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Size-Dependent Oscillatory Magnetoresistance E8ect in Gallium*t
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The nonmonotonic part of the magnetoresistance has been measured in five single crystals of gallium at
1.2'K in the range 0 to 16 kOe using the audio-frequency Geld-modulation technique. The transverse co-
efhcients were found to oscillate directly with the magnetic field with nondecreasing amplitude in the high-
field region defined by cv,v))1. A large number of periods have been resolved by Fourier analysis of the data
in the ab and ac planes, and a study has been made of the orientation and size dependence of the oscillation
frequencies. Formulas are presented for the oscillatory frequencies and amplitudes giving their dependence
on magnetic Geld strength and orientation, Fermi-surface parameters, and sample size. Theory suggests that
the high-Geld amplitude growth may be correlated with the form of the conductivity tensor for a compen-
sated metal and the diifusivity of the sample surface seen by electrons having extremal values of ns*(o,).
Nearly-free-electron-model calculations show that electrons from the seventh and eighth band surfaces in
gallium have these properties. Evidence for magnetic breakdown across the (100) face of the Brillouin zone
is presented.

I. INTRODUCTION

~
W~ SCILLATIONS in the galvanomagnetic coeffi-

cients of thin metallic samples of the type pre-
dicted by Sondheimer' were discovered by Babiskin
and Siebenmann' in polycrystalline sodium wires and in
thin films by Cotti. ' More recently, Forsvoll and
Holwech4 found pronounced oscillations in polycrystal-
line aluminum 61ms, and similar effects were studied in
single crystals of cadmium by Zebouni, Hamburg, and
Mackey. ' These periodic fluctuations in the magneto-
resistivity are not related to the de Haas —Schubinkov
effect, but are associated with conduction electrons at
the elliptical limiting points' on the Fermi surface (FS)
which are resonantly scattered from the plane-parallel
surface boundaries of the specimen. At low temperatures
where the electronic mean free path is large compared to
the sample thickness d, collisions within the bulk are
relatively rare, and the conductivity becomes modified
with respect to its monotonic value according to the
deviations from the condition

to,d = 27rrt cosg (s,),
* Supported by the Advanced Research Projects Agency and

the National Science Foundation.
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~ Julius Babiskin and P. G. Siebenmann, Phys. Rev. 107, 1249
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P. Cotti, in High magnetic fields, edited by H. Kolm, S.Lax,
F. Sitter, and R. Mills (Tech Press, Cambridge, 1962).' K. Forsvoll and I. Holwech, Phil. Mag. 9, 435 (1964).

5 N. H. Zebouni, R. E. Hamburg, and H. J. Mackey, Phys.
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'The limiting points of the Fermi surface are defined as the
points of contact with tangent planes perpendicular to the mag-
netic field direction.

which matches the transit time for electrons drifting
across the sample to the cyclotron period 2sr/to, . Here, 8
is the angle which the field makes with the sample
surface perpendicular, and (tt,) is equal to the projection
of the electron velocity along H averaged over the orbit.
From Fq. (1) the boundary-scattering term in the con-
ductivity oscillates directly in H with period given by

AH = 2srrrt*c(s. )(ed sece)—', (2)

where m* is the cyclotron effective mass.
The Sondheimer oscillations in the conductivity are

essentially a low-field effect with amplitude proportional
to H 4 in the high-field region co,r))1, where v is the
bulk scattering time. ~' Gurevich~ found tha, t similar
effects with different amplitude dependences may be
present when the FS is more complicated, and it was
pointed out by Grenier, Kfferson, and Reynolds' that
"magnetomorphic" effects should occur more generally
whenever the derivative (BA/tM, ),~ has an extremum or
a singularity, which is the case for limiting points,
inQection zones, and truncated and "monochromatic"
(parabolic) energy surfaces. The latter type gives rise
to oscillations in the conductivity which fall off as H '
at high fields while the size-dependent component in the
magnetoresistivity approaches a constant amplitude,
as was pointed out independently by one of the present
authors' (see Sec. II).

We have found a complex low-amplitude size-de-
pendent component of magnetoresistance periodic in H
in single crystals of high-purity gallium" at liquid-

' V. L. Gurevich, Zh. Eksperim. i Teor. Fiz. 35, 668 (1958)
/English transl. : Soviet Phys. —JETP 8, 464 (1959)j.

