P _lp=o

a Reference 63.

b These were calculated as 1/41 and 24s/A412, respectively, for BT and
[0B/dp]p-0 from measurements of the change in compressibility with
pressure —Av/vo =A1p —A2p

°The pressure derivative of the adiabatic bulk modulusat 0°C.The
pressure derivative of the isothermal bulk modulus at room temperature in
this case is different only by 1-29%,,

the second-order elastic constants dcs;/dp, and the
change in compressibility with pressure. In Table VI
the six B;;’s were evaluated from the set of third-order
constants of Table V using the relation

Bij=[(3/3p)(8°®/dn:9;) Ir
= —51(Crij+Cai;) —55Css5, (32)

where s;=s11 7+ 5127+ 5137 and s3= 25137+ 5337. The con-
ventional pressure derivatives of the second-order con-
stants dc;;/dp can also be computed from B;; or linear
combinations of third-order constants as follows: The
true sound velocity in the specimen under pressure is
expressed (using the fractional change in volume v,, and
the longitudinal strain «, in the propagation direction
caused by pressure p) as

Po ds(1+ap) 2
1 =pWV
I+7,

where p and po are the density of the specimen, respec-
tively, under pressure p and zero pressure; d, is twice

2(1"‘0‘11)2

Tp

pVi=

y (33)

T

TasLe IX. Rhombohedral angle 6; lattice constants a, d; repulsive force law exponents 71, #12, #22; and force constants u, w2, ua2

of calcite-type crystals® (mee=11, p2e=17.6X10788 erg cm', and the distance b is 1.08 & for the carbonates and 0.70 & for NaNOs).

a and 711 and n12 and
6(obs.) dr(4) pn(erg cmmul) pz(erg cmme1)

CaCOs 101°55’ 4.99¢ 9 10

1.417 2.45X1077 2.07X10780
CdCO; 102°30 4.92 e 10 11

1.371 1.76X10780 4,403 10780
MnCO; 102°50’ 4.77 10 11

1.3132 1.00X10780 2,40 10788
1(MgCa)COs 102°53’ 4.78 10 10 11

1.3127 0.176 10780 1.05X 10780 2,50 10788
FeCOs 103°4.5 4.70 oo 10 11

1.282 0.77X10780 1,71 10788
ZnCO3 103°28’ 4.64 10 11

1.247 0.62X10780  1.43X10788
MgCOs; 103°21.5’ 4.61 11 v 11

1.244 5.84X107% 1.51X10-88
NaNO; 102°42.5’ 5.0704 11 11

1.402 0.232X10788 2.55X 10788

af and a were taken from S. Chapman, J. Topping, and J. Morrall, Proc. Roy. Soc. 111, 25 (1926) except for CaCOs and NaNOs, and the force-law

exponents and force constants from Refs. 65, 66, and 67.
b 4 was calculated from d =a[1/(4 sin26/2) —34]1/2,
o H, Chessin and W. C. Hamilton, Acta Cryst. 18, 689 (1965).

d H, E. Swanson, N. T. Gilfrick, and M. 1. Cook, Natl. Bur. Std. (U. S.) Circ. 539, 50 (1956).

62 R, N. Thurston, J. Acoust. Soc. Am. 37, 348 (1965).
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the specimen thickness in the propagation direction,
and 7 is the round-trip delay time. Since the crystal sym-
metry is conserved, the derivative of Eq. (33) with re-
spect to p is given as

LoV p=o=[ooW ] p=ot (poW'?) p=o

X[2(3ap/3p) p=ot251Fs5], (34)
or using Eq. (14) for [poWW %]’ p—o and w= (0o ?) p,
[oV*] pmo=—Gnoc—1
+w(251+ 53+ 2(80tp/ 3p) pmo— 2F ). (35)

In Eq. (35) the left-hand side is directly related to
dc,;/9p evaluated at p=0. If, for example, the propa-
gation direction is along one of the three axes (X,Y,Z)
in calcite, the pressure derivative of the principal strain
(8ap,is/0p) (1=1, 2, 3) is given by

(Batp,ii/ 9P) p=o=—si,

with sy=s3 for a trigonal crystal. From Egs. (35) and
(36), (9c11/9p) p=o is therefore calculated as

(9¢11/8p) p=o= Bui— 14 (53— 251)c1s. 37)

A set of (9cij/dp)p=0 for calcite calculated from Eq.
(35) with the third-order elastic constants is included in
Table VI. The pressure derivatives of the second-order
elastic constants B;; and dc¢;;/dp are all positive except
for Bys and 9cy4/3p, which are negative.

