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electrolyte. ' 4' The large degree of disorder in these
phases results in the entropy of fusion being unusually
small. This explains why the initial slopes of the melting
curves of especially CuI I, CuI VII, and CuBr I are
extremely large, although the volume changes upon
fusion are not unusually large. It is obvious that this
behavior is not necessarily restricted to the o.-AgI
structures of CuBr I and CuCl III, but can also apply
in the case of the disordered fcc defect structure of CuI I.

"J.Krogh-Moe, Selected Topics in High-Temperature Chem-
istry (unpublished).
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A description of the phonon processes involved in the optic transitions of a bound electron in crystals is
presented, with the specific properties of the electron-phonon interactions considered in detail. The set of
forces that the "hole-electron pair" exerts on the surrounding lattice are used as coupling constants, and
the projected density of states for the perturbed phonon field is fully explained. The orbit radii for the optic
electron are assumed to be of the order of, or smaller than, the lattice parameter, and both dipole-allowed
and electric-dipole phonon-forced transitions are considered. Short- and long-range forces are examined.
The connection between short-range forces and the stress coeKcients of the absorption (emission) band is
found. The symmetry properties of the electron wave functions are further taken into account in the anal-
ysis of electrostatic types of interactions. It is shown that the electric dipole forces activate essentially
the normal modes of the perfect lattice, while the short-range forces activate more easily the possible local
and pseudolocal modes. An explanation is also suggested for the intraconfiguration transition of rare-earth
ions not activating the pseudolocal modes. The Huang-Rhys parameter is split into local (pseudolocal) and

. continuum-mode terms. It is shown that the continuum-mode term prescribes how the total intensity of
the band is shared among multiple-phonon lines (if present) and broad background absorption. The con-
figuration-diagram description of the many-phonon process is subsequently considered, including the exciton
absorption. An interpretation is presented of the Stokes shift between absorption and emission bands: The
whole Stokes shift is split into a purely Stokes term and a stored-energy term, the latter being related to the
infrared component P (r) of the polarization fmld. This purely Stokes term, as well as the phonon contribu-
tion to the peak position, is evaluated for the F band, within the linear and quadratic approximations for
the electron-phonon interaction. Finally, a qualitative explanation is suggested for the Urbach rule in
Perovskite-type crystals.

INTRODUCTION

HE absorption (emission) coefficient in the visible
and uv region due to the optic transitions of a

bound electron in crystals has been the subject of

*This research has been sponsored in part by ROAR under
Grants No. 65-05 and No. AF-EOAR 67-8 with the European
OfEce of Aerospace Research, U. S. Air Force.

t A preliminary account of this work was presented at the
Conference on Electronic and Ionic Properties of Alkali Halides,
Milan, July, 1966 and appeared in Proceedings of the Conference
on Electronic and Ionic Properties of Alkali Halides, edited by
R. Fieschi and G. Spinolo (Gruppo Nazionale di Struttura della
Materia, Istituto di Fisica dell University, Milan, Italy, 1966).

r M. Lax, J. Chem. Phys. 20, 1752 (1952). The 6rst analysis of
the many-phonon process was given by W. E. Lamb, Phys. Rev.
55, 190 (1939) in connection with neutron scattering.

~ G. Rickayzen, Proc. Roy. Soc. (London) A241, 480 (1957).' Yu. E. Perlin, Usp. Fiz. Nauk 80, 553 (1964) /English transl. :

extensive research both from a theoretical' —4 and from
an experimental point of view. ' ' It seems therefore
Soviet Phys. —Usp. 6, 542 (1964)g; this paper contains extensive
references to previous works; D. McCumber, J. Math. Phys. 5,
221 (1964), 5, 508 (1964).For the connections with the Mossbauer
effect, see, for instance: E. A. Trifonov, Fiz. Tverd. Tela 6, 462
(1964) /English transl. :Soviet Phys. —Solid State 6, 366 (1964)g;
A. A. Maradudin, P. A. Flinn, and J. M. RadcliBe, Ann. Phys.
N. Y. 26, 81 (1964).

4 M. H. L. Pryce, in Phonons in Perfect Lattices ard, Lattices
with Point Imperfections, edited by R. W. H. Stevenson (Oliver
and Boyd, Ltd. , Edinburgh, 1966).' D. B. Fitchen, R. H. Silsbee, T. A. Fulton, and E. L. W'olf,
Phys. Rev. Letters 11, 275 (1963); C. B. Pierce, Phys. Rev. 135,
A83 (1964). A. E. Hughes, Proc. Phys. Soc. (London) 87, 535
(1966). For molecular centers see, for instance, T. Timusk and
W. Staude, Phys. Rev. Letters 13, 373 (1964). These papers
represent just a sample.' M. Wagner and W. E. Bron, Phys. Rev. 139, A223 (1965);
139, A233 (1965);W. E. Bron, ibid 140, A2005 (196.5).
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superQuous to spend too many words introducing this
matter. In spite of these efforts, it seems to us that an
important aspect of the problem, namely, the large
variety of vibrational structures existing in the absorp-
tion (emission) bands and their connection with specific
properties of the coupled electron-phonon system, re-
mains unclear. Our purpose here is to clarify this point.
It is well knownr that the distribution function I(Q) of
the absorption (emission) band is related, in a simple

way, to the spectral density, say A(Q), of the thermo-
dynamic Green function ((OR(tt),3R(0)))s for the electric
dipole moment 5R of the electron undergoing the optical
transition. (Q is the frequency of the electromagnetic
field. ) We have

I(Q) = KA (Q),

A(Q)=Im di eitt t((eilrtt)Re irrtgg))—

& P. L. Qpnch-Bruevich, in Green-~unct& n Method in Statist jcal
iVecItttlics (North-Holland Publishing Co., Amsterdam, 1962).

g T. 'fiInusk and M. V. Klein, Phys, Rev. 141, 664 (1966).

where E is a smooth function of 0 which can be regarded
as a constant factor in the range of frequencies that we
are considering here. ((.. ))s denotes the thermal
average at the absolute temperature T, and H denotes
the total Hamiltonian of the interacting electron-phonon
system. Equation (1) can be written in a simple way if
we assume that the adiabatic approximation holds for
the ground electronic state, as well as the excited states
involved in the optic transition. In such a case, the dis-
tribution function as given by relation (1) is found, after
some manipulations, to have essentially the standard
form found in the literature Lace Eqs. (5—3) and (5—18)
Perlin's paperj. ' However, in order to reach a theo-
retical expression which permits a detailed interpreta-
tion of the phonon processes involved in the optic
transition, a proper choice of the coupling constants for
the electron-phonon interaction is critical. Usually, one
introduces the set of normal-mode displacements A~.

This leads to a description in which the peculiarities of
the electron-phonon interaction are not separated from

the specific properties of the imperfect-lattice dynamics.
Furthermore, the electronic excitation involved in the

optic response of the imperfect (perfect) crystal con-

sists of a hole-electron pair. Instead of bq, we use the
set of forces that this hole-electron pair exerts on the
surrounding lattice. This allows us to introduce the

projected density of states' of the perturbed (unper-
turbed) phonon field, and so to recognize clearly how

the imperfect-lattice dynamics enters the description of
the phonon process. Throughout the rest of this paper,
we will refer to the interaction between the hole-electron

pair and the phonons as the "electron-phonon
interaction. "

I. COUPLING CONSTANTS

We choose a representation in which the electron
Hamiltonian occurs in matrix notation, while the
lattice displacements u~„appear still in operator form.
We use the pair indices l,a to label the ions in the
crystal: / labels E primitive cells and a the ions within
the primitive cell. We start with the lattice at elastic
equilibrium (relaxed configuration) with respect to the
initial level of the electron, and we assume that the
wave function of any other level has been evaluated in
this lattice con6guration. The orbit radii of these elec-
tron wave functions are typical parameters of the
centers which we are studying. Thus, a classi6cation of
the centers on the basis of the size of their electronic
orbit radii, in both the initial and final states, allows us
to determine the following three classes: (a) tightly
bound electrons, when r„r,(r„(b) weakly bound
electrons, when r„~r,&&r„(c) intermediate bonding,
when rg&r„but r„&r,.

By r, and r„, we have denoted the orbit radii of the
initial and final electronic levels,

~

tttt, ) and
~ p„), respec-

tively, between which the transition occurs, and by r,
the radius of the equivalent sphere for the crystal atomic
volume. Typical examples for the three classes are: the
rare-earth ions and molecular centers, such as NO. in
alkali halides, for class (a) electrons; shallow impurities
in silicon and germanium and, to a lesser extent, com-
plex centers in alkali halides such as R, 3f, and A
centers for class (b) electrons; the F center in alkali
halides and perhaps the intrinsic exciton for class (c)
electrons.

We consider further the point symmetry of the defect;
we call: "high-symmetry centers, " the defects that
possess inversion symmetry; "low-symmetry centers, "
the remaining defects. Finally, for class (a) electrons we
consider the spectral terms which can be assigned to the
optic transition of the free ion. Particular care must be
taken in dealing with spin-orbit coupling. The d-like
orbitals are considerably affected by the crystal field, and
so the electronic levels must be classi6ed 6rst according
to the irreducible representations (irr. reps. ) of the
crystal point group, and second according to the spin-
orbit interaction. For f-like orbitals, the situation is
reversed, since the crystal field represents only a small
perturbation on the perturbation due to the spin-orbit
coupling. In this case, and for high-symmetry centers,
the total angular momentum can again be considered a
good quantum number.

Ke consider next the electron wave functions in the
vibrating lattice in the framework of the adiabatic
principle. We develop the set of adiabatic wave func-
tions in terms of the rigid-lattice wave functions

~
tttt;),

with coefficients which depend on the direct interaction
between optic electron and phonons (i denotes. an
electron quantum number). The electron-phonon: inter-
action consists of two types of terms: terms that are
diagonal in the electron quantum numbers and -terms
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that are not. Since the lattice is supposed to be in elastic
equilibrium in the initial state, for this state we include
in the lattice Hamiltonian only the "diagonal part" of
the electron-phonon interaction. We call C «& =Cs+t&C
the force-constant matrix of the imperfect lattice for this
electronic level: 84 accounts for the perturbation on
the force constants due to the defect, which enters v ith
the perturbation bM on the masses, into the de6nition
of the frequency-dependent perturbation A(o&') (see
Appendix A). "We call A(o&') the lattice-dynamics
perturbation.

A. Lineaz Coupling

We further analyze, in powers of lattice displace-
ments u~„ from the g-state equilibrium position x~„, the
additional perturbation which occurs in the lattice
Hamiltonian once an electronic transition to another
level (i.e., I) has occurred The. linear term is diagonal
in electron quantum numbers g and I, and is of the
form,

4 flu'n4 ~

As the electronic excitation consists of a hole-electron
pair, in rigid-ion approximation, we write

where V(r) is the eRective potential, including the
exchange, for the electron —host-lattice interaction.
Equation (3) is seen to be nothing other than the force
that the (trapped) hole-electron pair exerts on the (tK)
ion. The upper sign refers to absorption, the lower to
emission.

