
PHYSICAl, REVIEW VOI UME 172, NUMBER 3 15 AUGUST 1968

Polarons in Anisotropic Energy Bands*t'
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The polaron weak-coupling approximation has been applied to the problem of an electron on a spheroidal
energy surface interacting with longitudinal optical phonons. The binding energy and effective masses are
calculated. For SrTio&, where the observed masses are mt*me=6. 0 and m~*/me ——1.5, the calculated bare
masses are 4.7 and 0.96, respectively, and the binding energy is 0.26 eV. It is also shown how the polaron
properties may be calculated when the band edge is of the degenerate type.

I. INTRODUCTION

HE experimental study of electronic transport
effects in semiconducting crystals of an ionic

nature, such as SrTi03,' ' BaTi03,' KTa03,' and TiO~, '
brings attention to the relevance of polaron theory to
the interpretation of the observations in terms of band
structure. The interaction of an electron with long-
wavelength optical modes of vibration of a crystal has
been the object of considerable theoretical study, and
has been reviewed by Frohlich, ' Schultz, and Allcock.
To the author's knowledge, the only consideration of
band-structure eGects in all treatments has been
through the inclusion of a constant isotropic bare
effective mass. Thus the question is raised as to the
effect of polaron coupling on the nature of the observed
bands.

In this report the results are given for the case of
an electron on a spheroidal energy surface, in inter-
action with the longitudinal optical modes. The
anisotropic mass will be treated exactly within the
weak-coupling approximation. Application will be made
to the case of SrTi03, which is believed to have a
many-valley conduction band. " Finally, it will be
shown how the polaron may be treated in weak coupling
in the case of degenerate bands, in the framework of
the effective-Inass approximation. ""

II. SPHEROIDAL ENERGY SURFACES

The polaron Hamiltonian in reduced units (as estab-
lished by Frohlich'), modified for a spheroidal energy

surface, is given by

3C= —— — — —— b ~b

p -(f,'e '' s—b,-e'~'), (1)
g

(2)

Here o. is the dimensionless coupling constant dependent
on the high- and low-frequency dielectric constants 6„
and eo, respectively. In Eqs. (1) and (2), x, y, s are the
electron coordinates, mp the free-electron mass, m~ and
mt, the longitudinal and transverse bare masses, and
b~t and b, the annihilation and creation operators for
phonon of wave vector tl, which is in units of (2moto/ts)'ts.
5 is a normalization volume. Energies are in units of
Aco, the phonon energy. (Phonon dispersion is neglected
for the long-wavelength case considered. ) Other symbols
have the usual meaning as in Frohlich's review. '

In the weak-coupling approximation the energy is
given to second order by the standard perturbation
formulas'.

mp mp 4mo. 1
E(k) =—(k '1)'t„')+—k,e-

m' ml S a g'

mp mp
X 1+—(q,'—2q,k,)+—(q,'+q„'—2q,k,

mg mg

*Research supported in part by National Aeronautics and
Space Administration.

t Contribution of the National Bureau of Standards.' H. P. R. Frederikse, W. R. Hosier, and W. R. Thurber, Phys.
Rev. 143, 648 (1966).' H. P. R. Frederikse, W. R. Hosier, W. R. Thurber, J.Babiskin,
and P. G. Siebenmann, Phys. Rev. 158, 775 (1967).' C. N. Berglund and W. S. Sacr, Phys. Rev. 157, 358 (1967).

4 S. H. Wemple, Phys. Rev. 137, A1575 (1965).' J. H. Becker and W. R. Hosier, Phys. Rev. 157, A1872 (1965).' H. Frohlich, Advan. Phys. 3, 325 (1954).'T. D. Schultz, M.I.T. Solid State and Molecular Physics
Group, Technical Report No. 9, 1956 (unpublished).' G. R. Allcoc)c, Advan. Phys. 5, 412 (1956).

9 A. H. Kahn and A. J. Leyendecker, Phys. Rev. 135, A1321
(1964).IJ. M. I.uttinger and W. Kohn, Phys. Rev. 78, 173 (1950)."C. Kittel and A. H. Mitchell, Phys. Rev. 96, 1488 (1954).