It was noticed that the temperature coefficients of the
natural velocities under pressure were significantly dif-
ferent from those at zero pressure. Since pol/'2 at pres-

(36)
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sure p is experimentally given by
p0W2=w—|—p(—1—2wFHc~GHc) s (38)

the main difference seems to arise from the contribution
of the second term; that is, from the change in the pres-
sure coefficient with temperature. Hence, one can cal-
culate the temperature dependence of the second term
(which is, of course, proportional to p), and compare it
with that of the first term. Under a hydrostatic pressure
of about 100 kg/cm? the second-term contribution
amounted to 20 to 409, of the total effective tempera-
ture dependence for modes 10 and 11. It was a little less
than 10%, but definitely larger than the experimental
errors, for the other modes. Furthermore, the tempera-
ture dependences of the thermodynamic-pressure de-
rivatives 8B,;;/07 were calculated and are given in
Table VII. All the coefficients (1/Bg;)(8B;;/0T) are
positive and much larger than the coefficients (1/c;;)
X (9ci;/9T).

Except for the temperature dependences of the sec-
ond-order constants®:6! and some pressure measure-
ments by Bridgman,% there have been no data reported
on the anharmonicity of calcite for comparison with the
present results. Bridgman®® fitted changes in the com-
pressibility of calcite by a quadratic expression — Av/v,
=A1p—A.p? where Av is the change in volume from
the initial volume v, at zero pressure, to the pressure p,
and A4; and A, are the constants obtained by this fit.
In order to compare the third-order constants of Table
V with Bridgman’s results, the pressure derivative
(8B/3p) p—o of the effective bulk modulus B was calcu-
lated from both measurements. In Bridgman’s notation
it is 245/A4,% whereas in the present notation

(8B/3p) p—o=—2B*(1/B)+(1/8){B[Bu+ B12—4B15+2Bg;
- 6+ (53_ 251) (511+ 612)+ 2(251_ 333)633+ 453613]‘— (C11+612— 4613+ 2633) [[Bsa"— 1+ (251'- 383)633]
X (cutc12)+cas[ B+ Bia+ (53— 251) (crutc12) ]— 4eis(Buis+1—ssc1a)]} ), (39)

where B= 1/(2S1+Ss) and B= 633(611+012)— 2¢13% Values
of both (0B/dp),—0 and the isothermal bulk modulus
BT are compared with those of Bridgman in Table VIII.
The agreement between the two (8B/9p),—0 values is
good. Therefore, a reasonable set of third-order elastic
constants for calcite has been obtained in the present
work.

V. DISCUSSION

For alkali-halide crystals the contribution from the
closed ion-core repulsive interactions to the third-order
elastic constants is predominant as compared with
other factors.®~'2 Therefore, it is of some interest to
calculate this contribution C;;x® to the third-order con-
stants and compare it with experiment. Although a sub-
stantial contribution may come also from the electro-
static interactions,®!2? attention will be confined here
to the former contribution (the exact evaluation of the

electrostatic contribution is a more complicated problem
because of the nature of the long-range force). The iso-
morphous series of carbonate crystals of the calcite type
(including one nitrate crystal) CaCO3z, CdCO3z;, MnCOs;,
3(MgCa)COs, FeCO3, ZnCO;, MgCO;, NaNO; will be
considered.

In the calcite structure there are six different ion-pair
types, but the carbon (or nitrogen) atoms are deeply
buried inside oxygen triads so the carbon atoms will not
be considered explicitly and the number of different ion
pairs is reduced to three: metal-ion-metal-ion (M-M),
metal-ion—-oxygen-ion (M-0O), and oxygen-ion—oxygen-
ion (0-0).

To describe the repulsive potentials ¢Z(r), inverse
power functions may be used.!:$* If 7 is the ion-separa-

6 P. W. Bridgman, Am. J. Sci. 10, 483 (1925).
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tion distance, they are given by

6% (r)=[u/(n—1)](1/r") (40)

with the force constants u and the force-law exponents
» given by Lennard-Jones and Dent.55-68

We denote the repulsive potential, its exponent, and
its force constant for the M-M ion pair by ¢uE(r),
n11, and p11; those for the M-O ion pair by ¢12%(7),
#12, and pu12; and those for the 0-O ion pair by ¢s9%(r),
a9, and pse. In Table IX| these constants are tabulated
for eight calcite-type crystals.

