
PHYSI CAL REVIEW

Multiphoton Ionization of Atomic Hydrogen in the Ground State

Y. Gontier and M. Trahin
Centre d' Etudes Nucleaires de Saclay, Services de Physique Appliquee, Service de Physique des Interactions

Electroniques, B.P. N'2, 92 Gif-sur-Yvette, France
(Received 26 January 1968)

The general theory of multiphoton ionization of hydrogen atoms by simultaneous absorption
of several photons is discussed. In the nonrelativistic dipole approximation, the calculations
lead to a recursion relationship concerning angular functions and involve radial matrix ele-
ments containing many summations over intermediate states. A general method for exactly
evaluating several sums is described in detail and applied to the photo-ionization of atomic
hydrogen in the ground state. Numerical results are presented as dispersion curves of the
transition rate o„/I for a range of wavelengths from 1000 up to 7200 ~.

I. INTRODUCTION

In recent years several experimental studies
have been carried out to investigate the direct mul-
tiphoton ionization of neutral gas atoms by optical
radiation. ' '

The theory of the simultaneous absorption of sev-
eral photons by an atomic system has been treated
by different authors. ' Unfortunately, the accu-
racy of the numerical estimate is often limited by
an approximate evaluation of the Nth-order transi-
tion matrix element. To eliminate this failure,
the present paper reports a procedure for exactly
computing, in a practical way, expressions involv-
ing many infinite summations over electronic ei-
genstates.

Section II contains an explicit formula for the N-
photon ionization differential cross section.

The calculation of Nth-order transition matrix
element breaks into two parts. The first concerns
the angular functions and leads to a recursion re-
lationship. The second requires the evaluation of
radial matrix elements containing many infinite
summations over intermediate states.

It is shown how a particular technique intro-
duced by Dalgarno and Lewis and reformulated
by Schwartz and Tieman~4 can be handled in order
to derive a general method for implicitly comput-
ing expressions including several sums. This sum
rule, applied to the calculation of the considered
absorption process, gives precise results.

Numerical values of the multiphoton ionization
rate of atomic hydrogen, for N= 2-8 (N= 8 for the
ruby laser), are presented in Sec. III.

photon energy Ep, the wave number of the emitted
eleqgon, k, and the Nth-order matrix element,
Kfg&, are all dimensionless multiples of the
atomic units.

The expression for Kfg is
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where & is the unit polarization vector of the inci-
dent light. The quantities Eg and Ej represent
the energies of the initial and intermediate states
in atomic units, respectively. Hydrogenic bound-
state wave functions" lfI) and Ig) =Rnid(r) Yfm(8, y)
are written in the following form:

Ii.) =R „(r)Y (8, y) =R(vh lr)Y (8, y).j VA. A. ILt, A. p,

The final-state wave function belongs to the con-
tinuum and behaves asymptotically like a modified
Coulomb plane wave of unit amplitude plus an in-
coming modified Coulomb spherical wave. "~'6
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II. TOTAL CROSS SECTION FOR
MULTIPHOTON IONIZATION

Following perturbation theory and using the non-
relativistic dipole approximation, the differential
cross section per atom for multiphoton ionization
may be derived and written in the form
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where donf/dQ is the differential cross section in
cm'/sr, for each subshell described by quantum
numbers (n, I). The quantity I is the light intensity
in W/cm' In= 14.038&& 10 W/cm' o. is the fine-
structure constant, and ao is the Bohr radius. The

where L and ~ are the angular momentum quan-
tum numbers, P and y represent colatitude and
azimuth coordinates of the ejected electron, re-
spectively. Rg L(k, )irs the radial wave function
normalized on the energy scale.