We call attention to the fact that for two definite
electron levels, such as I and i, the linear "nondiagonal"
(nd) part of the electron-phonon interaction is

where

and f&„&"'& is the force that mixes together the pure
states ~g, ) and (P„). We shall be concerned with the
linear nd term mainly in dealing with the electric-dipole
phonon forced transitions. Here we focus attention on
the tightly bound electrons; however, the following con-
siderations may also be applied to the intermediate
bonding. ~

'Y. Toyozawa LTech. Rept. of the Institute for Solid State
Physics, Tokyo University, Ser. A, No. 238 (1967) (unpublished)g
has recently roposed to use the deformation potential for the
projection of f) onto acoustic phonons and the Frolich interaction
for the projection of ( f}onto optic phonons Lsee also A. Myszkow-
ski and S. Gomulka, Phys. Rev. 134, A1102 (1964}g.It seems to
us that Toyozawa's approach is quite unrealistic for tightly

We choose f&„and f&„&"'& as the coupling constants for
the linear terms of the electron-phonon interaction.
Both fields split as:

= [e„E(x&„)—F(xr„)j,

where E(x&„) is the Coulomb part of the Geld, and
F(x&„) the force coming from the exchange interaction
between the electron and the (l&r) ion. e„ is the electric
charge of the ions.

F(x&„) depends on the change of the overlapping
integrals as well as on the rearrangement of electron
spin in the optic transition. For tightly bound electrons
it displays a marked short-range character.

E(x&„) can be expressed as a multipole expansion',
we retain terms up to the quadrupole. The teorlopole
never occurs in the "nondiagonal" part of the electron-
phonon interaction; it may occur in the "diagonal"
part, thus contributing, together with a screening
factor, to the change of local effective charge. It is
again absent for tightly bound electrons, as the hole
cancels the monopole term coming from the electron.
The dipole and quadrupole depend more markedly on
symmetry. First of all, we consider the dipoLe term. Let
us denote by p the dipole moment which the optic
transition switches in the impurity ion. At a distance

~

R & )(r„r„) the dipole field reads

E&@(R)=R 'p (3—R 'RR —I),
so that its contribution to the force f&„can be written as'

e„E&+(x&„)/M„'"=d Lac(k; j'=0 Ir')M .'" (7)

where d—= (p/e. ); M„ is the mass of the sth ion of the
host crystal (Me in matrix notation). Lac(t&r, lY) is the
Coulomb part of the dynamical matrix for the host
lattice and we have put the defect at the origin
(P=O, &r'). This equation will be useful later. In high-
symmetry centers, the dipole force transforms accord-
ing to irr. reps. of odd parity. Then the dipole force
enters only into the nondiagonal part of the inter-
action, f~„"', insofar as we are concerned with electron
wave functions u and i of opposite parity. For tightly
bound electrons, a high-symmetry crystal field is
not able to relax the selection rule dJ= (0)&1 of
the free ion. Thus it is essentially the dipole force that
allows the (dipole-forbidden) (J=O)si„& -+ (J=O)„~,&
transition. Wave functions, which indeed correspond to
spectroscopic terms of total angular momentum, J=O,
do not give rise for symmetry reasons to any quadrupole
or higher multipoles in the diagonal part. Therefore, the
Coulomb Geld contributes to the electron-phonon inter-

bound electrons in polar crystals, and leads to wrong conclusions
about the long-time behavior of the form factor, i.e., the behavior
near the zero-phonon line of the response function (see the end
of Sec. IIB).I E. W. Kellermann, Phil. Trans. Roy. Soc. (London) A238,
513 (1940).



850 M ULAZZI, NARDELLI, AN D TERZI

Tmx, z E. Field of force entering the diagonal and nondiagonal part of the electron-phonon interaction.

tightly bound electrons
rgb~ &r~

intermediate bonding
rg&r~
r &res

High-symmetry centers

(f~.)
quadrupole

screened monopole,
quadrupole,
exchange

(f~")
dipole'
quadrupoleb
dipole'
quadrupoleb

diagonal interaction nondiagonal interaction

Low-symmetry centers

diagonal and nondiagonal
interactions

dipole and quadrupole
(dipole only, if J=0)
screened monopole,
dipole and quadrupole,
exchange

a If the electron wave functions u and i have opposite parity.
b If the electron wave functions u and i have the same parity.

action only through the dipole term in the nondiagonal
part. In low-symmetry centers, the crystal held relaxes
the free-ion selection rules, and the dipole force enters
into the diagonal and the nondiagonal parts of the
interaction. In such a case, the (intraconfigurational)
transition (J=O)«& —+ (J=0) i,&

of tightly bound elec-
trons becomes dipole-allowed, because the low-

symmetry crystal Geld mixes J=0 with J=1.
We should consider now the quadrupole force How. -

ever, we do not enter into its analysis in detail, since a
theoretical approach can be found in Ref. 6. In high-

symmetry centers, the quadrupole force transforms
according to even representations. If we are then con-
cerned with wave functions of the same parity, only the
quadrupole force enters into both the "diagonal" and
the "nondiagonal" forces.

Concerning the exchange interaction, we simply
remark that the largest correction upon the Coulomb
field is expected for class (c) electrons (i.e., intermediate

coupling), because there the overlapping integral under-

goes the maximum change in the optic transition.
Fortunately, in this case, the coupling constants can be
deduced from the stress coeKcients of the band, "' as
shown in Sec. VB.

For both tightly bound and weakly bound electrons,
only small corrections are expected, mainly to the
short-range part of the fields.

Let us now brieQy consider weakly bound electrons.
For such electrons, a deformation-potential approach,
recently suggested by Toyozawa, 9 is, in principle, more
reliable than the rigid-ion approximation we have used
in deriving Eqs. (3) and (5). However, we have to keep
in mind that the phonon coupling for a hole-electron
pair actually involves the difference between such
deformation potentials for ground (upper) and upper
(ground) states, respectively, of the optic electron. Un-

fortunately, when the electron orbit radii cover several
interionic spacings, it is not clear how to differentiate
between the deformation potentials for these two states.
Small phonon coupling is, however, expected for the
hole-electron pair, even if the electron-phonon coupling

"C. H. Henry, S. E. Schnatterly and C. P. Slichter, Phys. Rev.
137, A583 (1965); S. E. Schnatterly, ibid. 140, A1374 (1965);
W. Gebhart and T. Meier, Phys. Status Solidi 8, 303 {1965)."G, I)enedelz and G. F, Nazdelli, Phys, Rev, 154, 872 (1967).

for the electron itself is fairly large. The situation is
summarized in Table I.

We find it very useful to classify the optic transitions
according to the extent of the force field f~„ in com-
parison with the region over which the lattice-dynamics
perturbation A(zo') on the initial state is significantly
diQ'erent from zero. In this paper, we are only studying
isoelectronic centers, so that monopole terms do not
contribute to A(oi'); any other long-range terms, such
as the dipolar one, will be neglected here, since it is
usually very small when compared with that coming
from the short-range part of the ion-ion interaction.
Therefore, A(oi') will be considered henceforth as a,

Qnite-range perturbation.
Ke use lable I to specify the subregion of the linear

vector space (see Appendix) where A(zo') has non-
vanishing matrix elements, and label II to denote the
remaining space.

We split the 6eld of force as

where (see Appendix)

and

Ifzz) =& i IIIizzi)fzi, .
'.

The label n denotes the irr. reps. of the point group.
Then we have: (i) SIzort razzge iete-ractioe The optic.

transition does not switch on any significant field of
electric dipole in the lattice, and the upper-state wave
function does not appreciably extend beyond the
region (I). In this case fzz, ; 0 and we have only to
consider the short-range part, i.e., fz, ;, of the electron-
phonon interaction. (ii) Long range izsteractiotz -Either.
the optic transition gives rise to an electric dipole Geld,
or the upper-state wave function extends appreciably
beyond region (I). This case requires a careful analysis
of the field of force in both regions (I) and (II); never-
theless, a particularly simple situation occurs when the
electron-phonon interaction is dominated by the long-
range part, i.e., fzz, ;, of the field of force. In such a case,
we resort to the wave-vector representation, and we
consider (sqI f)=f,s, where Iqs) denotes the unper-
turbed lattice wave of wave vector q and vibrational
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branch s. This representation is found to be particularly
useful when f„displays a simple analytic behavior as
a function of q. The next section will show that only
the short-range interaction is able to activate the
imperfect-lattice dynamics; the long-range interaction
essentially activates only the perfect-lattice dynamics.

where, in standard notation,

S(T)= -', Px /
Ax

f

s coth
2EgT

is the Huang-Rhys parameter, and

(13)

B. Quadratic Coupling

The quadratic contribution to the surplus of pertur-
bation on the lattice Hamiltonian is diagonal in electron
quantum numbers and is of the form

A&'&= (&)Ms-'"Pei"&—C «'jMs-'",

where 4 «& and C t'"& are the force-constant matrices for
the ground and upper states, respectively. The matrix
elements of A. &'~ represent the set of coupling constants
for the quadratic electron-phonon interaction. Some-
times an estimate of h. &'& can be obtained by electro-
static arguments, considering the optically induced
change of electron charge distribution. In fact in a
high-symmetry center, if we assume that A. &'& essentially
receives contributions from the change of electrostatic
monopole during the optic transition, we have

1 (3xtxt
(@'"'—C'"') u = (P.—Ps)—I'r, & rs i

if l and l' are nearest neighbors,

0 otherwise.

P, and P„denote the local effective charge of the center
for states g and I, respectively; ro is the n.n. distance,
and 1 the unit dyadic. Generally, the evaluation of A. &'&

requires, however, a more sophisticated approach.

II. ABSORPTION AND EMISSION
COEFFICIENTS

The absorption (emission) of light in crystals is
described in terms of the distribution function I(Q) for
a specific electronic transition, g

—+ I (u —+ g), where 0
is the angular frequency of the electromagnetic field.
To simplify matters, we assume that both e and g are
nondegenerate levels. First we consider the electric-
dipole transitions.

First, let us take into account only the linear and
diagonal terms in electron-phonon interaction. When
the thermal average is performed with the help of the
usual quantum field techniques, apart from a constant
factor, Eq. (1) gives

1 +

I(Q) =— Ch e'"'I(t)
21r—

I(]) I Q' (gyle' ) I
se s(r)e inasi+q(r;t)—

~(2';&) =l E. I&.l'
X (Pier(&di)+1je-'"i'+assr(tax)e'""g (14)

is the phonon-structure function. It is easy to realize
that S(T)= y(T; t=0). The 0„,is the frequency of the
zero-phonon line which, in the linear interaction
approximation, is equal to 0, , the frequency for the
pure electronic transition from the ground (upper) state
to the "displaced" upper (ground) state. "exp(y(T; t)j
is the so-called form factor of the absorption (emission)
band n.r(oui) =

t exp(lion/Eii T)—1) ' is the equilibrium
occupation number for phonons of type X at absolute
temperature T, E~ is the Boltzmann constant. Aq is the
dimensionless normal-mode "displacement" associated
with the "displaced-oscillator" transformation which
relates, in linear-coupling approximation, the phonons
of the initial electron state to the phonons of 6nal state.

h~ is related by

6x——gi„(A~'Mi„)—'"ttg(lx) fi„

( s)-tls( ~M i/sy)

to the force f&„ that the (lx) ion feels immediately after
the optic transition, where tb, (l,x) denotes the Xth
normal mod. e. Mi„ is the mass of the (lx) ion in the
imperfect crystal (M in matrix notation). The factor
(hto&sMi„)-'is has the following origin: A factor (Aa&x) '
comes from the usual relationship between forces and
relaxation (or "displacement" ) field, while a factor
(Ml Mi/Is) 'is comes from the lattice-displacement-
phonon transformation of variables. In writing Eq. (12),
we have omitted the constant term that appears in
Eq. (1).With this normalization, the oscillator strength

f=J'„"I(Q)d0 of the band as a whole equals

) Q, (5K ( @„)( s whatever be the strength of the electron-
phonon interaction.