C. G. Grenier, K. R. EGerson, and J. M. Reynolds, Phys. Rev.
143, 406 (1966).' P. Bloomfield, Bull. Am. Phys. Soc. 11, 170 (1966).

J. A. Munarin and J. A. Marcus, ill I'roceedings of the Plinth
International Conference on Low-Temperature Physics (Plenum
Press, Inc. , New York, 1965), p. 743; Bull. Am. Phys. Soc. 10,
351 (1965); 11, 170 (1966).
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helium temperatures and have studied the effect as a
function of both 6eld orientation and sample geometry.
Oscillations in the transverse components investigated
primarily in the range 0 to 16 kOe exhibit anomalous
growth of amplitude with magnetic field and are un-
diminished in size to at least 30 koe."The complicated
frequency spectrum has been determined for five
samples with H in the ab and ac planes (Sec. IV); these
measurements are interpreted on. the basis of the nearly-
free-electron (NFE) model in Sec. V. It is shown
that many of the effective orbits have the function
(ci'A/Bk, s),~=0. The calculations of Sec. II for pure
diffuse scattering of the electrons at the sample surface
predict that the amplitude of these oscillations will
either diminish as B "' or become constant in high
fields when either open orbits are excited or the metal
is uncompensated; however, for a compensated metal
the calculations indicate their amplitude will grow more
rapidly than H. In Sec. V the experimental behavior of
the resistivity and Hall effect as a function of magnetic
Geld orientation and strength are accounted for in terms
of the angular dependence of the effective sample area,
the transit distance, and the magnitude of the "acceler-
ation" of the frequency of oscillation, and by the fact
that the effective diffusivity depends on the orbit size
and that near the surface there is additional scattering
of the oscillating electrons by open-orbit current sheets.

II. THEORY OF THE OSCILLATIO N8

In this section we derive expressions for the conduc-
tivity tensor assuming no spatial dependence of the
electric held and pure diffuse scattering of the electrons
at the metal-vacuum interface. In Sec. V a qualitative
discussion indicates the modifications due to open-orbit
contributions to the static skin effect and the fact that
the surface diffusivity can depend on the strength of the
magnetic field.

Here we take the magnetic 6eM H =H, to be strong
enough so that the cyclotron diameter is much smaller
than the sample dimensions and the electrons communi-
cate between sample surfaces predominantly because
of their drift motion. Azbel" has shown that for
processes where the mean free path is longer than sample
dimensions and where there is electron drift across the
sample, it is correct to neglect the static skin effect
(spatial dependence of E). With r representing the bulk
scattering time and the cyclotron frequency given by

oi.= eH/tts*c,

Hz

R(H)

FIG. 1. Top: comparison of crystalline- and magnetic Geld-
coordinate system. Bottom: R(H) is the cyclotron radius and draff
is equal to d, sec8~. We neglect the corrections due to Gnite size
of orbit on the effective area contributing to the oscillatory
resistivity PR(H)((S for H)500 Oe except when H points along
body diagonalj. Sample cross sections showing the effective region
contributing to the oscillations for a particular Geld orientation.

we have an expression" " for the low-temperature
electronic current at the depth f in the metal. Here, i,k
correspond to the coordinates attached to the magnetic
field x, y, s; y is along the current direction (a or c axis),
and i is the axis connecting the parallel faces pierced
by H, (see Fig. 1, top).

e2

~'(t') =
mh2

m*
dk. df v, (lt, k,)

cue

V (t' 4 Jcg)

4"e PL(4' 0)/ ~ jZ o (lt—',k*)~' (~)

Since we are considering diffuse scattering, q&(t,f,k,)
represents the most recent past value of the orbital
parameter iP' such that the electron at (f,k,) is at the
depth f having started from the sample surface at
(p,k,).""The specific value is given by

where e is the magnitude of the electron charge and the
orbital or effective mass is given by

1 dpm*�-
=2 si(k,)

"The corresponding oscillations in the rf differential absorption
had been observed by Foner and McNiff in fields up to 43 kOe
(see S. Foner and E. J. McNiff, Jr. , Bull. Am. Phys. Soc. 10, 351
(1965)j, and more recently they have observed both the dc and
rf oscillations (with amplitude much reduced) in fields up to
95 kOe LRev. Sci. Instr. 38, 931 (1967)j.In their experiments the
rf skin depth is larger than the sample thickness.