= argl'(L+ I-i/k).L

Although the differential cross section is written
in terms of the light intensity I, Eq. (1) is an
analogous form of the transition rate derived in
detail by Bebb and Gold. "

In order to calculate the Nth-order matrix ele-
ment, it is convenient to separate the variables.
The angular contribution to Kfg(N) may be easily
calculated, making use of a standard relationship
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between spherical harmonics. After averaging on
the magnetic quantum number one finds,
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where 5(/, X) is used for the Kronecker symbol 5/ p.
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In extending the implicit technique introduced by
Schwartz and Tieman'4 to the calculation of expres-
sions such as V(l 1, l2, ~ ~ ~, lN 1, L I r, Ep), it ap-
pears that summations may be carried out exactly.

We introduce the most general functions

V(l. , l. I, , lN 1, L lr, E )g' g+1' ' N-1'

dr.
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To perform the jth sum over n&, one must con-
sider the Schrodinger equation
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One can easily check that V(/&, /j+ 1, ~ ~, lN I, L I r,
Ep) satisfies the inhomogeneous differential equa-
tion

(E +jE +D.)V(l., l. , ~ ~ ~,/, L lr, E )

=Q f, dr.rR(n. , l. Ir)r .R(n. , l. Ir )r.
xV(/. , l. , ~ ~, l 1, Llr , E ). .(12)

Using the closure condition, Eq. (12) becomes
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By means of (N-1) equations analogous to Eq. (13),
the (N-1) sums, included in the expression of
V(ll, l2, ~ ~, lN I, L I r, Ep) may be evaluated.

Finally the V(ll, /2, ~ ~, /N I, L I r, Ep) function is
the solution of the set of second-order differential
equations.
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The symbols 5(/, A) express the selection rules for
orbital and magnetic quantum numbers, ~lz =+1,
hm/=0. (P(/I, /2, ~, lN I, L IEp) represents the
radial contribution to Ky&(N) . In this notation, the
orbital quantum numbers of intermediate states
are contained in the left-hand side of the bracket
and parameters are placed in the right-hand side.

(P(l, l, ~ ~, l 1, L IE )
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P

=rV(l2, l3, ~, lN I, L tr, E ).
The (N—1.) summations over the n& are extended

over the complete set of all possible intermediate
states of the Hamiltonian of the unperturbed atom,
discrete plus continuum. Because of the sensitiv-
ity of the V(ll, l2, ~ ~ ~, lN 1, L I r, Ep) function to
small contributions from each state, a careful
computation of the sums is required, especially
when the energy (E&+jEp) lies in a region of the
spectrum where the density of states becomes im-
portant.

In order to obtain a simpler differential system,
we note that the exponential included in the struc-
ture of the bound hydrogenic radial function allows
us to express the quantity 6'(ll, /2, ~ ~ ~, lN I, L I r,
Ep) as a sum of derivatives of the Laplace trans-
form of V(ll, l2, ~ ~ ~, lN 1, L I r, Ep) computed at the
the point p= 1/n.

Let us define

= f R(n, l lr) V(l, l, ~,l, L I r, E )Hdr. (8)

In Eq. (8), the function V(/], l2, ~ ~, lN 1, L I r, Ep)
is defined by

, "~,/, Llr, E )

=ZZ" Z
'Pl( 82 sN

0
PVL ' N-1 N-1' /N 1N 1N-1N I---

E E' + (N-1)E-
g N-1 p

p~ R(n3, l3 lr2)R(n2, /2 Ir2)r2'dr
x I~

Jo E -E +2E
g 2 P

~
~ R(n, l Ir )R(nl, ll lrl)rl'dr

x R(n, l I r)r (9).



172 M UL T IP HOT ON IONI 2'A TION

and
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After some algebra, Eqs. (14) are reduced to a

set of first-order differential equations.
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The quantity on the right-hand side of Eq. (17a)
has been previously computed by Zernik, ' whose
result will be used to solve the set of equations (17).