172
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On expanding to second order in k, we obtain the
binding energy and corrections to the kinetic energy.
The results are found to be

Es= —G (mt/mp) '"L1/(E—1)y'
Xsin '$(E—1)/Ej", (4a)

AE, = —-', tr(m /mt)'"k, '$1/(E —1)—(1/(E' —1)")
Xsin '((E' —1)/E)'"j, (4b)

a&,= ——;er(mo/mt)'t'E'&, 'f 1/E —P/(E —1)j
+$1/(E' —1)"'g sin—'t (E—1)/EJ"). (4c)
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FIG. 1. Fractional change in eGective mass due to polaron
coupling. Here m~ and m8 are bare masses, longitudinal and trans-
verse, respectively. o. is the coupling constant. The polaron mass
is given by m~, g* =m~, g+Am~, ~.

Here E& is the binding energy, hE, and hE are the
changes of kinetic energy, and IC=m&/m&. AE„ is of
the same form as hE, by symmetry. Equations (4)
are speciically written for E&1. For 0&E&1 they
are also valid and may be put into usable form by
application of the identity sin 'ix=isinh 'x. These
energy changes may be put into the form of effective-
mass changes. This has been done and the results
plotted in Fig. 1.The binding energy is shown in Fig. 2,
as a function of the bare-mass ratio.

ALE I. Experimental data and calculated results for SrTi03.
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determine the binding energy and bare masses. It
should be possible to obtain the bare masses by a
Faraday-effect experiment. "

SrTi03 has three active LO mod, es. The coupling
constants have been estimated by Eagles.""The
results for bare masses are quoted in Table I. The
observed masses, the calculated bare masses, and the
binding energy are shown. The assumption has been
made that the separate modes contribute additively to
the polaron effects. The magnitude of the binding
energy, 0.26 eV, is rather large, in fact comparable to
the bandwidth in the longitudinal direction. The mass
changes are also significant. The use of the weak-
coupling approximation at values of n slightly above 2
is somewhat questionable, but the results may be
expected to give a significant estimate of the values
of the polaron effects." For the isotropic case, rN*/rm

=1+em for intermediate couPling, while m*/rrs=1/
(1—srr) for weak coupling. Thus for the isotropic case,
at o,=1.8, w'e 6nd that the weak-coupling effective

III. APPLICATION TO STRONTIUM
TITANATE

Observed masses
m~* ——6.0 mp
m&* ——1.5 mp
E=4.0

Calculated bare Bloch masses

m& ——4.1' mp
mg ——0.96 mp
X=4.9

In SrTiOs the conduction-band edge is composed of
six prolate half-spheroids believed to be centered. at
the edges of the Brillouin zone in the (100) direction.
The observed masses are m~*= 6.0 mo and m&*= 1.5 mo,
w'ith K= 4.0. These results are derived from analysis of
the magnetic susceptibility" and the heat capacity"
of the carriers, and magnetoresistance. ' ' It is believed
that these should be considered, to be polaron masses.
From the analysis of the preceding section we may
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FIG. 2. Polaron binding energy, in units of the LO phonon
quantum Scop, versus bare-mass anisotropy. m& and m& are bare
masses, mp is the free-electron mass, and 0. is the coupling constant.
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Binding energy
E~=0.26 eV

mass differs from the more exact intermediate-coupling
result by less than 10%%uq.