'2 M. Ya Azbel, Zh. Eksp crim. i Teor. Fiz. 44, 983 (1963)
LEnglish transl. : Soviet Phys. —JETP 17, 667 (1963)g.

—1
toe

v(f 4' 4)
4 'sr(Kk. )= f, Og 0

d, ttrs(0—
"E. A. Kaner, Zh. Eksperim. i Teor. Fiz. 34, 658 (1959)

[English transl. ; Soviet Phys. —JETP 7, 454 (1958)g.
P. BloomGeld, Physica 32, 1$89 {1966).' R. G. Chambers, Proc. Roy. Soc. (London) A65, 458 (1952)
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vr = (vr) =— d4' vt(4'', k )
2g

is the f component of the electron drift velocity. The

averaged total current across the sample, "
] d

~,(~)@=I.=Z ',&;, (&)

is calculated by making a partial integration with
respect to f and utilization of Eq. (6). This yields an
expression for the conductivity tensor in Eq. (7).

Xh g0) {)
2

m*
dk, dlt v,(f,k.)

chic (&, tt, &z)

q (o,g, &z)

dP' expL(lt
'—f)/ko, r]vs(f', k.)

—(dkd, ) '

q (&,4, &z)

dlt
'

expI (p' —p)/ko, r]vs/', k,) df"vr(p", k,)

'rh V g0&0

m*
dk, dlt v;(f,k,)

Mc

~(a, y, a, )

V (o.4 kz)

dlt
'

expI (P'—lt)/ko, r]vs(P', k,)

—(dko.) ' dl(' expI (P' P)/k—o,r]van', k.) ko,+
(0,f,kz)

Here we have neglected the discontinuous behavior" "
of q(|,P,k,) due to the orbital locations, where vr ——0.
Then by using the identities following from Eq. (6),

lk(d, f,vr'(0) = y(0,f,vr'&0) =p,
(9)

V (d4vr&o)= l (0 lt»r&0)

and the central symmetry of the FS, e(k) = e(—k), we

can rewrite Eq. (8) and sum only over those orbits for
which v~ &0; i.e., the contributions from all orbits with
v~'&0 exactly equals those from v~') 0:

28 m*
4v'Q, k*)

&h vg') 0 &c2

Here,

v .lsl —1(~ ln s sgn(n)v 2n.]'"=L(v'")'+(v '")']"'=2
I
v""'

I

—2[v kn)v l—nl]1/2

fk = al ctan(v /'v ")

Since we are concerned with large magnetic fields, the
cyclotron diameter is assumed to be much smaller than
the sample thickness and the orbital parameter is
approximately given by

Vr" ) t'nko, d)
q (d,P,k,) =lt —d,/vl'+2 Q I

sinI
n» nvto1 k 2vrs I

y(&, 4, A:z)

dP' expL(li' P)/~. r]v&—(P',k.)
XcosI nf

2vg

X 1—(dko.) ' 4'"rQ ",k.) (10)

v;(P,k,) = g I v,'"(k,)cosnf+v, s"(k,)sinn/]
n=o

v, inl(k )eknP

We now represent the velocities in a Fourier series' ":
This calculation assumed that the sum of the oscillatory
terms is much smaller than the leading term (lt —p))2v )
and involved a single iteration of Eq. (6) using Eq. (11).
Since we here neglect all discontinuities in q, i.e., the
places on a trajectory where vr(lt) =0, we can average
over all starting points (see discussion in Sec. UI) and
keep only the nonoscillatory part of Eq. (13a).

Substituting Eqs. (11) and

=g v,"(k,)cos(nit —f;").
p(d, p,k.)=f dkd,/vl—

into Eq. (10), we, find after much calculation

(13b)

"We should actually integrate over both f and & axes and
divide by the sample area. Then we need to consider the effective
area of electrons contributing to oscillatory conductivity and bulk
conductivity. This is done in Sec. VI (see Fig. 1, bottom).