Equations (12), (13), and (14) correspond to the
Condon approximation. If we consider I(f) beyond the
Condon approximation, we cannot bring ( (P, ~BR(p„)

~

out from the thermal average in. Eq. (1) and we have to
replace it by a series in powers of phonon variables.
This gives rise to the electric-dipole phonon forced
transitions (see Sec. IV).

"Notice that some authors include the strain-energy term
(i.e., gz hco&, ~h&, ~, in harmonic approximation) in the de6nition
of 0 ~. The same term, with opposite sign, would thus appear
explicitly in qr(t) as the coelficient of a linear term in t. In writing
the above expressions, we have taken into account the cancellation
of these two terms. The cancellat&op hoIds also if the anharmonicity
of the latt&ee g conpdegecf,
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In terms of our coupling constants, at zero tempera-
ture, kp(0; t) can be written as

q(0;t)=(1/h) dkoko 'e *"'

X If I
k&Lko

—(Lo+A(ko )HI fI ~ (16)

We simply denote by I f) the mass-normalized force
vector. Hereafter, the mass-normalization will be
understood: by (t&&I f) we denote M„'tsfk„. We stress
that A(kos) in Eq. (16) denotes the lattice-dynamics
perturbation for the initial electronic state.

Let us extend Eq. (16) to the case of finite tempera-
ture. Making use of (8) and (A8) we obtain

& (T;t)=(1/h) 2-2 'fr-fr-'

Xko 'Hiir(ko)+1)e '"'+mr(ko)e' 'jpr~, &
(ko') (1'/)

for short-range interaction, and essentially

p(T;t)=kp, (T;t)=(1/h) P, do&o&-'(I f, ls')„~

X L(~r(~)+1)e '"'+rid(~)e'"jp. '(~') (18)

for long-range interaction.
In writing Eq. (18) we have neglected the term which

twice involves the joint Green-function matrix gr, ri'(s)
(see Appendix). As &&r, rr'(s) usually turns out to be
much smaller than &&r'(z), this seems to be a fairly good
approximation. We have further denoted by p, '(ko') the
s-branch spectral density of the perfect lattice and by
(I f,s I

')„s&'& the s branch average of f,s on the constant
squared-frequency surface. Hereafter we drop label I
on both p(ko) and f: it will be restored only when its
absence could generate misunderstanding. Eqs. (17)
and (18) represent the starting point of our analysis.

They explicitly exhibit the essential quantities which
characterize the phonon process involved in the optic
transition: the mass-normalized forces f; represent the
coupling constants, while p;& (o&') Lp, s(o&')) accounts for
all the effects corning from the imperfect (perfect)
lattice dynamics. The f; enter kp(T;t) as constant
factors for all the type j symmetry phonons; they do rot
depend on the lattice dynamics, and are simply related
to the properties of the electron wave functions involved
in the optic transitions; the only exception is repre-
sented by (18), where the forces depend, in principle, on
the wave vector and the polarization of the lattice
waves. The factor co

—' gives the weight by which the
squares of the coupling constants are shared among the
perturbed (unperturbed) phono ns. Notice that the
electron-phonon coupling per unit frequency range is
f;/ko'"; nevertheless a factor ko

' instead of ko-' appears
in both expressions (17) and (18), since we are dealing
with the projected density of states for the squared
frequency.

When we are concerned with both linear and
quadratic terms of the electron-phonon interaction we
split Q„, in (12) as

1
sn(»=-

4
dko Tr(A&s&p(ko')) coth . (20)

2E~T

Analogously, kp(T; t) splits as

y(T; t) = &p&»(T. t)+ kp&'&(T; t),

where &p&'&(T;t) is given by Eqs. (1/) or (18), while
y&'&(T;t) accounts for the effect of the quadratic
interaction. Starting from p&'&(kT;t) as given in the
literature, ' we rewrite it in the more explicit form

Q„o= Q o'+ AQ &'&,

where AQ„,' is the pure electronic transition energy and
M,Q(') is a self-energy correction of the upper-state
(ground-state) electronic energy, given by

00

kp&'&(T; t) =— dko

32

(e '"'—1 ( h(ko —ko ) ) ( ho&

dko'
I I

coth +1 II
coth- — +1

«2Kt&T J i 2EBT )

2EgT

(e' ' 1( h(ko —ko'—) ( ho&' 2it ( h(ko —ko') Ako'

+I I
coth —1

I
coth — —1 +—

I
coth +coth- t&(ko —ko')

Et&T ko 2EBT—
00 00

&&»(A"'p((ko ko ) )A p( ))+
16 „p

(e *"'—1) ( h(ko+ko') hko'

+1
ko ) E 2E&&T 2E,T

it h(o&+ko') hko' )—
+—coth ——coth-

I
8(ko —ko')Tr{A"'p((o&+ko')')A&"p(ko")) (22)

ko 2Et&T 2E~T)

"M. A. Krivoglatz, 1'iz. Tverd. Tela 6, 1707 (1964) LEnglish transl. : Soviet Phys. —Solid State 6, 1340 (1964)j; A. A.
Maradudin, in SotÃ State Physics, edited by F. Seitz and D. Turnbull (Academic Press inc. , New York, , 1966), Pol, 18, p. 399.
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where we have also dropped the indices 0., j, and j'
in p(&02).

The trace on the right-hand side of Eq. (22) has the
following meaning:

Tr(' ' ) =Z~ d~ Ziii2isi4Ii~iii2 poi2is(&I2 )
X "'ai374pai4il(( )') ~

where d is the dimension of the nth irr, rep. Notice that
p(&02) still involves the initial-state perturbation h.(co2).

As it stands, q &2&(T; t) does not contribute to the first
moment (i.e., peak position Q) of the absorption
(emission) band; it contributes only to the second
moment (i.e., to the half width).

Moreover, it is possible to work out, from @&2'(T; t),
the quadratic contribution to the Huang-Rhys param-
eter and a time-dependent term which generally may
produce structure. We note that the integrand on the
right-hand side of Eq. (22) does not contribute to these
terms as co —+0, but is responsible for the Lorentzian
shape of the zero-phonon line. Then a two-phonon
structure is to be expected in principle; because of the
selection rule, in high-symmetry centers this structure
may essentially di8er from the two-phonon structure
produced by the linear interaction. Even though it is
expected to be very weak, the structure produced by
the quadratic interaction may be detected when local
or pseudolocal phonons occur."

Since greater stress is given to the e6ects of the linear
electron-phonon interaction, in what follows q(T; t)
means &p&'i(T; t) unless otherwise stipulated.

A. Many-Phonon Process

We consider I(Q) in the case of short- and long-range
interactions. For simplicity, we assume T~O K.

(A14), we can write (24) as follows:

vii(0;t)=2& i2 I~ i2I'e '" "',
where

Ih„iiI'=(1/l2) I f iiI'(o. r2

I..',-. '", -(Q) =(-'I ~- I')""'/(n- )!
X(2 I &. z-

I
')""'"/( . -)! ~ .

XIC(Q na'ii'&0&'ii' n~" ii''M&'rIi~l ' ' ')

I.(Q) is found to have the following expression:

(28)

Equation (27) gives the relation between the local- or
pseudolocal-normal mode displacement 6 g and the
projection of the mass normalized force f a on the
oriented symmetry vector

I
uI&!)=

I
v ii) (see Appendix).

expyii(0;t) can be Taylor-expanded with respect to
yi2(0; t) and the terms in the resulting series rearranged
in powers of exp( —uo iit). Thus, I(t) turns out to be an
in6nite series of terms involving the product of ex-
ponentials of the type exp( —ioi &t) multiplied by the
continuum form factor. Let I„ ii, ~ ii" ...&"&(Q) denote
the "n-phonon term" in the distribution function I(Q),
i.e., the contribution to I(Q) coming from the Fourier-
transform of the term in I(t) which involves n„ ii local
or pseudolocal phonons of frequency co &, e ~ z- local
or pseudolocal phonons of frequency co "~- and so on,
for a total of N=n Ii+n "g"+ local or pseudolocal
phonons. Then we have

i. Short-Range Interactiol

a. Presence of local and pseldolocal modes If we.
extract from the projected density of states the con-
tribution coming from localized and pseudolocalized
phonons Lsee Eqs. (A13) and (A14) in the Appendix/,
the form factor factorizes as

exp@(0; t) = expI w&(0; t)j expI w~(0~ t)j ~ (23)
where

qz(0; )=t(1/h) g~ii I f~iiI2 dko&o 2e '"'p ~(co2) (24)

and

&p.(0 t)=(1/&) 2 Zi~ f-if-~'

X&e 2e icot pc—( -)&02(25)

We call exp&p, (0; t) the "continuum" form factor.
If we choose the symmetry vectors Iuj) oriented in

the same direction as the R local and pseudolocal modes
of syrnrnetry u, and we keep in mind Eqs. (15) and

"D. G. Thomas, J. Phys. Soc. Japan Suppl, 21, 270 (j.966).

I.(Q) =
I (BR) I

' expL —s(0)] dt

XexpI it(Q —Q„,)+ rp, (0; t)j. (29)

We call Eq. (28) the "generating function" for the
absorption (emission) band in presence of local and
pseudolocal modes. Apart from a numerical factor, it
appears that every I-phonon term I„,~, „„~„...&"&(Q')

reproduces, at the combined frequency

the distribution function I,(Q) for the continuum-
phonon process. We emphasize that here we call the
"e-phonon term" a term which, in the rearranged
Taylor expansion of the form factor, involves e local
and pseudolocal phonons, variously combined, and an
arbitrarily large number of continuum phonons.

As &p, (0; t) in (25) is a normalizable generalized func-
tion well-behaved at infinity, "I,(Q) displays at Q= Q„,
"M. J. Lighthill, in Fourier Arjalysis and Generalized Functions

(Cambridge University Press, Cambridge, England, 1963).
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a rather sharp 8-type line that is well resolved from the
smooth sideband which may be present at higher (lower)
frequencies. The lower the density p '(o)2) of continuum
phonons allowed in the optic transition, the more in-
tense is the 5-type line of I,(Q), in comparison with the
sideband. From Eq. (28) it follows that the so-called
multiple-phonon lines in the whole band are nothing
but a repetition of the 8-type line of I,(Q).

Split the Huang-Rhys parameter as

S(o)=S~(0)+S.(0)=Z-».~(0)+S.(0) (31)

where S,(0) represents the continuum-phonon contri-
bution. The zero-temperature oscillator strength f, (0)
associated with I,(Q) is

f.(0)=
I (OR) I

' expl —S.(0)), (32)

whereas the oscillator strength of the 6-type line is

f&o)(o) =1(oR)I
' «pL —s(o)j.

Therefore

e pI —s,(o)j= f&"(o)lf.(o) (34)

gives the fractional intensity of the b-type line in I,(fl).
With reference to Eq. (28), the oscillator strength

associated with the whole band can be further split as

l(oR) I'=f' "'(o)+f""'(o),
where

f'-'"'(0) =1(oR) I

' expL —s.(0)j,
f& ' )(0)= I(OR)l'{1—expl —S,(0)]),

and, therefore,

f'-'"'(o)/f"'"'(o) = 1/{expl:s.(0)j—1) (35)

f&~ &" )(0) is the oscillator strength associated with all
the multiple-phonon lines in I(0), while f& '" )(0) is the
oscillator strength for the background absorption
(emission) in the whole band. S.(0) can be easily
evaluated with the help of Eqs. (A13) and (A14).
Eq. (35) tells us how the total intensity of the band is
shared among multiple-phonon lines and broad back-
ground absorption. The oscillator-strength ratio of two
subsequent multiple-phonon lines is given by

f'" ~"(0)/f'" "(o)= 2 I ~-~ I '/(~-~+1) (36a)

We observe from Eq. (13) that S ~(0)=-,'
I
6 e, I

', so
Eq. (36a) may also be written as

f'"'+"(0)/f'""(o) =S-~(0)/(~-~+1) (36b)

Equations (36) represent the "intensity law" of the
multiple-phonon lines at T=0 K.