Let us first calculate the repulsive contributions C;;:?
to the third-order elastic constants for CaCOj, 3(MgCa)-
COs, MgCOs;, and NaNOQ;. The cleavage unit cell of
calcite has been shown in Fig. 1, and Fig. 7 presents its
projection along the trigonal axis onto the xy plane
where the COs groups are in a hexagonal array. The
rhombohedral angle 6 and the structural distances q, d,
and b are indicated in one of these figures. The distance
between two calcium atoms or two COjs groups is @, the
distance between two neighboring atomic layers of
calcium and COj; groups along the trigonal axis is d,
and the distance between the repulsive force centers of
the carbon and oxygen atoms of the same COj3 group is
b. The same approach used by Lennard-Jones and
Dent® to calculate the repulsive potential energy of one
molecule is followed. The total repulsive contribution
C;x® is divided into three contributions: the interaction
between one M ion and all the other M ions C;;,2-M-M;
the interaction between one M ion and all the CO;
groups Ci;z®M-C0s (or the inverse, Cyz%C0M); and
the interaction between one CO; group and the rest
C.'ij'003'CO3. Thus,

Ciji®=Cij B M-M4 2C,;, B M-COs C,, R,C05COs  (41)

where the factor 2 in the second term arises from the fact
that there are two equal contributions, Cj;;®¥-C0s and
Cijx®C0M for one molecule. In calculating these terms,
contributions up to the next-nearest group interactions
are included. If the coordinates of ions at (a1,a2,a5) are
denoted by (li,ls,ls) with respective unit lengths ia,
$V3a, and d, as in Fig. 7; and the third derivatives of the
repulsive potential are denoted by u;%(r)=D3p;;%(r)
= —uii(ni;+1)(nii+3) /r*iit5; then the repulsive con-
tribution [Eq. (41)] to each third-order elastic con-

6¢ M. Born and K. Huang, Dynamical Theory of Crysial Lattices
(Oxford University Press, Oxford, 1954), p. 19.
. E. Lennard-Jones and B. M. Dent, Proc. Roy. Soc. (Lon-
don) 112 230 (1926).
67, E. Lennard- Jones and B. M. Dent, Proc. Roy. Soc. (Lon-
don) 113, 673 (1927).
. Lennard-Jones and B. M. Dent, Proc. Roy. Soc. (Lon-
don) 113 690 (1927).
( ;" J) E. Lennard-Jones, Proc. Roy. Soc. (London) A109, 584
192
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stant can be explicitly written down from Eq. (9):
Cin®= 2V (Ga)*{ X hun(r)
M-M

+2 3 hbun(r)+ Z

M-CO3 CO3-C

Cra®=(2V )71 (30)*3V3){ X h*la*un(r)
M-M

1157422(7) ¥

114l22%12(1’ )+ Z

C03-CO3

+2 Z l14l22u22(r)} ,
M-CO3

Cus®=Crss®= 2V )"} (50)*d?
X{ Z Wun(r)42 3 hils%uis(r)

M-CO3

+ X hYua(n)},

CO03-CO3
Cusf=(2V )" (30)*(3V3a)d

X{ X hibbun()+2 Y I*lalsua(r)
M-M M-COg3

+ X
CO5-CO03

C1938=C144%= (2V ;)" (30)*(3V30) %2
X{ Z WPun(n)+2 X W2lMsuis(r)

M-CO3

l12l22132u22 (1’) } 5

lf‘lzla%zz(f) } y

+ X

C03-CO3
Cr2a®= 2V )" Y(30a)2(3V3a)%d
X{ Z Willsun(r)+2 X

M-CO3

l1 %%uu (f) } 5

llzlzslsum (f )

+ X
C03-CO3

Cizs®=Csu®= (2V ;)" (3a)%*
X { Z 112l34u11(")+2 Z l12l341412(1‘)

.03
+ X

l12134u22 (f) } y
C03-CO3

—C134B= Cy44®= 2V ;)" (3V3a)3d3
X{ Z lg3l33uu(r)+ 2 Z
M-M

M-CO3

+ 2 LPun()},

CO03-CO3

Canf=(2Vo)'(GV30)%{ X Loun(r)
M-M

(42)

lg3la3u12(r)