»I. M. Lifshitz, M. Ya, Azbel, and M. I. Kaganov, Zh.
Eksperim. i Teor. Fiz. Bl, 63 (1956) [English transl. : Soviet

krij = krkj +~krkj )
, .0

Phys. —JETP 4, 41 (1957); l. M. Lifshitz, and M. I. Kaganov,
Vsp. Fiz. Naulk 8?, 389 (1965) LEnglish transl. : Soviet Phys. —
Usp. 8, 805 (1966)j.' H. Stolz, Phys. Status Solidi 3, 1153 (1963).
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where the nonoscillatory part of the conductivity tensor is given by

4/2
~"(&)=-

vga)p

p(07 — 8g2

dk, m*Tz~r~v' 1— (1—e "r("r") +
h' .qo)p

Re(v, ( "&v '"&)

X
1+(nv), T) z

Vr 'T 1 (n(d~T)
dkm*T p 1—

dr 1+(n(e,T)z

vr T 2n&0„T nM„T Ini. ('v, " v " )
1———,(15)

d 1+(neo,T)'

and the part of the conductivity tensor which oscil-
lates with the magnetic field is given by

dp m+p p~&g—&gist'or

= al csll1
1+(n(e, T)'

Im(v ( "&v'"&)

+arcsin
f

V . (—)/f
n( V)fn

The second term in Eq. (17) represents the phase shift
from the diagonal to the o8-diagonal components of the
oscillations in the conductivity tensor; it is —,x only if
the angle ~f;" $1"I =-,'zr w—hich happens when the
orbit has reQection symmetry through a line. The
magnetic-field-dependent phase shift [the first term in
Eq. (17)) is negligible for large (d,T.

Now, in general, both v~ and m, *a~' are functions of
k, . The most critical parameter is m*eg' which appears
as both argument and coefficient in the oscillatory terms.
For closed orbits

BE )
vrE= h ' cos8 — — i, (1g)

2zl BE I It,

where A is the area of the electron orbit in k space. In
all the formulas except Eq. (18), m* should be taken as
the magnitude of the orbital mass [so that Eq. (4) gives

~

m*
~
].Therefore in the following equations the negative

of the m* defined in Eq. (18) should be used for holes

[so, —(BA/Bk. ),~ of Eq. (20) and subsequent expressions
should be replaced by+( B/AB)k, invthe case of holesj.
For open orbits the area is not a well-de6ned concept,
and it can be shown that

(m*vrv), v, = cos8 (m*v, ')„,+sin8 (hK„/2zr), (19)

where the second term in Eq. (19) only exists if the
periodicity vector hK for the open surface [we consider
only "periodic open surfaces'" "for which the periodic
expansion of Eq. (11) and an effective mass like that of
Eq. (4) are valid) in k space points along the y axis

ip Sp fb

X p cos[ndr(e, /vr +q,z"). (16)
) z 1+(n(o,T)'

Notice that in Eqs. (12), (13), (15), (16), and following,
the k, dependence of the quantities is implicit. The
phase shift occurring in Eq. (16) is given by

sine;, "=
Ie,0

dk, exp[—dr sec8/v, 'T$

,Ap ~A

X — sing, ,"
(nv. ')'

kP p.(-&)p.(~) --&
's

dk, exp[—dr sec8/v, 'T)
(nv. ')'

(22)

The second type [evaluated at. k,*where (B'A/Bk, z),~j
yields"

B'A ) ——I/2

60;,(z) =zr e
~

(dr sec8/h)'(zrH/c)'
Bk.').,

p
—1/BA ~

X( ~

—
I I expL (dr sec8)—/v'Tg

E 2zr (Bk,i, )
vpv1 2zrnH

X Q —cos + IZ;,"W-,'zr ~, (23)
& 1 n'1'(v. ') ' aH J

' A. Erdelyi, Asymptotic E.'xpansions (Dover Ppbli&ations,
Inc. , New York, 1956).

(the axis orthogonal to the plane determined by the
s and l axes; see Fig. 1).