At 6nite temperature, the intensity laws (33) and
(36b) may be obtained with a procedure similar to that
used in connection with the Mossbauer eGect. ' They
take the following forms:

f"'( )/f= '"' (( y)'") - o((*- y )"') (33')

and

f &nag+&) (T)/f &naz) (T)

(X danae+)+y anne+I)
= (x.zy.z), '"

(X @naB+y danae)

I-.~~((x-~y-~)"')
X (36c)I.-e((x-~y-~)'")

where I ((x;y,)"') is the modiied Bessel function of
mth order of the argument x;=S;(T)—S;(0) times
y, =S;(T)+S,(0), (i=c,nR).

Concerning the symmetry n of the phonons involved
in the optic transition, the linear interaction selection
rule is

0' e Lanan3+I auag3 ~

where n, and o.„are the irr. reps. according to which the
ground- and upper-electronic states transform, respec-
tively. L ] denotes symmetric product. If the
point group contains the inversion operation, n must
have even parity. This, for cubic point groups, means
that phonons which transform according to T~„(the
infrared active) irr. rep. cannot be involved in dipole-
allowed optic transitions; only the phonons which
transform according to even irr. reps. such as A~,
("breathing" mode), I', and T2, can be involved. The
richer the point group in symmetry operations, the
better the selection rule (37) operates. As a consequence
of Eq. (37), the absorption (emission) band can display
multiple-phonon lines only when the local and pseudo-
local modes fall into the allowed symmetries.

b. Absence of local and psestdolocal modes. The many-
phonon process involves continuum phonons only.
Then I(Q) has formally the same form as I,(Q) Eq. (29),
in which &p,(0; t) is now replaced by the whole y(0; t).
Of course, only the zero-phonon line occurs: expL —S(0)j
gives its fractional intensity

I
see (34)j. y(o, t) usually

retains some more memory of the peaks which occur in
the phonon spectral density than p, (0;t), memory
which is reflected in the absorption (emission) band by
the appearance of a more pronounced continuum-
phonon vibrational structure. The main peaks are,
however, expected in the region of the one-phonon
frequencies.

ii. Long-Range Interaction

In dealing with optic transitions, the most typical
long-range interaction corresponds to the force 6eld of
an electric dipole. When neither quadrupole nor
appreciable exchange occurs, the electron-phonon
interaction is dominated by the long-range part of the
dipole 6eld, and with good approximation we can use
Eq. (18) for p(0;t). In such a case, the distribution
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function reads

I(Q)= I(~) I "xpC—S(0)]

XexpLi(Q —Q o)t+ goo(0; t)] (38)

0
co p (co(

(sg f~)$0

m' S1

1

cv~-wc~ ~

independently of the existence of local or pseudolocal
modes. ((os(0;t) involves the unperturbed density of
states; the possible peaks of I(Q) are then to be assigned
to the unperturbed phonons of the host lattice.

We note that expL goo(0; t)] in (38), as well as
exp)((o,(0;t)] in (29), in the presence of local and
pseudolocal modes, or exp/&t(0;t)] in (12), in the
absence of local or pseudolocal modes, always generate
a many-phonon process which involves the continuum
phonons only. Either the perturbed or the essentially
unperturbed continuum phonons enter the description
of such a process, depending upon whether the electron-
phonon interaction is dominated by short- or long-range
interaction.

Q7 P ((AJ )

(sg joe(=0 y
0

u) = Q-Q'„g

FIG. 1. Analytic critical points of (o rp o(co') versus co: (a) when
(sq ~a) 80, and (b) when (sq ~n) =0. m and m' denote absolute and
relative minima, respectively.

discontinuities and these are wholly specified by the
asymptotic behavior of exp[y. (0; t)] (or expL&po(0; t)]).

If M denotes the total number of critical points in
the Brillouin zone, qr, (0; t) can be written as

B. Continuum-Phonon Process

We give here some more details about I,(Q). We have
to replace p '((o') in (25) by p„((o'), when no local
(pseudolocal) modes occur, or by p,e((o') when dipolar
forces dominate the electron-phonon interaction; when
this is done, the following discussion will apply equally
well, to these cases.

Because of the continuum character of the wavelike
modes, every n-phonon term of a Taylor expansion of
the continuum form factor will be a convolution of e
projected densities, so that the shape of the e-phonon
term is not related in a simple way to that of the
preceeding terms. This explains why no repeated
structures occur in I,(Q), and why I,(Q) has been kept
apart in writing (28).

We keep the zero-phonon line at Q= Q„, out of I,(Q)
and we analyze the possible discontinuities of the
remaining expressions by the method of the asymptotic
developments. We assume, for simplicity, that every
irr. rep. appears singly in (25).

Because of the existence of critical points in the
Brillouin zone, "p '((o') is not smooth, but is a function
in the generalized sense. ""Elsewhere, two of us" have
discussed what kind of discontinuities can occur in

p '((o ). These discontinuities occur at the frequencies
eu, ,; of the critical points in the unperturbed density of
states, and involve essentially the first- and second-order
derivatives of p '((o'). As a consequence, I,(Q) also has

"L.Van Hove, Phys. Rev. 89, 1189 (1953);J. C. Phillips, eh(d
104, 1293 (1956).' A. A. Maradudin and J. Peretti, Comp. Rend. 247, 2310
(1958)."E.Mulazzi and N. Terzi, in ProceeChrtgs of the Conference or(
ElectrorIic and ionic Properties of Alkali HaHdes, edited by R.
Fieschi and G. Spinolo (Gruppo Nazionale di Struttura della
Materia, Istituto di Fisica dell Universita, Milan, Italy, 1966).
See also Y. Toyozawa, M. Inoue, T. Inui, M. Okazaki, and E.
Hanamura, J. Phys. Soc. Japan 21, Suppl. 133 (1966).

(f(o (o 2e (kl( c((os)

X0((o.,;—(o) 0((o—oo. ,;-r), (39)

where 0((o) is the Heaviside step function. Lighthill's
tables" tell us that, for analytic critical points, every
term of (39) behaves asymptotically either as
t '(' expL —i(o...t] or t sts expL —i(o, , ;t], depending upon
whether (n

~
q, , ;,s) WO or (n

~ q, ;,s) =0. q, „is the critical
point wave vector in the Brillouin zone. Negative
powers of a higher order occur if nonanalytic critical
points are present. By expanding expL((o, (0; t)] 1 in-
powers of go,(0; t), one recognizes that the lowest-order
discontinuities that can appear in I,(Q) are those shown
in Figs. 1 and 2, respectively. These types of dis-
continuities come essentially from the one-phonon
process.

It is worth noticing that peaks and critical points of
p '((o') Lor tbo((os)] do not occur at the same frequency
and apparently are not closely related to one another.
We emphasize that the most markedly vibrational
structure in I,(Q) comes from the possible peaks of
to '(&o') rather than from the critical points. When one
or more well-pronounced local (pseudolocal) modes
occur, p ((os) is, however, dominated by the local
(pseudolocal) mode contribution. In this case and
within experimental accuracy, the Fourier transform
of exp/go, (0; t) 1] is expected. to—behave as a smooth
function.

As regards the discontinuities due to the quadratic
interaction, we have studied the critical points of the
two-phonon density of states. The frequency at which
such points are expected is the sum or the difference of
two critical-point frequencies of the one-phonon
projected density of appropriate symmetry. It is not
worthwhile to enter into further details, because the
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f'Sq/&g g 0

CU P(~ )

(Sq/gp 0

m'

3

up ri expL —S+p(t) j—exp —ikey "l1—
B't'

(40)
8 ln2

I.et us assume, first, that no local (pseudolocal) modes
with appropriate symmetry occur. In such a case, p(1)
is well behaved to in6nity, i.e., it does not display any
oscillating term as t —+&~ and goes to zero faster
than t '. Furthermore, at short times, it is expected to
display an oscillatory behavior with a maximum ampli-
tude at t=0, where tp(0) =S. When S is much higher
than unity, ReLp(1) —Sj reaches large negative values,
quite rapidly as t increases from 0.

The short-time approximation can then be employed
for I(1). We have

cu = Q -Q'„g

FIG. 2. Analytic critical points of ca 'p (a&') versus co: (a) when
(sq ~n) WO, and (b) when (sq ~n) =O. m and ra' denote absolute and
relative minima, respectively.

intensity of this structure is expected to be very weak.
We only mention that the behavior of the analytical
critical points of the unperturbed two-phonon projected
density of states is very similar to that shown in
Figs. 1(a), 1(b), 2(a), and 2(b).

From the behavior of the integrand in Eq. (39) in the
low-frequency region, it is possible to give some predic-
tions of the shape of the band near 0„„the zero-phonon-
line frequency. For high-symmetry centers and short-
range interactions, p „'(r0') behaves as oi" near ro=O
because (s,q = 0 In, )=0. Because of the factor o& ', which
appears in the integrand (39), the sideband of the zero-
phonon line is expected to start from 0„,with a linear
behavior. For low-symmetry centers and for a dipole
field of force, it is instead (fI8(res —I.) I f)co ' that be-
haves as co' near co=0. Thus the sideband of the zero-
phonon line is, in such a case, expected to start from
0„,with an ~' behavior. '

III. CONFIGURATION-DIAGRAM DESCRIPTION

The starting point of the conhguration-diagram
description is the analysis of the way the energy b,O&'),

which the many-phonon process contributes to the pure
electronic energy AO„„on the average, is distributed in
frequency. '~s4 ' We show that as long as S&)1 (we are
concerned only with peak frequency 0 and half-width
II of the band), the exact expression for I(Q) is reason-
ably consistent with a configuration-diagram descrip-
tion. However, particular care must be taken in dealing
with this diagram when local or pseudolocal modes occur.

"D. L. Dexter, in Sol@ State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 6, p. 353."J.J. Markham, Rev. Mod. Phys. 31, 956 (1959).

22 W. B.Fowler and D. L. Dexter, Phys. Rev. 128, 2154 (1962)."C. C. Klick, D. H. Patterson, and R. S. Knox, Phys. Rev.
133, 1717 (1964).

'4 The conngurational diagram is usually introduced when a
local mode dominates the motion of the ions around the defects.

with peak frequency

0= Q„g+AQ&'&, (42)

~fl"'= (1/I ) 2- Z ' f- f-' &~ ~ 'p-1r''(~'), (43)

and half-width II= (8 ln2)'I'o given at T=0'K by

II'=(8»2)(1/«) Z. 2 ' f- f-' &~'p- ~''(~') (44)

This is just the Gaussian approximation. In the above
expression, we have put I see Eq. (A5)j
p- ''(~') = (j~ I

6(~'—L)
I
~j')

(juI (M/Mo)'"Ium)p „„(oi')
&& (m'n

I (M/M o)
'"

I rrj ')

where p (o~') denotes the projected density with the
old normalization Lsee Eq. (A17)j.The normalization
of p„,y'(tot) is simply 8,y.