+2 Z 1261412(7’)*}' Z
M-CO3

C03-CO3

1261422(1')} N
CaB= 2V )74 3 Ifun(r)
M-M

+2 3 Lbui(r)+ > Isfuz(r)},
M-CO3 C0s-CO3
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F1G. 7. Projection onto a COs plane normal to the trigonal axis <
of calcite. All of the ions in the cleavage unit cell of Fig. 1 that o
were considered in the calculation of the text are shown. C ions Q L
are not shown for clearness. Solid circles (®) clustered in groups &) S
of three near the intersections of the solid lines denote oxygen 5
atoms lying in the CQOj; projection plane; open circles (O) and =
crosses (X) denote calcium atoms, one atomic layer below and b
above it, respectively; solid circles around the calcium atoms de- ~ S
note oxygen atoms two layers above and below it; and the square Fg &)
at the center of the hexagon denotes two calcium atoms three =
layers above and below it. 8
] R
where #:;(r)=u;;%(r,,) is understood, and the unit cell g G
volume is V,=2r¢® sin®d, where 7, is the nearest-neigh- =
bor distance between the centers of an M jon and a 5
CO; group, being given by @/2 sinf. The summations in é %
Eq. (42) are to be taken over the ion pairs at nearest and = ©
next-nearest groups, i.e., only for the ions shown in Fig. 3
7. Numerical results for the individual terms Cj;; %M i N
2C;jB-M-COs (4 R:.C0s-COs are shown in Table X for E 5
CaCO; and MgCO;. (Results for 3(MgCa)CO; and <
NaNO; are given in Table XTI only for the total contri- 3 N
butions Cj;x2.) § 2
In Table X, C;;®-¥ M is very small in magnitude in ks ©
comparison with the other terms, being less than 19, of b
the total C;;x®. Thus, by neglecting the first term in Eq. @ R
(41) the total repulsive contributions Cy;x® for CdCO;, 2 &
MnCO;, FeCO3, and ZnCO; have been obtained and é
are given in the second row of each crystal in Table XI. E w0
(In this table only the data for #,,=10 in the case of ) i
CdCOj; and 7,5=11 in the case of MnCO3, 3(MgCa)CO;, » 2E
FeCOj;, ZnCOj; are presented.) E =3
Some qualitative properties of the third-order elastic e S
constants of calcite can be pointed out. In Table V two
constants (Cy14 and Ci3s) among 14 are definitely posi- .
tive; the others are negative or nearly zero. This differs §°%
from a-quartz, where all 14 constants are negative or
nearly zero.®® Calcite has nearly equal, large negative "
values for Ciyi, Caas, and Cgss, intermediate values for Tg
Cuz, Cua, Cu4, C133, C155, and C344, and almost vanishing 5‘
values for Cma, Clu, C134, C144, and C444. It may be seen

OF CALCITE

—0.024
—3.38
—9.42
—12.82
—0.0015
—4.37

—40.79

—0.019

—8.71

—3.68
—12.40

—0.006

—0.012
—3.09
—1.75
—4.86
—0.0009
—4.32
—7.85
—12.18

—0.005 —0.003 —0.002

—0.009
—4.83
—0.603
—5.45
—0.0007
—6.93
-2.71

—9.64

—0.004
—1.68
—0.741
—2.43
—0.0003
—2.20
—-3.19
—5.39

—0.020

Cij B ,Ca—Ca

b=1.08*
niz= 10

—Ci34f

Ciasf

Cus®

Cias®

1.51
—0.0608

0.799
—0.0249

—1.61
—0.201
—1.82
—0.0002
—2.31
—0.903

-3.21

240

—0.0748

—8.86

2C;;RCa—COs

CaCOs

—3.69
—12.57

CjiRCO5COs
Cii®

1.45

0.77
—0.0005

—0.0001

2.32

—0.0004

—0.0012

—12.35
—14.82
—27.17

—0.0011

—13.01
—14.37
—27.38

Cij kR »Mg—Mg

1.08»

b

—Cras®

Cl333

Cias®  Cusf

93

1.03 1.

—0.0711

3.11
—0.213

2Ci_7' lcR Mg—COs

MgCO;s

0.0848
2.01

Ciij'COrCO’