It is clear that polaron effects will begin to be
reduced when electron concentrations become high
enough to produce a screening radius as short as the
polaron radius in the absence of screening. We estimate
the screening radius by the Thomas-Fermi value
(1/r, )'=6vrne'/er, where er is the Fermi energy. The
polaron radius is approximately r~= (A/m*ces)'~s. Using
the density-of-states mass (5ms) for an estimate, with
a concentration n=10'8 cm ', we obtain r, =1.5&(10 '
cm. We estimate the polaron radius with the highest
mode frequency and. obtain 1.4&&10 cm. Including
the other modes would make it somewhat smaller.
Thus there will be some diminution of the polaron
effects at the typical concentration of 10" cm '. A
quantitative study of polarons in degenerate semi-
conductors including the eRects of screening and the
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exclusion principle in scattering has been made by
Mahan and Duk. e.'8

IV. POLARONS IN DEGENERATE BANDS

One might ask what further inQuences the polaron
interaction might have on the band. structure. From
the sperhica1 synnnetry of the FrOhlich interaction, we
see that there will be no reduction of symmetry at any
point in the Brillouin zone. Hence there will be no
splitting of degeneracy, but only changes in the curva-
tures of the bands. We now show how the weak-coupling
polaron energy may be calculated in the effective-mass
approximation near a point of degeneracy.

As an example we consider the case of a degenerate
band edge at k= 0 in a crystal of cubic symmetry. In
this case the energy, to order k', is obtained by finding
the eigenvalues of the matrix"

Hess(k)=Des Pk kp,

where the constant matrix D is symmetric in n and P,
the components of k, and the indices i and j refer to
the degenerate basis states for k=0. The eigenvectors
of H' determine the "right linear combinations" of
zero-order wave functions for a given direction of k.
For the case of degenerate bands, as from p states in a
cubic crystal, Ho takes the form"

Lk,'+M (ks'+k, ')
Ek Jcs
Ek,k,

Ek,k„
Lk„'+M (k,'+k,')

Ekyk,

Ek,k,
Ekyk,

I,k,'+M (k,'+k„').

We now will show how the polaron interaction can be
treated in this framework and information obtained
without the necessity of first solving for the unperturbed
eigenvalues and eigenvectors for all k. The Frohlich
Hamiltonian for the polaron problem, in the effective-
mass approximation, becomes

H,,=Hos( iV)+Q b—„"b,b,,

4xn 'i" i
p-(b, 'e-'s' —b, 'p)sb". (6)

q

To first order in n, the eigenvalues are determined by
the following secular equation":

4m-n i
det H(k);;+—g—

5 ay'

X —Zb, , =0. (7)
El—H'(k+q) —1

It is und. erstood that the term in square brackets
represents the inverse of the matrix in the denominator.
In principle this could be solved for E by successive
approximation. However, to 6nd E to order nk', we
expand. the denominator, and letting

H'(k+q) = H'(k)+H'(q)+B(k, q), (8)
"G. D. Mahan and C. B. Duke, Phys. Rev. 149, /03 (1966).' W'. Kohn, Solid State Phys. 5, 297 (1957).
20 W. Shockley, Phys. Rev. 78, 173 (j.950).
"This secular equation may be derived by projection of the

Schrodinger equation onto the subspace spanned by the set of
degenerate Bloch states at k=0. See, e.g., A. Messiah, Qgamtlm
Mechassscs (North-Holland Publishing Co., Amsterdam, 1962),
Vol. II, pp. 994 6.

where

we obtain

&(k,q);,=D;,'P (q.kp+ qpk, ),

4m-n i 1
det Hs(k), ,—

S s q' H'(q)+L;;

4xn i 1
B(kq)

S s q' H'(q)+1 H'(q)+1

XB(k,q)
— Eb;, =0. (10)—

H'(q)+ 1-';

In Eq. (10) above, there are no terms linear in B as
these vanish when the sums on q are performed. The
binding energy is obtained from the second term only,
which has only diagonal elements. The inverse matrices
needed are suKciently complicated as to require
numerical computation for individual cases. For non-
degenerate bands this result reproduces that of the
earlier part of this paper.

An interesting possible occurrence would be the
situation of a degenerate conduction-band Ininimum
at k=0, with one band of infinite mass, i.e., I=0 in
Shockley's case. 'P Then the polaron coupling could
turn the curvature of the heavy band downward
causing the minimum to be displaced away from k=O.
Though there is no evidence for this being the case in
strontium titanate, it is worth noting that the energy
shifts d.ue to polaron effects are of the same order of
magnitude as the observed bandwidths, and such an
occurrence might be possible.