Notice the new mass normalization of the forces, i.e.,
f~;= (grrIM ' sM—s" f) where f is the force with the
old normalization. Sy defining the weight function

2~p-'(~') =2~ Z ' p- ''(~')

8M 2oip~ (re )=%~8~ q

where e is the number of times the ath irr. rep. occurs
in the coefficients (i.e., f;) of the electron-phonon
interaction and 8 its dimension, we find it convenient
to introduce the frequency-dependent n-symmetry
displacement 6 (ce):

(~-( ))'=—0/ «'( ')) 2,; (f-,f-,'/I ')p- '( ') (46).
It turns out that the square of this n-symmetry displace-
ment is distributed in frequency according to the weight

Fourier inversion then leads straightforwardly to

I(n)= I (m) I
'(1/(2w)'"o) expL ——',(0—0)'/o') (41)
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FIG. 3. Continuum of vibrational states involved in the optic transition (absorption).

function 2&op '(co'), with a mean value

&(a.( )) ),„,= l~.„„l =2s.(2-0)

= (2/Ii) Z~~'

&&A f-'~ 'p- ''(~') (47)

&ol IQ. ,o„lslo)=—Z;;.Z, (inlA)&ol IQ, ,o, lslo)(Alnj')

=s E ~'Zi(J~IA)(Al~i')

dry 2cap '(re') = ,'n d, - (49)

In view of (43) and (46), we say that the continuum
phonons with symmetry n and frequency co, on the
average, give the contribution

AAQ &'&(te) =-'Ace(h (t0))' (4g)

to the energy of the optic transition, the e-symmetry
phonons themselves being described in frequency
according to the weight function 2c0p '(ce'). In order to
6nd the connection with the configuration diagram, we
consider the mean square displacement of the 0,-

symmetry projected configurational coordinate Q .
At T=O K

where lo) denotes the vacuum-phonon state for the
initial electronic level.

Keeping Eq. (45) in mind, Eq. (49) can be interpreted
as though the projected mean square displacement of
any of the e d o.-symmetry phonons of frequency co

were ts. Furthermore, Kq. (48) tells us that, for every
frequency to, the energy ArM tti(te) contributed by the
n-symmetry phonons is just the intercept on the
ordinate axis of the adiabatic energy function

s„(te; Q„)=AQ„,+-',AteLQ. —6 ((0)1', (50)

once the zero-phonon energy is divided out. ~ plays the
role of a continuous parameter. At 7=0 K the projected
configurational coordinate Q has a standard deviation
ao. from Q =0 equal to

(5l)

If this standard deviation is projected onto the adiabatic
energy function Eq. (50) (see Figs. 3 and 4), and if
afterwards the corresponding standard deviation for the
energy is first squared and then averaged with the help
of the weight function Eq. (45), it is easy to verify that
the resulting expression gives exactly the rigorous ex-
pression Eq. (44). This is only to say that, for S&&1, the
o.-symmetry phonons of diRerent frequency enter the
many-phonon process as statistically independent en-
tities. However, in order to 6nd consistency with
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(Q„)

, ekE

Fxo. 4. Con6gu rational diagram
(absorption) in the absence of local
and pseudolocal modes. ego(Q ) and
s '(Q,) denote adiabatic energy func-
tions. r, (Q ) denotes a hypothetic
adiabatic energy function for the
polarized ground state. It might occur
for "intermediate bonding. " The
difFerence between the minima of
e s(Q ) and ~, (Q ) would appear as a
stored-energy term in the Stokes shift
between absorption and emission
bands.

Stof.ed Energy

a, ek

Eq. (44) we must average the square of the energy
standard deviation and not the standard deviation
itself. The situation is shown in Fig. 3.We have reported
on the abscissa the projected configuration coordinate
Q . A continuum of vibrational states of n symmetry
exists for both electronic states g and I; they correspond
to the in6nite set of parabolas whose curvature ranges
from co=0 to the maximum au=co~. We stress that
AQ„,=A(Q, a+60&'&) denotes here the energy of the
zero-phonon line. The AQ, ' is the energy of the pure
electronic transition. Let us consider the upper-state
parabola, which corresponds to a given vibrational
frequency ~; apart from the energy of the zero-phonon
line, it crosses the ordinate axis exactly at the point
srrgce(h (ro))s. We may say that the continuum-phonon
process corresponds to the superposition of all the
vertical transitions that start at the origin of the
con6gurational diagram and reach every single parabola
embedded in the upper-state continuum; this continuum
behaves as if the parabolas were distributed according
to the weight function of Eq. (45).

The zero-phonon transition enters the present
description as a "tunneling" between the phonon
vacuums of ground and upper state. Ke can explain
the dispersion in frequency associated with the optic
transition by the following procedure.

Define an effective vibrational frequency by

ros(h (ro))s2(ep '((os)da&

(~ ( ))2 p ( )iE =( ) '« ~ (52)

Thus, in view of Eqs. (44) and (4'7), we can write H s

in the usual form:

H '=(8 ln2)(ro ff)sS (T 0).
The last equality in (52) defines the average operation
(. ) ~a.&,.l. Equation (52) gives unambiguously the
wanted definition of the e6ective vibrational frequency.
A di8erent co,,«occurs for phonons of different sym-
metry. The weight function 6 '(ro) p '(&e'), entering the
definition of ~,,«, represents the combined eBect of the
host-lattice dynamics and electron-phonon interaction.
We can put the configurational diagram of Fig. 3 into
a more familiar form. For the sake of simplicity, we
consider a system of two nondegenerate electron levels.
From the upper-state vibrational continuum of Fig. 4,
we select a suitable parabola and an appropriate fre-
quency dispersion with the purpose of simulating the
rr-symmetry continuum. We characterize this parabola
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(. )'=p (,. )'(s./s),
I
~ «I = L2S(T-0)3'"

(55)

a single diagram can be employed for most practical
uses.

We assume now that a O.-syrrnnetry local mode of
frequency co z occurs in the imperfect-lattice dynamics.
Figure 5 shows the configuration diagram for such a
case. With respect to h, ,«as previously introduced,
3 g retains now a microscopic meaning. This fact
prevents us the use of this configuration diagram in the
usual way. The p (o)') splits into local- and continuum-
mode terms p ~(o)') and p e(o)o), respectively. However,
it may happen that the normalization of p ~((o') is very
close to unity and, at the same time, the electron-phonon

by the effective vibrational frequency (o,,«, Eq. (52),
and by the effective n-symmetry displacement 6 ff,
Eq. (47). Analogously, the ground-state vibrational
continuum of a symmetry is simulated by a single
parabola starting at the origin of the configurational
diagram, with the same effective frequency co, ff as
that of the upper state, and without dispersion.

Usually, the frequency dispersion associated with the
many-phonon process is deduced from the configura-
tion diagram by projecting the ground-state standard
deviation oo of the configuration coordinate Q at
thermal equilibrium, upon the upper-state parabola.
Let B ' be the contribution to the halfwidth of the
absorption band deduced by this graphical method. An
inspection of both Fig. 4 and Eqs. (50) and (51) tells us
that

(II-')'=o(8»2)(~')-(o.o..)(~-')-(..) (54)
=(8 in2)(o) «)'S (T 0).

We denoted by av(p ') the averaging operation, which
appears in Eq. (47). (H, ')' looks the same as II '
PEq. (53)j.This result is not surprising as the Gaussian
approximation is equivalent to treating the many-
phonon process as a classical process. In principle, we
should consider a diagram for each symmetry; however,
by defining

interaction involves essentially the O.-symmetry
phonons. In such a case, the distribution function I,(Q)
for the continuum-phonori process is expected to display
a fairly well resolved zero-phonon line, even when S&&1.
The local modes' parabolas in Fig. 5 may then dominate
the process so that the discrete nature at the quantum
levels for the local mode has to be taken into considera-
tion. Furthermore, it is not clear how to define the
halfwidth of the whole band, because the band is
characterized by the peaks at one, two, etc., local
phonons, for which the intensity law is e e&(sz)"/n! ~

where

and

~-o(@)=~o+Zx ~),(&),+4+),

K(o gg o

(56)

Here, 5K,',5K,,' are the matrix elements of the dipole
moment with respect to rigid-lattice wave functions

~P„), ~P,), ~@,); and (o '—o;o) is the difference in energy
between the rigid-lattice electronic levels I and i.

When Eqs. (56) are inserted in the general expression
for the characteristic function I(t) of the absorption
band, after some trivial manipulations, one obtains

IV. ELECTRIC-DIPOLE FORCED PROCESS

As stated in Sec. I, the "nondiagonal" part of the
electron-phonon interaction leads to a mixing of the
electron wave functions. This is reQected in the absorp-
tion (emission) band by the electric-dipole transitions
forced by phonons.

To simplify, let us assume that g is a pure (i.e., un-
mixed) electronic state; in the framework of the
adiabatic principle, we may account for the wave-
function mixing by writing the matrix element of the
dipole moment as

I(t) = exp) —S(T)—iQ„,t+ &p(T; t)j( )5Eo) '+P), (ORoOR)h), *+cc )
+Q), ~BZ), ~'P(ez((o))+1)e '""'+N&(o)))e'"&'g+g), (ORPR),*h&+c.c.)Ln&((d))e'") '—(e&((o))+1)e '")'j

+g)),. 5R)h),*OR),.h),.*L1—(«~((o))+1)e—'"~'+«r(o))) e' ~')L1—(«r((d), )+1)e '"& '+«z (o)),.)e'"~'g} . (57)

Notice that, while 5' involves the nondiagonal field of
force Eq. (5), t4, S(T) and p(T; t) are again related to
the diagonal part of the electron-phonon interaction.

Let be 5K„,'=0. The structure of the electric-dipole
forced-absorption (emission) band depends, in a direct
way, on the symmetry of the defect. A particularly
simple situation occurs when the defect possesses cubic
symmetry. Because the normal modes have different
parity in hz and 5K&, respectively, all the terms that
involve mixed products hq5Kq* or hq*5Rq drop out in

expression (57).When the force-field Eq. (5) is analyzed
according to the symmetry vectors (t((~nj), we are left
with the simple form

I(t) = expL —S(T)—iQ„ot+ q (T; t)jQ,~„[OR;oo [
'

&&[( .( )+1) -'"'+ .( ) *"'j .'( ') (»)
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FIG. 5. Con6gurational diagram
in the presence of both continuum
and local modes. Notice that if
Jq"2&op +(M'lou= t the continuum-
modes parabola disappears.

X, 'J
As in Sec. II, the f;"' in Eq. (58) denotes the mass-
normalized force. We must, of course, project I f ')
onto II;uj) or on both II&nj) and III;nj), according
to the range of the field of force. It turns out that the
distribution function I(Q) of the absorption band is
the convolution of a many-phonon process with a
one-phonon process the many-phonon process is
generated by the diagonal part of the electron-phonon
interaction, while the one-phonon process is generated
by the nondiagonal part. The most important feature
is that no zero-phonon line results, and the lowest
process is a one-phonon term.

The oscillator strength is found to be

X der p;; (ce') coth(h(u/2k' T) . (59)

Note that it depends explicitly on temperature. At
T O'K, the oscillator strength associated with the one-
phonon term is easily seen to be equal to exp/ —5(0)$
multiplied by the oscillator strength of the whole
phonon-forced band.