CiiP

ni2= 11

—45.16

0.97

2.90

» This was obtained theoretically by Lennard-Jones and Dent in Ref. 66 for the distance between the two repulsive force centers of a carbon ion and an oxygen ion of the same COs group.
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TaBLE XI. Semiempirical estimation of the third-order elastic constants for some carbonate
crystals of the calcite type (in units of 10'2 dyn/cm?).»
Crystals Cint Ciz Cus Cus  Cizz Cin Ciss Cis  Cus  Ciss Case Csss Cau Cuus
6.78 096 3.52 —0.14 141 —-0.67 247 —0.63 113 4.06 5.65 7.84 291 178
—12.57 —243 —545 232 —182 077 —486 145 —1.82 —545 —1240 —12.82 —4.86 —145
CaCO
? —5.79 —147 —193 218 —041 0.10 —-239 0.82 —0.69 —139 —6.75 —498 —195 0.33
722 102 372 —-015 149 —-0.71 261 —0.67 1.20 4.30 5.98 8.30 3.08 1.88
—1489 —286 —6.24 2.55 —208 085 —584 1.58 —2.08 —6.24 —14.66 —16.69 —5.84 —1.58
CdCo
? —7.67 —184 —252 240 —-0.59 0.14 -323 091 —088 —194 —-868 —839 —276 0.30
8.17 115 422 —-0.17 1.69 —0.80 296 —0.75 135 486 6.77 9.39 349 213
—19.08 —3.68 —7.43 2.68 —248 089 —7.96 1.73 —248 —7.43 —1880 —2593 —7.96 —1.73
MnCO
’ —1091 —253 —3.21 251 —0.79 009 -—500 098 —1.13 —2.57 —12.03 —16.53 — 4.47 0.40
810 1.14 4.18 —0.17 1.67 —0.80 293 —0.75 134 482 6.71 9.31 346 211
—19.11 —-3.68 —7.53 274 —251 091 -—-796 175 —251 —7.53 —18.83 —25.65 —7.96 —1.75
3(MgCa)COs
—11.01 —2.54 —335 —2.57 —0.84 011 -5.03 100 —1.17 —-2.71 —12.12 —1634 —4.50 0.36
867 122 448 —0.18 179 —0.85 314 —0.80 144 5.16 7.18 9.96 3.70  3.26
—20.69 —4.05 —7.47 240 —249 0.80 —9.01 1.60 —249 —747 —2048 —3247 —9.01 —1.60
FeCo
? —12.02 —2.83 —3.00 222 -—-0.70 —0.05 -—-587 0.80 —1.05 —2.31 —13.30 —22.51 —5.31 0.66
912 128 471 —0.19 1.89 —0.90 330 —0.84 1.51 543 7.56  10.49 380 238
—2448 —482 —861 254 —287 0.85 —11.13 175 —2.87 —8.61 —2429 —4193 —11.13 —1.75
ZnCO
’ —1536 —3.54 —390 235 —098 —0.05 -783 091 —136 -—3.18 —16.73 —3144 —724 0.63
936 132 483 —0.19 194 —0.92 339 —-086 1.55 557 7.76  10.76 399 244
—27.38 —539 —9.64 290 -—-321 097 —12.18 201 —3.21 —9.64 —27.17 —45.16 —12.18 —2.01
MgCO
g —18.02 —407 —481 271 —127 005 -—879 115 —1.66 —407 —19.41 —3440 -—8.19 043
NaNOg C;;®  —3.84 —0.89 —1.64 0.61 —0.55 020 -—166 —0.04 —0.55 —1.64 —401 —460 —1.66 —0.04

s The first row for each crystal is Cijx®, the second row is Cijx®, and the third row is the total third-order elastic constant Cijg.

b Cjijxe and Cijx were not estimated for NaNOas.

in Table X that these differences in magnitude stem
mainly from the differences in the repulsive contribu-
tions Cy;,®. One interesting point is that the signs of
the measured constants Cy;z coincide with the signs of
Cyiin® except for Cuu whose value is small and com-
parable with the experimental error. It seems, therefore,
that the contribution from the short-range repulsive in-
teraction plays an important role in determining the
Ciji of calcite just as in the alkali halides®~® and the
noble metals.?

The relative importance of the various terms in Eq.
(41) can be found from Table X. In calcite the second
term 2C;;,®-€2-C0s has the largest contributions, the
third term Cy;;®-€93-COs the next largest contributions,
and the first term C;;® ¢2-C2 the negligibly small con-
tributions to all C;;x% except for Csss®, where the rela-
tive weights of 2C;;%:C* €0 and C,;®:€03C0s are re-
versed. In passing from CaCO;s towards MgCOs, the
relative importance of the third term is emphasized
more and more with a decrease in the lattice constants,
and in MgCOj the third term is larger than the second
term for Cin®, Cr12%, C1gs%, Caa®, CsF, and CaylF.
For CaCOs, Ci11Z=~ CaseF=~Cy33%, and as we go towards
MgCOs, this relation begins to break down and Css3®

surpasses the other two, but the approximate equality
C111%=Cag® holds for all the carbonates and NaNOQO;
(Table XI). Therefore, the compressional elastic con-
stants Cyj; (4=1, 2) of all the carbonates is nearly iso-
tropic in two directions (X and ¥) at least up to the
third order, that is, approximately isotropic in the xy
plane. This interestingly corresponds to the isotropic
linear thermal expansion coefficient in this plane (Table
I).