Limiting our discussion here to closed orbits, asymp-
totic considerations of the large parameter (we are con-
sidering large fields),

1zeHdr 2zrneHdr BA ) ' 21rnH
n(0~d/vr (20)

cm*vrE ch cos8 Bk,1,~ AH

show thatdominating contributions to the integral in Eq.
(16) arise from (1) regions where (BA/Bk, ),~ is constant
over a finite k, range Dk„(2) stationary points k,*
where (BA/Bk, ),v is an extremum as a function of k„.
(3) limiting points or cutoff orbits where k, is extreme
(end of the k. integration).

The first type of contribution (from k, ' to k,'+6k, )
yields

(c~'Mk. (—1BA ' 1

(AH) dr sec8(2zr Bk. »z hk,
I(;++aug p, ( 'A)p, (fb)j

X dk, exp[—dr sec8/vr(IT)
I,' (nv, ')'

tr2zrnH
Xcosi +8,;" i. (21)

& aH

The phase shift in the cosine of Eq. (21) is given by
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where the ~~~m phase shift corresponds to the "acceler-
ation" (B'A/Bk, '),~ being negative or positive, respec-
tively. Note that we are considering v,'&0, and since
rN* is positive (negative), —(BA/Bk, ),~ is positive
(negative) for electrons (holes) Lsee Eqs. (10) and (18)].
However, recall from the discussion after Eq. (18) that
in all the formulas we must take rN* and —(BA/Bk, ),i,
as positive for both electrons and holes )so that the
above criterion applies to —(B'A/Bk, '),~ in the case of
holesf. The H 'I' dependence of the amplitude in Eq.
(23) agrees with Gurevich's calculation' but not that of
Grenier et a/. ' who stated an H ~' law. Note that this
type of oscillation (occurring for non-ellipsoidal FS) is
sinusoidal, contrary to the expectations of Gurevich.

The third type (from limiting point electrons where
v is parallel to the k, axis) yields

c
h(r; ("&=2e'(Ii/dr sec8)'~

kcH

t
—1(BAI & &B

expL —(dr sec8)/~ 'rj( 2ir Bk. ,~ &Bk'.

B/Bk, (e;"i .")
&( P cos

n&1 g4&02

2xwH
+("" (24)

AH

In this case (FS elliptic limiting point) one can show that
(1/2 r7( BA/Bk),„) ' is equal to the local Gaussian
curvature. ~ These types of contributions are similar to
the original predictions of Sondheimer for a spherical
FS. Discontinuous or truncated FS will also contribute
terms which take the form

Examination of the above expressions (Eqs. (22)-
(25), successively) show that in each case the fre-
quency of the conductivity oscillations depends on

L
—(BA/Bk, ),~/dr sec8) ' while the amplitude depends

in part on the quantity

( c 2

expL —(dr sec8)/e, 'r)~
~

(k/dr sec8)s '
4i,'/

-28—i
X (c/eH) s

2~ &Bk.)„ (26)

where 5 is the number 2, 2—,', 4, and 3, respectively. Then
in addition the amplitude of the eth Fourier component

~2 ( c )'
I
—1(BA)

I&~v""= (kldr se—c8)'I
7r keHP E 2ir (BkJ,~)

(B2AI-i
expt —(dr sec8)/v, 'r)

&Bk.'&.,
z "v" 2xeH

sin +((„" . (25)» I'(v, o)' hH

depends on the product of e with

1 t'B'A~
26k,

i
v, ( "&v;("&[, —

i i
i&,"v;",

~&Bk.'&„

1 B'A) ' B 1(B'A
(i,"(&,"), 2 —

i
(&,"i,", (27)

m Bk,'~,~ Bk, ir (Bk,',i,

for Eqs. (22)-(25), respectively.
Equation (26) indicates that in a large magnetic field

the temperature affects the amplitude only through the
exponential factor involving the mean free path, and
that the highest frequencies produce the strongest
signals for oscillations of a given type; also Eq. (27)
shows that for complicated orbits the data will contain
higher harmonics whose amplitude depends on the
Fourier coeflicients of the velocity LEq. (12)j divided
by the Sth power of the harmonic number, and that the
"density of orbits" on the FS contributing to the signal
is determined in part by the size of the band: hk„
(B'A/Bk, '),~ ', or (B'A/Bk, '),~ '. Furthermore, the deri-
vation of Eqs. (21) and (22) indicate that a dominating
contribution from a 6nite size orbit can change its
character as a function of magnetic field strength. This
will happen when there is not strict parabolicity (regions
of constant BA/Bk, imply the existence of a dispersion
law like A ki' k,) but