For low-symmetry centers, the above statements
cannot be applied, and the expression in curly brackets
on the right-hand side of Eq. (57) may also contain
time-independent terms. This fact is reRected on the
absorption (emission) band by a possible persistence of
the zero-phonon line. Also multiple-phonon lines may,
in principle, occur; it depends on the symmetry prop-

erties of the electron wavefunctions involved in the
mixing of the upper state.

In dealing with the phonon-forced transitions, a
particular role may be played by the polarization of
light. The electric-dipole moment transforms, for
centers of symmetry lower than the cubic, according to
more than a single irr. rep. Therefore, some transitions
which are dipole-allowed for unpolarized light may
become dipole-forbidden for suitable polarization of
light. In such a case, the transition can be electric-dipole
forced by the phonons, and the above statements apply
straightforwardly.

V. COMPARISON VfITH EXPERIMENTAL DATA

A. Tightly Bound Electrons

As an example of tightly bound electrons, we consider
the rare-earth (R.E.) ions in alkali halides. We choose
Sm +. This ion gives rise to several absorption-emission
bands, two of which show a peculiar structure. The
former band is detected in emission, and corresponds
to the intracon6gurational transition 'Do(At) -+r&0(&t)
of the ion. The latter is usually detected in absorption,
and corresponds instead to the intraconfigurational
transition (4f)' +(4f)'5d Their H—uang-R. hys param-
eters, as experimentally observed for Sm'+ in KC1 at
T~10'K, are about S=1 and 5=5, respectively. "As
a positive-ion vacancy associates with the R.E. ion at
low temperature, both the intraconfigurational and the
interconfigurational transitions become dipole-allowed

"G. Baldini and M. Guzzi (private communication).
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TABLE II. Pseudolocal-mode frequencies, co+, & and cog, g,
for Sm'+ in NaCl, KBr, and RbCl at 5'K.

NaCl
KBr
R13C1

(RJt. t)exp
(10"sec ')

0 97b
0.74b
0.73b

(~z, 2)e p
(10"sec ')

4.1b

2 85b
3.63b

(htB, 1)th
(10"sec ')

0.95
0.7
0.7

1.5
1.3
1.1

4& -symrnehl y
pliny

In units of perfect lattice force constant. See G. Benedek and G. F.
Nardelli, Phys. Rev. 155, 1004 (1967).

b From Ref, 7.

II
IIIII

because of the low-symmetry crystal field. The vibra-
tional structures of these bands were recently considered
by Bron and Wagner. ' However, these authors did not
present, in our opinion, a satisfactory explanation of
the marked difference between the structure observed
in the interconfigurational and the intraconfigurational
transitions.

The lattice dynamics of the R.E. ion-vacancy system
in alkali halides has been considered by the above
authors, therefore we do not report any details of it.
Ke simply remark that to neglect the off-diagonal
matrix elements of the unperturbed phonon propagator
is a crude approximation, for these elements are respon-
sible for the effects that the positive ion vacancy induces
in the system, in the low-frequency region. We have
considered these eGects by using the usual device":
adding a fictitious particle to the lattice and evaluating
the spectral density with this particle included. This
particle is then decoupled from the lattice by letting its
mass go to in6nity. In such a way, the three additional
degrees of freedom that we have added to our system
are reflected on the frequency spectrum by a threefold
degenerate resonant mode at zero frequency, and can
be divided out. The possible pseudolocal or local modes
involved in the transition display A& symmetry; this
fact corresponds to considering the augmented
perturbation

(X/M+)+ ao' —)t/(M+M ) '" 0
Xg, (co')=——)t/(M~ ) '" )t/M 0 (60)

~0 ~Q 6 CO

in the defect model adopted by Bron and Wagner.
e= —(M++—M+)/M+ is the fractional change of mass
due to the (R.E.) ion, and )t the change of force constant.
e'co' accounts for the eftects of the positive-ion vacancy
in the limit e' —+ —~. The perturbed projected density
of states p~, (~') splits as

px, (~') =pz, (~')+px, " (cv'), (61)

where p~,(~') is a 2X2 matrix in the space of the first
two symmetry coordinates, and p~, '"&(co')=(1/I c'I)g(co')
is a 1)(1 matrix in the space of the last symmetry
coordinate. The factor (1/I e'I) comes from the normali-
zation property of the projected densities. For SiTP+,

"G. I'. Nardelli and N, Tyttamanzi, Phys. Rev. 126, 1283
(19Q),

[A, pf)

FIG. 6. Relative position of the low- and high-frequency resonant
modes with respect to the 21-symmetry component of the force.

(1A I )

(»~ iI»)
(M+/M )'I2 low-freq. mode

—(M~/M ) '", high-freq. mode,
(62)

where (j,AiIv&), j=1,2, are the components of the
resonant vector in the 2)&2 subspace (see Appendix).
The situation is shown in Fig. 6.

As regards the 6eld of force, it is known' that the
hD0(A1) h Pp(Ai) intraconfigurational transition gives
rise essentially to a dipole field, say It &+, while on the
other hand the (4f)'h(4f)'Sd interconfigurational
transition gives rise to both dipole and quadrupole
fields of force, i.e., E'++E&@&, the former being in
the region spanned by X(co~), two orders of magnitude
smaller than the latter. In this region, these 6elds
display Ai symmetry; furthermore, both E&+ and E&@'

lie in the (Ai, 2) direction, which is quite different from

p~, (~') turns out to have an area of the order of
M+/Ms t+, coming from the normalization conditions
(A17), and furthermore its resonant part was found to
be a considerable fraction of this same area.

The eigenvector equation of the resonant modes of
3 i symmetry is considered in the above 2)&2 subspace.
The result is shown in Fig. 6:

I Ai, 1) and
I Ai, 2) are the

involved symmetry vectors (see Appendix); Ivzi) and

I v») are the low-frequency and high-frequency
resonant vectors, respectively. In qualitative accordance
with Wagner's prediction, we find that, having once
taken the limit e'~ —cc, at least two resonances occur
for fairly large and positive X. The low-frequency
resonance is, however, considerably lowered by the
positive-ion vacancy. The comparison between experi-
mental and theoretical frequencies is shown in Table II.
After some calculations, we further obtain
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those of both the low-frequency and the high-frequency
resonant eigenvectors LI (re x) and

I
xr)x, s), respectively)

in those crystals for which M~)M' (see Fig. 6). Then,
only the interconlgurational transition is able to
activate, through the quadrupole field E(o), the two
localized modes in region (I).

A particular situation occurs for the 'Dp(A x)~'Fp(A x)
transition. The off-direction situation at short range,
together with the peculiar behavior of the dipole field
considered far from the defect, make the unperturbed
phonons enter mainly the expression for pr(T; t). This
explains the main difference between the 'Dp(Ax)-+
Fp(A)) and the (4f)'~ (4f)'Sd transitions. Far from

the defect, the dipole Geld vanishes when averaged over
spherical shells, so we can write

lim (fI()((o'—I.p—h((o'))
I f)

= (fx I pa ((p') I fx)+ (fxx I p (o) ) I fxx) ~ (63)

Furthermore, p~, (or') splits according to Eq. (A13). For
both low- and high-frequency resonances,

I f&,) falls
noticeably in oB-direction; the short-range part of the
dipole field is therefore unable to activate the resonant
modes. This permits us to consider the continuum-
phonon part only, pz, '((o'), in the first term on the
right-hand side of Eq. (63). Without error, we can
further replace pz, '((o') by pxp((o') and write

lxm (fI&(~'—&o—~(~')) If)=(fIt)'(~' —~o) If)

point symmetry. No zero-phonon lines are then expected
in such transitions, since the mixed terms BRqdq in
Eq. (57) vanish for symmetry reasons. In the particular
case of transition'Dp(A), ) -+ Fo(A(o), only the exchange
interaction, which is indeed very weak, can contribute
to the "diagonal" part of the electron-phonon inter-
action; therefore, expL —S+(o(t)j 1 and no many-
phonon process occurs. Furthermore, the Geld of force
entering the "nondiagonal" part of the electron-phonon
interaction is essentially of dipole type. By analogy with
the 'Dp(A))-+ Fp(A)) transition in the alkali halides,
we can then conclude that the phonon forced transition
Dp(A(o) ~ Fp(A(o) in both CaFs and SrC1, essentially

display the vibrational structures of the unperturbed
spectral density of the host lattice.

A different situation is expected for the 'Do —+'J 2

electric dipole forced transitions of Sm'+ in ZnS
crystals. As the point group of this crystal (0 cubic
group) does not include the inversion symmetry, oDp

transforms according to the A~ irr. rep. while ~F2 splits
into Fs(E) and 'Fs(Ts). The "nondiagonal" part of the
electron-phonon interaction mixes xFx(Tx) with either
'Fs(E) or xFs(Ts). This allows the transition from
'Dp(A(). For transition 'Dp(A))~ Fs(E), again the
zero-phonon line does not occur, because 6},and BRq in
Eq. (57) involve phonons of symmetry Ax, As, F., and
TI, T2, respectively. However, for the transition
'Do(A() —& 'Fs(T2), phonons of symmetry F., Tx and Ts
occur in both Aq and Sly), so that the zero-phonon line is
expected there. A similar situation should appear in
crystals displaying T& point symmetry.

Xb((o' —Lp(q;««'))Lp ((I «'+) d

=Z &If pI')-"p'(~'). (64)
B. F-Center

We recall S(T)= &p(T; t=0). F—rom (17), one obtains

(If"I
') p(")-(~~')'-(0")' (66)

where or&~ is the acoustic frequency as given by the pure
Coulomb interaction in the host lattice. Equation (66)
explains the low-frequency discrepancy observed be-
tween the spectral density of the unperturbed lattice
and the one-phonon side band of the 'Dp(A()~"Fp(A))
transition.

Finally, we add some remarks on the electric dipole
forced transitions of Sm+ in CaF2 and SrC1„. 2s y

these crystals, Sm'+ does not affect the host-crystal OI,

'7 J. D. Axe and P. P. Sorokin, Phys. Rev. 180, 945 (1963)."D.L, Wood srxd W. Kaiser, Phys. Rev. 126, 2079 (1962).

We have made use of Eqs. (7) and (8), and we have put

f.o—= (o,elf)=(" l~p'(a) Id)~+'" (65)

For the other symbols see the Appendix. The one-
phonon component of I(Q) is then expected to display
vibrational structures closely related to the spectral
density of the unperturbed host lattice. At low fre-
quency (i.e., near the zero-phonon line), only the
acoustic branches (i.e., s=A) contribute to Eq. (64),
so that Q(T) = Q oo+AQ(')+AQ(s), (68)

QQ(r)~ Q (+) Qxt, f f
h

d~( 'p )r'(or') (69)

where AQ(') is given in (20), and

~s(T) =Lff(x)(T)js+.Ljy(s)(T) js (70)

Xp rr'((o') coth-, (71)
2EggT

Ao)

X(d—'p, ;.(or') coth —, (67)
2E~T

while in Gaussian approximation, the peak position
Q(T) and halfwidth H(T) of the absorption band turn
out to be, up to a quadratic coupling approximation,
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TABLE III. Theoretical values of AQ&') and b,Q&@ for F center
absorption band at T=5'K. AO„,' is the energy of the pure elec-
tronic transition as deduced by subtracting b,Q(') and b,Q(') at
T=5'K from Q, „.