Calcite has three negative pressure coefficients of the
natural velocity, (1/W)AW /p for modes 3H, 11H, and
12H (Fig. 6). As to the pressure dependence of the true
velocity d(pV2)/8p, only two coefficients (3/9p)(ces+c1a
Xtanw) for 3H, (tanr=1.34813) and (3/9p)[%(ces+cas
+2¢14)] for 12H, are negative. These negative coeffi-
cients are due to the fairly large negative dc14/9p and
hence, to the positive third-order constants Ciys, Ciae,
Ciss (especially to large Ciis) through the expression
(9614/ap='-51614—51(C114+C124)—53C134. The nega.tive
pressure dependence for calcite-type crystals is of some
interest, being analogous to the negative dc44/dp of some
NaCl-type crystals with large ionic radii.!?-69

% K. M. Koliwad, P. B. Ghate, and A. L. Ruoff, Phys. Status
Solidi 21, 507 (1967).
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LATTICE CONSTANT a (A)

Fi1c. 8. Variation of the third-order elastic constants with lattice
constant ¢ for the isomorphous series of the calcite-type crystals
(open symbols and crosse rs) The solid symbols are additional data
associated with #12=11 for CdCOs, 712= 10 for MnCOQj3, $(MgCa)-
CO;, FCC03, ZIICOa

Now let us examine the Cauchy relations which are
commonly used to test the nonionic nature of binding
forces in ionic crystals.?=5 Calcite is composed of Ca
ions and COj; groups, where the COj radicals are tightly
bound within themselves by the formation of a planar
triad of electron-pair bonds,*® i.e., covalent bonds, as
in the tetrahedral bonds of CH4 or diamond-like crys-
tals. However, since this covalent nature does not
come into play, the elastic properties of calcite may
depend only on the bond characters between Ca ion and
Ca ion, Ca ion and COj; radical, and CO; radical and
COs radical. The COg triads do not have spherical sym-
metry so noncentral forces must act between them, and
this should be reflected in deviations from the Cauchy
equalities. The Cauchy relations for a trigonal crystal
are given by Egs. (10) and (11), and the experimental
values are arranged in Table XTI to make it easy to see
their deviations. Also shown in parentheses in Table XII
are experimental data obtained by Thurston et al.3 for
a-quartz (a comparative trigonal crystal). The Cauchy

THIRD-ORDER ELASTIC CONSTANTS OF CALCITE
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TaBLe XII. Test of the Cauchy relations for the second-
(10”dyn/cm2) and the third-order elastic constants (10'2dyn/cm?)
in calcite and « quartz (in parentheses).®

Corresponding
Symbols® numerical values®
C13/64s 5.280 / 3.289
(1.191) / (5.820)
c11/3ere 14.535  /16.503
(8.680)/ (2.112)
Ci33/Csua —2.39 —1.95
(-312)/ (=1.10)
Cras/—Cuss 0.82 /—0.33
(0.02) (2.76)
C114/3C12a 2.18 0.30
(—1.63)/ (—0.45)
Cu18/Ci155/3C144/3C12s  —1.93 —1.39 —2.07 —1.23
0.12) / (—2.00)/ (—4.02)/ (—8.82)
Ci114-5C112/3Ca22 —13.14 /—20.25
(—19.35) (—9.92)
CinntCuiz/Cris+Cose —7.26 —8.68
(—5.55)/ (—3.20)

a Reference 30,
b Slash means equality on the left-hand side, but not necessarily on the
right-hand side.

relations are not well satisfied in calcite, but the devia-
tions are much less than for a-quartz. Judging from the
fact that these deviations are not much different except
for two cases (Ci14=3Ci2s, C111+5C112=3C320) from
those in such ionic crystals as LiF and MgO 2% as well
as NaCl?:? the bond properties of calcite may be
largely ionic.