~
B'A/Bk. 'j((1.Then the oscil-

lations will change from type (1) to type (2) as II
increases through the value satisfying

(2~IH'& B'A/Bk, ')
I

(~k*)'-!
k AH ~ BA/Bk, l,~

for 6nite Ak, . This behavior will cause the amplitude
dependence on H to change smoothly from H ' to
H—".Far more interesting is the change of character
from type (2) to type (1) as a function of magnetic-field
orientation. Suppose a slight rotation of the H direction
changes an orbit which is strongly of type (2) Lthen the
extremum in (BA/Bk, ),„is sharp so that (B'A/Bk, '),~
is largej to one of type (1) (introducing paraboloidal
or hyperboloidal behavior). This will cause a very sharp
rise in the amplitude, the relative increase being given by

16m.mH
~
B'A/Bk, '),~('&

(+0, (i&/+0 . .(&&)

DH (BA/Bk, ),~

XP(&k )"&)'))1, (28)

where we have assumed that the frequency (BA/Bk, ),
has not changed significantly in magnitude under the
small rotation. Furthermore, the phase of the oscil-
lations will abruptly shift by 471-.

To obtain the magnetoresistivity one must invert the
conductivity tensor; this necessitates the evaluation of
Eq. (15) at large fields. We find for the diagonal
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components

4~2
0 '(dr)=

h yt 0+p

while for the oG-diagonal components

vr'r (c)
dk,m*r(v')' 1— (1 e—~r'"r") +2I

Eke~ zr )0

4e2
0 '(dr)=

h ~~O&p
2

8ec
dk, m*rv, 'o 1— (1 e—~&("r") +

h2H
dk, (m*)' P (1—(r)(o,r)—')"-'Im(v, ' ")v'"')

n&1

c
+8I

V a)
(m*)' ( vror) vror

dk, P n '
I
1+

I
Re(v;( ")o ("))—2 Im(i) ( ")0 (")) (30)

rs&p r z'&i - k dr ) dr

Notice that for long mean free path, ~~'~))d, the above expressions for o- become independent of ~. Since we are
concerned with samples having more than one dimension less than the mean free path, we must modify these
formula for comparison with experiment" '; however, this will not affect the magnetic field dependence shown in
Eqs. (29) and (30).Inverting Eq. (14) yields, for the oscillatory part when H is in the ab plane (drift velocities exist-
ing along x and s directions), in the magnetic field coordinates

1 O.zz ~0-yy0

&p =a(o-') = (deto')-' o„—ohio„.+ o„ohio„,
0zx ~0'yy0

0
Ozz ~gay

&zz ~(rzz+&zz +&zz Ozz +&zz Ozz +&zz
OA OAOzx ~&xy 0'*x ~&zy

0a~y ~~yy
0zz EOOz 0 zz Aoyz ~ (31)

OA0 gg LEO yy

Transforming to the laboratory (crystal) coordinates we find
we need the expression for two of the components to
compare with our experiment (J along c or y axis),

(AP) kk
———(o.„'o„,')-'Ao „,

(6p), b ——(o,„'o„,')-'d o,„cos8. (35)

hz Xdk = —m*vidi)t .
Note that when H is in the ab plane (J along c axis),
deto' involves all the elements of the conductivity
tensor, and for large fields goes as II '.

When II is exactly along the a axis and J is along the
b axis, open orbits still exist (producing drift motion
along b as well as u) and we Gnd from Eq. (31)

Using Eq. (11) we can integrate the Lorentz equation,

h(dk/diP) =m*SXv,
and obtain

~in/
hkk=m*sX g v(").

n&1 gg,

(Ap)„= (deto') '(0„'Ao.„+0„'Ao„ In this case of only closed orbits the deto-', —O-,y'0-y '0.„',
also goes as II '.

When there is exact compensation between electrons
(hp) k.= —(deto') —'I (o„'COS8—o,.' Sin8)ao.„ and holes, a different result is obtained. '~ From Eq.