Aht&u& AAQ&'&gh AQ, ~p AQ~g'=AQ. —A(nQ&" +at&&'&)

(eV) (eV) (eV) (eV)

The labels t or r on E, mean tetragonal or rhombic,
respectively. c;, and c;, denote local and bulk elastic
constants, respectively. "po is the equilibrium distance
between the F-center lattice site and its nearest neighbors
(n.n.) in the ground-state relaxed configuration. M, S,
and 6 are related by

NaCl 0.6' —0.05 2.77'
KCl 0 3a 0 02b 2 31o

2.22
2.03

M= 3o'1, = 66,3„and 6= 0'5

a From Eq. (69) in the text.
b From Eq. (20} in the text.
o J. J. Markham and J. D. Konitzer, J. Chem. Phys. 32, 843 (1960);

34, 1936 (1961).

(H&'&(T)j'= (-,'ln2) da& do&'

&( Tr(A &p(o&' )At &p((o&—o&') )}g(o&—o&')

+Tr(A&'&p((o&+o&')')A'p(o&")) e(o&+o&')

coth — coth --- —1

S
fAig= (oil+2&is)p fzq, i= (&ll cis) p

rp3E '"
(73)

fr„= (c44), &gr= C11 &12 ~

FpM "'
"G. Senedek and K. Mulazzi (to be published). See also E.

Mulazzi and N. Terzi, J. Phys. Radium 28, C4-49 (1967).

(72)

The superscript (+) on the summation in the right-
hand side of Eqs. (67), (69), and (71) means summation
over the even irr. reps. of the defect point group.

We do not go into details of the calculations of the
above quantities as they are reported elsewhere in
connection with infrared absorption and Raman scat-
tering, 29 with a detailed analysis of the ground-state
vibrational properties of the F center. We simply remark
that the forces f; can be deduced from the hydrostatic,
trigonal, and tetragonal stress coeS.cients M, S, and 6
of the absorption band. ""Insofar as quadratic and
higher-order terms of the electron-phonon interaction
can be disregarded, the frequency shift of the band peak,
under the action of an external stress, just corresponds
to the energy shift of the zero-phonon line. It turns out
that the stress coeKcients, as usually measured,
represent the derivative of the hole-electron pair energy
with respect to the applied strain or, apart from some
numerical factor, exactly the forces in Eq. (3) for the
symmetries involved. We have simply

to the Schnatterly stress coeKcients 0',1, 0',a„and 8&,."
The evaluated halfwidth and Huang-Rhys parameter'9
are found to be in good agreement with the experi-
mental data. %e report here only the results on the
phonon contribution to the peak energy in NaCl and
KC1 crystals (see Tables III and IV). The AQ&s& has
been evaluated with the help of Eqs. (10) and (20),
assuming the values reported in Ref. 31 for the electron
charge redistribution during the s-+ p transition. We
assumed that AQ&'& in Eq. (69) depends on temperature
essentially through f;, while the main temperature
variation of EQ&'& comes from coth(&&to&, ff/2E»2') ~ Fioill
Table III, it appears that AQ&') is a small fraction of
AQ(') at T=5 K; however, it depends on T more than
EQt'& (Table IV). We find that both DQ&t& and QQ&'&

give a contribution to the temperature shift of the peak
position which is of the same order of magnitude. They
account for the temperature shift as actually observed.
This fact suggests that Q,s in Eq. (68) does not depend
appreciably on temperature. It is worth noticing that
AQ„,' represents the difference of energy between the
minimum of the electronic upper state in the "dis-
placed" configuration Li.e., e (6&,)+AAQ&'&1 and the
minimum of the ground state in the relaxed (equi-
librium) configuration Pi.e., e,e(0)g (see, however,
Sec. VI).

A peculiar behavior is expected for the temperature
shift when the temperature variations of AQ&') and
AQ&') di6er in sign. This could explain the anomalies
that the temperature shift displays in some centers,
such as certain aggregates of F centers. "

VL CONCLUSIONS AND FINAL REMARKS

In the present analysis, we have chosen as coupling
constants of the electron-phonon interaction the set of
mass-normalized forces f; which the "hole-electron
pair" exerts on the surrounding crystal lattice. We can
then foresee the most important features of the absorp-
tion (emission) band, without performing any explicit
calculations. For instance, it is possible to foresee well-
marked vibrational structures for all the optic transi-
tions that occur between tight-bound or atomic-like
wave functions, as is the case of rare-earth ions,
molecular centers, and transition metals in alkali and
alkaline-earth halides; it is further possible to explain

'0 G. Benedek and G. F. Nardelli, Phys. Rev. 167, 837 (1968).
s' G. Iadonisi and B.Preziosi, Nuovo Cimento 48, 92 (1967)."Y. Farge, G. Toulouse, and M, Lambert, J. Phys. Radium

28, C4-66 (1967).
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TABLE IV. Vibrational contributions, DQ&'& (T) and nO&'&(T), to the peak position
of the F-center absorption band at di6erent temperatures.

&&[nB "(T)—LH&" (5'K)/th A[nQ' (T)—AQ'"(5'K) jth it[ Q(T) —6 ( 'K) jth
{eV) (eV) (e~)

it[(T)ti-Q(5'K) j.„
(e~)

KC1

T= 180'K

I'= 300'K

T=200'K

T=300'K

—2.5X10-2

—5X10 '

—3X10 '

—4.8X10 '

—1.5X10 '

—4X10-2

—2X10 '
—3.2X10-~

—4X10 '

—9X10 '

—5X10-'

—8X10-2

—4.5X10-"
—9.9X10 "
—5.2X10 "
—8.7X10 "

& J. J. Markham and J. K. I~onitzer, J. Chem. Phys. 32, 843 (1960); 34, 1936 (1961).

why aggregate of defects, such E,E,M centers in
alkali halides, and, perhaps, some trapped excitons may
faB into an intermediate case.

It may be interesting to note that most of the con-
siderations we have given the absorption (emission)
transition can be easily applied to the Raman activity
of the imperfect, or perfect, crystals. Essentially, we
must replace the forces by the electronic polarizability
tensors E t&(t, &t) in the definition of the phonon-structure
function Eq. (16)," and keep in mind that, as the
Raman scattering involves only virtual electronic
transitions, the phonon-structure function does not
appear through an exponential factor.

In our description, zero- and multiple-phonon lines
are formally treated as 8 functions. Actually, the
zero-phonon line behaves essentially as a Lorentzian
whose halfwidth, as limited by the quadratic electron-
phonon interaction, is

AGO

XTr(h"p(o&')h'p. (o&') } co.th — —1
2EgT

Of course, we should include also the contributions from
the lifetime of the electronic excited state and from
anharmonicity. Since every multiple-phonon line is
generated by the zero-phonon line of the continuum-
phonon process Lsee Eqs. (28) and (29)j, every line is
expected to display Lorentzian shape, with practically
the same halfwidth. The central question is that of the
reliability of treating the possible pseudolocal-mode by
6 functions. While this is quite valid for local modes as
well as for exceptionally sharp resonances (mainly in
the low-acoustic region), it seems to us that ill-defined
resonances are more suitably treated as defect-induced
structures in the continuum part )see p '(o&') in the
textj of the projected density of states. In such a case
they should appear as less sharp vibrational structure
of the continuum-phonon distribution function I,(Q),
and, in general, they then do not- display I.orentzian
shape. Furthermore, they should not display an
accentuated multiple-phonon character.

As to the effects of temperature, a 6nite temperature
is not solely responsible for the broadening of the vibra-
tional structures (if any). Indeed, when the temperature
is not extremely low, Stokes as well as anti-Stokes lines
should be expected in the absorption band. Recent
observations seem to account for such lines. "

Kith regard to the configuration diagram, we have
shown that this description does not allow for any de-
tailed interpretation of the many-phonon process
beyond the 6rst and second moments of the distribution
function I(Q) of the absorption (emission) band. In
order to account, at least qualitatively, for both the
asymmetry and the exponential tail of the band, we
must consider the short-time expansion of p(T;t) up to
the third order. In this way, the exponential tail arises
as result of a crystal-field effect on the electron wave
function in the "displaced" (not "relaxed" )
configuration.

In the use of the con6guration diagram, a limitation
exists when a local (pseudolocal) mode of allowed

symmetry exists. For this mode, the projected normal
coordinate Q & is essentially the exact normal coordi-
nate Q, if the perturbed projected density of states is
very small in practically the whole frequency range with
the exception of a narrow interval around the resonance
frequency ~&. The diagram of Fig. 5 would lead to a
deceiving description of the many-phonon process, even
if S(0)))1.Indeed, Eq. (28) implies that, at low tem-
perature, the local mode may induce sharp and well

resolved multiple-phonon lines.
We add some remarks on the Stokes shift between

absorption and emission bands of the Ii center. On the
plot of Fig. 4 we have reported the usual adiabatic
energy functions e '(Q ) and e„e(Q ), as well as a
hypothetic energy function e, (Q ). The distinction
between e,s(Q ) and e,o(Q„) concerns the polarization
field of the crystal lattice. "

The polo, rization splits as

p,.i——p.i+p,

"Of course, we should consider the Jahn-Teller effect (i.e., the
sects due to the "nondiagonal" part of the dectron-phonon
interaction) if the electronic quantum state is degenerate. This
later e6'gct has been extensively consider|;d in Refs. 22 and 23.
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where P is the infrared component of the polarization
field. Both P,i and P enter the definition of the electronic
excitation~; however, the time scale on which they
interact with the electron are quite different, the elec-
tronic component P,i operating on the time scale of the
fast electrons. P, ~ enters straightforwardly into the
definition of the adiabatic energy function of the elec-
tronic upper state (the so-called" electronic polaron")";
P,i should instead be excluded from the definition of
the ground state, as there the electron behaves as a
fairly fast electron. P,i must be determined self-con-
sistently with respect to the quantum state of the
electron. Then, it may happen that a modified ground
level, with a corresponding adiabatic energy function
eg(Q ), exists in the electronically polarized, lattice. It
turns out that the Stokes shift, usually measured as
the energy difference between peak positions of absorp-
tion and emission bands, splits into two terms: a purely
Stokes term and a stored-energy term. The former
corresponds to the energy dissipated by Stokes phonons
and amounts to

03

02

F center

ALAQ, ~'&+ 60, &'&]ykplQ„b'"+60.b"']
)see Eqs. (20) and (69)]. The latter represents the
amount of energy involved in the electronic polarization
of the host lattice (see also Ref. 36). This stored energy
should be given by A)(Q„,s),b—(0,„'), ], i.e., by the
difFerence in energy between the pure electronic transi-
tions (essentially the zero-phonon lines, when resolved)
for absorption and emission. It seems to us that this
term, i.e., the Stokes shift as corrected by removal of the
purely Stokes term, contains the most relevant informa-
tion on the lattice polarizability. When we subtract
(add) the quantity BQ,b&"+60,~&" (B,Q,~&'&+60,~is&)

from (to) the peak frequency 0 of the absorption
(emission), we find that (0„,),b is, in fact, not equal
to (0, '), . Furthermore, when h[(0„,~),b—(0,„'), ],
thus deduced, is plotted against 1/e=1/e„—1/es, a
fairly good linear relationship is achieved (see Fig. 7).
In I'ig. 7 we have considered only the alkali halides
for which the F center absorption (emission) band" dis-
plays a fairly good Gaussian shape, and for which the
Jahn-Teller effect is probably negligible. "In the evalua-
tion of 60&", the essential point is to use the relation-
ship that we found between the coupling constants f;
and hydrostatic, trigonal, and tetragonal stress co-
eKcients M, , and 6 of the absorption band.

With regard to electronic transitions in crystals
other than the transitions of a trapped electron, the
results of the present paper apply straightforwardly.