If we assume that in the ionic-crystal Born-model
approximation only the electrostatic and short-range
repulsive terms are significant, then the difference be-
tween the observed C;x and the calculated C.x® for
calcite can be attributed to the “electrostatic” contri-
bution Cjj¢ Since for all the carbonates the electro-
static interatomic potential ¢%(r,,) is the same for the
corresponding ion. pairs and the rhombohedral angle 6
is approximately equal (Table IX), the corresponding
lattice sums in Eq. (42) are identical for all the car-
bonates of the calcite type. (Here, we exclude the case
of NaNOQO;.) We can thus estimate the “electrostatic”
contribution by only changing the lattice constants @,
d and the unit cell volume V. in Eq. (42), where #;;%(r)
—D3¢1,R(r) is replaced by u;;%(r)= D%,,e(r) The results
calculated in this manner are given in the first row of
each crystal in Table XI. By adding the first row C;jz®
and the second row C;;;:® of each crystal, the total third-
order constants Cjj; were semiempirically estimated in
the third row. The variations of Ciii, Case, Csss, and
Ci14 for the carbonate series are illustrated in Fig. 8,
where the values calculated with another force law ex-
ponent #12=11 for CdCOs, #:2=10 for MnCOs,
£(MgCa)COs;, FeCOs, and ZnCOs are also plotted. It is
noteworthy (Table XI and Fig. 8) that the variation of
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negative Cy;x is very large (about 3 to 6 times), whereas
that of positive Cyjx (C114, C124, C134, Cas4) is almost zero.

Lennard-Jones and Dent%” have selected #;2=11 for
CdCOs and MnCOjs as a more favorable exponent, but
could not assign an appropriate 7;; to FeCO; and
ZnCOs;. The higher-order elastic constant is a very con-
venient quantity, especially in examining the short-
range, interatomic potential owing to its predominant
contribution. If our exponents and force constants for
CaCOs and MgCOjs (Table IX) are correct, Fig. 8 seems
to indicate that #;, is 10 for CdCO; and 11 for MnCO;,
3(MgCa)COs;, FeCO3, and ZnCOj; in order to connect
the points of the values C;;z by smooth curves.

Perhaps the most useful result of the calculation of
the repulsive contribution is that the experimental
third-order constants (Table V) are confirmed as a rea-
sonable set of values for calcite since the experimental
and calculated values have the same relative magnitudes
and signs (except Caag). To further analyze the experi-
mental data, a detailed calculation including the elec-
trostatic contribution is needed.
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APPENDIX: GATE SHIFT OF THE
GATED-CARRIER METHOD

Consider in the gated-carrier pulse-superposition
method only the two echo trains out of many super-
posed-echo-trains which are all in phase with one
another (Fig. 9). The upper figure (a) is the last applied
(superposed) direct pulse and its echo-train and the
lower (b) is the one applied a long time earlier whose
echoes still do not vanish and are contributing to the
interference condition. The number of cycles in one echo
is reduced to five cycles for clarity instead of 10-20
cycles in the actual case. Under this initial interference
condition the hatched cycles in echo A are exactly in
phase with those in echo B. Now when the external
conditions are changed and the sound velocity is in-
creased, the echoes in (b) advance to the left [to the
dotted envelopes of (b)] according to decrease in the
transit time (the amount of this shift is different from
echo to echo), and the hatched cycles in echo B are
shifted to the open solid cycles in the dotted envelop.
Echo B is no longer in phase with echo A in this situa-
tion. In order to keep the interference condition, the

H. KAGA
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F1G.9. Deviation from the exact interference condition due to gate
shift in the gated-carrier pulse-superpositoin method.

carrier instead of repetition-rate frequency is changed
(increased in this case) in the gated-carrier method.
Then, when the carrier frequency is increased, the phase
of echo A proceeds relative to the phase of echo B and
the carrier cycles in echo A move to the open solid
cycles, where the interference condition is again satis-
fied between the two echoes, A and B. However, if the
gate position for echo A is kept at the same place, then
not only the first half cycle p of echo B and the last half
cycle g of echo A are left without interference, but also
the interference between the open solid cycles enclosed
by the solid envelop of echo A and those enclosed by the
dotted envelop of echo B does not give rise to the same
interference pattern as that in the previous interference
condition. This is because each open solid cycle of echo
A is different in size and shape from the corresponding
hatched cycle of the same echo. That is, the different
echo amplitude would be expected to appear in this new
interference condition. If the gate position is slightly
adjusted to the left, from G1 to G2 (higher repetition
rate), exactly the same size and shape for each cycle of
echo A can be obtained and the same interference pat-
tern of the superposed echoes is produced again (the
open dotted cycles of echo A).