As a consequence of the definition in Eq. (15)
S(lj, lj+ 1, ~ ~, lN 1, I IP, Ep) and all its deriva-
tives are finite for all P such that ReP &0. Vhth
the condition (E&+jE ) &0, an initial value of
y(lj, 1&+1, ~ ~, lN-1, ip, Ep) is simply determined
at the positive value P = nj for which the coefficient
of (d/dp)y(l&, lj+ 1, ~ ~, lN 1, L lp, Ep) vanishes.

The unique solution y(l1, l2, ~ ~ ~, lN 1, L Ip, Ep)
which is correct, has to be analytic. Knowledge of
of it is sufficient to calculate the quantity (P(l1, l2,
~ ~ ~, lN 1, I IEp).

Making use of Eqs. (8) and (15) and the general
expression for R(n, l lr), one finds

P(l1, l2, ~ ~ ~, lN 1, LIE )

(18)xy(l, l, ', l 1, I Ip, E )
p= 1/n

In integrating over the solid angle A(P, y) and av-
eraging over the orbital quantum numbers, the to-
tal cross section per electron for each shell may
be derived.

Finally, the result is
I N1 1 1
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Since the solution of the set of differential equa-
tions (17) must be analytic, a standard method
based on Taylor series will be developed for nu-
merical computations.

III. NUMERICAL RESULTS

The transition rate o„/IN ihas been-evaluated
as a function of radiation wavelength. For the mul-
tiphoton ionization of hydrogen atoms in ground
state, the results can be seen in Figs. 1-7. These
graphs correspond to the simultaneous absorption
of two photons to eight photons. For radiations
whose wavelengths are equal to integer multiples
of those relative to the Lyman lines, the disper-
sion curves show some peaks arising from the res-
onant structure of the quantity V(l1, l2, ' ' ', lN
L lr, Ey). Since the damping corrections to the
perturbation theory results have been neglected,
the amplitudes of these peaks remain indetermi-
nate. However, the calculations give correct re-
sults far from resonances.

1)l 1 (n+ l)! ' 2
(2l+1)! (n-l-1)!2n n

10

5 s I
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gA)
I ) I ) I i I i I
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FIG. 1. Two-photon ionization cross section of hydro-
gen atom in ground state per unit intensity oz/I, versus
the wavelength Ap of the incident light.
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It is now interesting to compare our numerical
values with the Bebb-Gold data'2 obtained in re-
placing the infinite sums by a limited number of
dominant terms. Our dispersion curves (solid
lines) exhibit some changes with respect to the
dashed lines which represent the approximation.
In particular, the position of every minimum is
removed and the corresponding wavelength is shift-
ed. Significant discrepancies, which can become
as high as several orders of magnitude for N=4,
6, and 8, are observed in Figs. 3, 5, and 7. This
is not very surprising, since for higher-order pro-
cesses the contribution arising from every neglect-
ed state" does not seem to be small.

IV. CONCLUSION

From the previous remarks, it has been conclud-
ed that the contribution due to states far from en-
ergies (Eg +jEp) to the intermediate-state sums
must not be considered as negligible.

There is another reason why the approximation
discussed is not suitable. In a rigorous treatment
of absorption processes, the lower-order damping
corrections must be taken into account. They pro-
vide an energy shift and a broadening of the reso-
nance lines. Because of the sensitivity of the V(ll,
l2, , l~ l, L I r, Ep) functions to small modifica-

tions of the energy levels, the calculations require
a much greater accuracy, chiefly, for the summa-
tions of the near-resonant terms which belong to
the part of the spectrum where the density of
States becomes important.

Although experimental measurements, using
atomic hydrogen beams, seem to be possible, it
does not appear that any observations have been
published to date.

However, investigations of this gas would be of
particular interest for two reasons. First, being
the simplest of the atoms, hydrogen can furnish
clear information on the ionization processes and
provide a correct starting point for a study of
more complicated atoms. Second, since hydrogen-
ic wave functions are the only well-known eigen-
functions, computations may be expected to be
more accurate than for rare gases or alkalis.
These reasons justify the present calculations.
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