34 As we are considering optic transitions that fall quite far from
the infrared region, the optic electron is assumed to carry out the

uantum transition in a time interval which is extremely short on
t e time scale of the lattice dynamics."Y. Toyozawa, Progr. Theoret. Phys. (Kyoto) 12, 421 (1954);
H. Haken and W. Schottky, Z. Physik. Chem. 16, 218 (1958);
M. Frolich, Advan. Phys. 3, 325 (1954).

'6 W. B. Fowler, Phys. Rev. 135, A1725 (1964)."P. Podini and G. Spinolo (unpublished data)."P. R. Moran, Phys. Rev. 137, 1016 (1965).

0.&

FIG. 7. Self-energy term of tke P-band Stokes shift
versus 1/e = 1/e„—1/eo.

The exciton absorption is one such example, as the
exciton Hamiltonian in the center-of-mass system reads
quite similarly to the Hamiltonian for the phonon-
interacting hole-electron pair, which we considered in
dealing with trapped electrons. " 4' In this case, we
must, however, project the unperturbed density of
states onto the region of the crystal lattice on which the
exciton applies non-negligible forces. In order to
account for the exciton translational degree of freedom
we simply must consider a configuration diagram (see
Fig. 8) with one more axis, on which we plot the exciton
wavevector K. In this way, while the many-phonon
process is represented on the (e,Q ) plane, the phonon
assisted process, "4' i.e., the process that involves the
center-of-mass coordinate (wavevector conservation
q=K), is analyzed in the (e,K) plane. The coupling
constants for the latter process correspond to force 6eld
Eq. (5), where ~g„) represents now the center-of-zone
exciton and

~ P;) the exciton travelling with wavevector
K. For excitons in the alkali halides, the most relevant
plane seems to be the plane involving the projected
coordinate Q . Because of the large change that the
orbit radius of the electron undergoes during the exciton

"J.Herrnanson and J. C. Phillips, Phys. Rev. 150, 652 (1966)."G.D. Mahan, Phys. Rev. 145, 602 (1966)."R, S. Knox, in Solid Sta/e Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1963), Suppl. 5,
p. 146.

4s B. Segall, Phys. Rev. 150, 734 (1966).
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Pre. 8. Con6gurational diagram
for the intrinsic exciton transition
(absorption). The origin represents
the vacuum state of the exciton.

~ah, el'I'

transition, the 6rst exciton peak is expected to behave
quite similarly to the Ii band. Notice that the self-

trapping of the hole resulting from the lattice relaxation
would prevent the exciton from traveling through the
lattice. In semiconductors the situation is reversed and
the phonon assisted process! (e,K) plane) should play
the most relevant role. Generally the absorption band
is a convolution of a many-phonon process with a
phonon-assisted process.

An exciton trapped in a crystal imperfection probably
behaves as a weakly bound electron. The peculiar
properties of the imperfect lattice dynamics may then
appear in the absorption band as resolved structures.

The last remark concerns the absorption edge in
Perovskite-type crystals. In these crystals, the elec-
tronic excitations might induce a local instability of the
crystal lattice. The dielectric constant is very large,
and the orbit radius of the hole-electron pair is expected

to be considerably large. The lattice relaxation around
the electronic excitation might then lead to a sort of
exciton-coupled local lattice transformation, with the
net result of providing a well-oriented local electric
Geld. Since part of this process may occur during the
optic transition itself, a local electric 6eld4' could assist
the transition, giving rise to a sort of intrinsic Franz-
Keldish eBect. This would then account straight-
forwardly for the marked exponential edge, which the
absorption displays in these crystals.
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(L—~) 2)A=o (A1)

where cvz is the circular frequency and L, the dynamical
matrix. The matrix J. is related by

L(«, l'K') =Mg„'"4'(«, 1 K')M( „
=(.1 [M-»2aM-~&2[1'K') (A2)

to the force-constant matrix 4 of the imperfect lattice.
M2„ is the ion mass at the (lK) lattice site of the im-

perfect crystal (M in matrix notation); l labels E
primitive cells and ~ the ions within the primitive cell.
In writing the last equality in Eq. (A2), we introduced
the linear-vector-space notation, and denoted by
[lK,x) the basis vector, which corresponds one-to-one
to the x Cartesian component of the lattice displacement
from the (lK) th lattice site (lattice displacement
representation). In Eq. (A2), the Cartesian component
x was understood. We require these unit vectors to be
mutually orthogonal, so that we can represent the whole
set of lattice displacements by a vector Ipp) of this
space through the relation

APPENDIX: LATTICE DYNAMICS

In this Appendix, we analyze in detail the imperfect
lattice dynamics without any explicit reference to the
electron-phonon interaction; labels (g) or (N) are
therefore irrelevant.

With X, we label the normal imperfect lattice modes
including wavelike as well as local and pseudolocal
modes. They obey the usual equation

change 8M. A(002) reads

(Kl IA(~2) I
1'K')

=M„'»(Kl
I
(54 (gg—M) [

l'K')M„2~2. (A6)

Cp is the force-constant matrix of the perfect lattice.
In order to take advantage of defect symmetry

properties, we introduced a new basis in the linear
vector space. Let o. denote the irreducible representation
of the point group according to which symmetry
coordinates of the imperfect lattice transform. The
label I specifies the region of the linear vector space
spanned by A(&o2), and II denotes the remaining space.
Then, [I;nj) or [II;nj') represent, in region (I) or (II),
respectively, the symmetry vectors that transform
according to the nth irreducible representation (irr.
rep. ). j labels the linearly independent vectors of the
same irr. rep. [I;n j) and [II;nj) are normalized

according to

(j~ III ~j)=»' (j~ 11[1»'~j')=»'. (A7)

The perturbed projected density of states is defined
by'

& "(pp )=(jul&(~ Lp A(pp ))I&2 )
= —(1/2r) Im( ju I

(I Q'(&u2+i0—+)h(002)) . '

X bp(~2+i0+) [nj') . (AS)

We understood in Eq. (AS) either label I or II, which
can be restored according to which linear vector space
region we are considering. Similarly, the unperturbed
projected density reads

IN) =p)„N(„.[lK,x), (A3)
c- '(~') =(j~I ~(~'—Lo) I~j')

= —(1/~) Im(gn
I
gp(~2+i 0+)

I
~g') (A9)

where N~„, is the xth Cartesian component of the («) ion
displacement. The normal modes are assumed to satisfy
the usual orthonormality and closure conditions

Z~. 4*(«) 4 (lK)

=Pi. (p~I«) («IA)=(gIA, )=@,), , (A4a) (Kl[ gp(s) [1K')=(Kl[(s—Lp) '[1 K')

In the above expression, QP(ca2+i0+) =—(~2+i0 Lp) '—
denotes the unperturbed propagator or Green-function
matrix, which in the lattice-displacement representation
reads

P, g*(«)g'(1 K')

=Qg («Ig)(|lp, [
1'K') = (lK[l K )= 8) pb„,„I, (A4b)

where we have put @(«)—= («I fq), and we have denoted
by means of I the unit dyadic.

From Eqs. (A1) and (A2) results the following
relationship used in the text:

M („'»(«
I
L—co'I 1'K')M (. .'"

=M '"(lKI Lp+h. (a&') —cu'I l K')M '" (As)

Lp denotes the unperturbed dynamical matrix and M„
the mass of the ~th ion in the elementary cell of the
perfect crystal. (Mp in matrix notation). A(&o2) is the
frequency-dependent perturbation which includes the
change of force constants 54=—4 —4p as well as the mass

=—P, ,, (s—pt„2)—'a,.(K)e„~(K')

Xexp[ iq (x~—x~ )g, (A6)

where s=co2+iq is the complex squared frequency.

g stands for the wave vector inside the Brillouin zone
(B.Z.), s designates the vibrational branch; &op,

2 and

e„(K) are, respectively, the eigenvalues and eigenvectors
of the dynamical matrix Lp(q) in wave vector repre-
sentation. x~ is the Bravais lattice vector.

We are particularly interested in the properties of
the perturbed projected density of states for region (I).
If the irr. rep. n is contained singly in A(M ), we obtain

u-(~') = (AS')
P

0 (002)A (pt2) $2+ [ 2' 0(pp2)A (002)j2
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where A (oi') is the nth component of A(oi'), and where

p '(co') the Hilbert transform of p e(oi'), i.e.,

(A9')

Notice that the contribution to p (c0'), coming from
a single defect, is of the same magnitude as that coming
from the whole perfect lattice. This is because the
synunetry vectors are normalized to unity in subspace
(I), Lsee Eq. (A7) j, while the host-lattice normal modes
are normalized to unity in the whole crystal space, Lsee
Eq. (A3)7. When the irr. rep. rJ. appears more than one
time in A(o&'), the perturbed projected density of states
can be written in spectral representation as

(1)
p-(~')= —

I

—IIm Z- l~ -)

p-(~') —Z~ p-"(~') (A15)

p '(oi') does not have 5-type discontinuities and in fact
it represents the remainder of the perturbed projected
density of states resulting after both the local and the
pseudolocal modes have been separated. We call
p„'(vis) the projected density of states of the perturbed
vibrational continuum.

It is easy to verify that

X Iv g)8(oi' —oi ir')(v, ill. (A14)

A prime on p is(oi') means first-order derivative with
respect to ois. In the Eq. (A13) gz p ~(oi') denotes the
sum of all the 6-type terms coming from local and
pseudolocal modes of n symmetry; p '(oi') represents
the diRerence

«2~p- i"(~')= (j~ I
~j') = 3~~ (A16)where p (s) and

I
v ) are, respectively, the eigenvalues

and eigenvectors of g e(z)A„(oi') (see Refs. 44 and 45)
and A (ops) is given by

A „(oi')=(v „IA(oi')Ie „).
represents the normalization of p '(o~'). The normaliza-

(A11) tion of p, , (oi') turns out to be

In the above expression, we have omitted the matrix
indices j and j' in p (o&s).

Let co & denote the frequency for either a local or
pseudolocal mode. p (ois) splits as

p g(oi'+i0+)
X (r.z I

A-~(~') L1—p-~(~'+s0+) j
—(1/vr) Im((n. R.) ), (A12)

where the second term represents the sum of all of the
nonresonant (n.R.) modes of n symmetry. At resonance
frequency,

I
v z) turns out to be essentially a real vector

(this is exactly true for local and gap modes). As Imp ir

can be considered as infinitesimal quantity, Eq,. (A12)
can be written as

p (oi )=Z& p (oi )+p '(oi') (A13)
"M. V. Klein, Phys. Rev. 131, j.500 (1963); 141, 7I6 (1966).
"M. Wagner, Phys. Rev. 136, B562 (1964l.

«2oip. ..'(oi') = (j n
I
~a~ '

I
rrj '), (A17)

where Mo and M denote the mass matrices for perfect
and imperfect lattices, respectively; Eq. (A17) becomes
a Kronecker's 5 when either (zllnj) or (a'l'lnj') does
not involve the lattice site in which the change of mass
occurred. If a local mode of n symmetry; for instance

IP R), exists in the imperfect-lattice dynamics, we have

«2oip~, '+(oi')= I(gnIMs"'M '"jlg~p) I'. (A18)

When the symmetry vector In j) points in the reso-
nance direction, i.e., Inj) = Ii s), it follows that

I (~-~ IN-~') I
'= OilA-~(~~') Rep-~'(~~') I) (A»)

Although with a lesser accuracy, this relation
continues to hold also for a sharp pseudolocal mode. It
is a valid help in estimating the actual localization of
the mode.