In the actual practice the number of rf cycles, f,r, for
one round trip is about 100. If the velocity is increased
by 10~%(Ar=—10~*), then the change in the number of
cycles is about 10-2 cycles for one round trip. In the
pulse-superposition method, normally many echoes are
superposed depending on the energy loss of the speci-
men, and in calcite even more than 20 echoes were ob-
served for many modes used. If we assume that echo B
in (b) is the 20th echo of this echo train, then the change
in the number of cycles for 20 round trips, i.e., the shift
of the echo due to this change of velocity is about 0.2
cycles. In this schematic figure this has been taken to be
0.5 cycles. If it is thought that not only one but many
echoes are shifted from one another in this way in this
method, though the degree of shift is different for all
echoes, it is expected that this phenomenon might cause
a large effect on the interference condition.

In fact, a sizable effect has been observed in measur-
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ing the interference-carrier frequency when the repeti-
tion-rate frequency was adjusted. Also, when this ad-
justment was not made, high-frequency noise signals
close to but a little off the repetition-rate frequency were
observed being superposed upon the echo oscillation.
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This frequency was associated with this gate shift and
could be calculated from the above idea.

In conclusion, this effect is attributed to the non-
rectangular shape of echoes and the small number of
cycles (10-20 cycles) involved in one echo.
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A variational calculation of the curve of ground-state energy versus density for solid neon is presented
using a two-parameter wave function which takes correlations between pairs of atoms into account. A Monte
Carlo method is used for the computation of the energy expectation value, the ground-state pressure, and
the single-particle distribution function. The Lennard-Jones interatomic potential is assumed throughout,
and various potential parameter values are discussed. If carefully determined experimental parameters are
used, a pressure-versus-density curve is obtained which is in good agreement with experiment.

I. INTRODUCTION

MONG the rare-gas crystals, solid helium and
solid neon stand apart because of the important
zero-point motion of their atoms. This is most marked
for solid helium, which must be considered as a ‘‘quan-
tum crystal” and has received considerable theoretical
interest. Solid neon presents the same quantum char-
acter although to a lesser extent than solid helium,
because the neon atomic mass is about five times larger
than the He* atomic mass.

Throughout this paper as well as in most of the
previous work it is assumed that the interaction between
the rare-gas atoms can be described by the Lennard-
Jones potential

v(r)=4el (e/r)*— (o/7)*]. M)

The relative importance of quantum effects can be
characterized by the value of the dimensionless param-

eter
A=1%/a(me)2,

where m is the mass of an atom in the lattice. For He?,
A is worth about 0.4, whereas for neon A equals about
0.08. Recently, Brown! has presented expressions for
the ground-state energy and pressure of rare-gas solids
including terms up to order A2. Using these expressions
and the experimental values of the sublimation energy
and the lattice parameter of solid neon at 0°K, he
determined the Lennard-Jones potential parameters e
and o. The values obtained by Brown are given in
Table I together with the values determined by second-
virial coefficient measurements in the gas phase? and

* Present address: Laboratoire de Physique Théorique et Hautes
Energies Batiment 211, Faculté des Sciences, 91-Orsay, France.

1 Laboratoire associé au Centre National de la Recherche
Scientifique.

17. S. Brown, Proc. Phys. Soc. (London) 89, 987 (1966).

2 J. de Boer and A. Michels, Physica 5, 945 (1938).

the values used by Bernardes® and by Nosanow and
Shaw? in their calculations which will be discussed later.
The three sets of values are seen to differ by a few
percent. One of the purposes of this paper is to study
the influence of these differences on the calculated
ground-state properties.

Apart from Brown’s lattice-dynamics approach in-
cluding anharmonic terms, most other theoretical cal-
culations of solid neon ground-state properties are
variational. Bernardes,® as well as Nosanow and Shaw,*
used a trial wave function which is a product of single-
particle wave functions, each spherically symmetric
around a lattice site. Nosanow and Shaw solved the
Hartree equation for this problem and thus obtained
the lowest possible ground-state energy in the single-
particle approximation. Their results are given together
with others in Table II. The fact that, using the same
approximation, Bernardes obtained a lower energy with
a one-parameter single-particle trial wave function can
only be due to an error in his caclulations.

Table IT clearly shows that there remains a 20
cal/mole difference between the Hartree ground-state
energy and experimental results. In order to explain
this difference Mullin® tried to take the correlations
between atoms into account by using a Jastrow times

TasLE I. Lennard-Jones potential parameters.

Brown# 2nd virial® Bernardes®
a(A) 2.786 2.74 2.74
e(°K) 36.76 35.6 36.2

a Reference 1.
b Reference 2.
° Reference 3.

3 N. Bernardes, Phys. Rev. 120, 807 (1960).
¢L. H. Nosanow and G. L. Shaw, Phys. Rev. 128, 546 (1962).
5W. J. Mullin, Phys. Rev. 134, A1250 (1964).