+o„osin860, „). (32) (4) we have

ho.yy
~p= (9'zo Ouz ) (34)

all other components being smaller by a factor ((o,r)
in large magnetic fields. Then in the laboratory system

The oscillatory part ~0. needs to be modihed only by an angu-
lar-dependent factor which shows that the amplitude vanishes
when 0 is along the sample diagonal. Neighboring trajectories
connecting adjacent sample faces have diAerent frequencies
incoherent in phase and so do not contribute to her. In Sec. VI we
also consider the open orbits which can connect the opposite
faces whose normal parallels the g axis,

(&p)kk= (deta ) io„ho„,
(Ap). k= —(deto') '(o„oho.,k

—o. koho. , ) . (33)

However, if 8 is not zero, H rotated into the ac plane
(J along b or y axis), there no longer are open orbits and
in the magnetic 6eld coordinates

ce
=—(ei—gg)+—C, (')+—C,„(')

/2 +3 (3&)

Then using Eq. (11) once again we find that the area
of the orbit in k space can be expressed as

A(k.)=+-',S fk,Xdk

=~4~(m*/k)2 p ~—i Im(o (—s)o (~)) (36)
n&1

where ~ means electrons/holes.
Thus, from Eq. (30) when only closed orbits exist,

2ec
0,„'= dk, A (k.) dk.A—(k,)

(2')r) +- sls holes

1
+ C (2)+ C (s)

H2 B3
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where e& is the number of states occupied by electrons with positive effective mass, and m2 the number of un-
occupied states with negative effective mass. ~ According to Reed and Marcus, gallium is alnzost exactly compen-
sated. "Therefore, we need an expression for the determinant of o' for a partially compensated metal Lfrom
Eqs. (29), (30), and (37)j:
det(r'= ', C -e&"ea '{(2(Nt n—S)eeayCgy"' C—yg"')' —(Cey"'+Cyg "&)(C,y&'&/Cye&'& —4Cee&'&Cgy"'/Cge"')

/4(c (s&c (s) C (i&c o&C (s&/C (s& C (sic (r&c (rl/C (0))}-t=r C„(s&jr'—4D—i (38)

Here the parenthesized superscript (tt) indicates the coefficient of the 1/Il" term of the conductivity tensor.
Equation (34) is replaced then by

c &'& —c,o&c, t'&/c„&'&+a'ho. —Cg "'+Cee"'Cs "'/Cee"' (St—ttS)—eCH
—H 'C y&"—H'60 „

(s& ( (i)C 0&/C, (s&+B'sQo ~
r (39)

during that time. An investigation showed that they
alter the line shape slightly (no longer purely sinusoidal)
but do not alter the amplitude dependence on H signi-
ficantly. In fact, when ~t&r'"/t&rs~ ~& 1, some extra oscil-
lation with possible sharp discontinuities in slope will
occur. These are due to fitting into the metal chains of
oscillating electrons having x~=0 at the beginning and
end of their trajectories. This spatial resonance (rather
than the temporal one discussed here) becomes the
dominant feature in the Gantmaker eGect. 23 There the
current concentrated in the rf skin depth (an order of
magnitude smaller than the sample thickness) is carried
across the metal by the electrons.

For the case of the cottspettsated metal, then, the growth
of the magnetoresistance is quadratic in II whether
or not the open orbits have been excited. However, the
leading term for open orbit o6-diagonal resistivity goes
as H (Hall voltage) while if no open orbits have been
excited, the off-diagonal resistivity depends quadratic-
ally on FI (transverse-even voltage" ) and the Hall
voltage has a linear-plus-weak (because nt —tts=0)
cubic dependence on H. 22

For strong magnetic fields [but no so large that the
II-dependent term in D of Eq. (38) grows larger than the
constant onesj a profound change in the amplitude of
Ap will be observable as the magnetic Geld is rotated in
and out of the ab plane. This is evident upon comparing
Eq. (32), Dp Hsho with Eq. (39) hp II'ho. The open
orbits in gallium exist only over a thin band in 4 space"
(see discussion in Sec. VI). Therefore, a slight misorien-
tation of H will transform the metal from the normal
behavior Lopen orbit or uncompensated metal, Eqs.
(31) and (34)$ to the "abnormal" behavior of a compen-
sated metal: Eq. (39) indicates growth to saturation
for Sondheimer orbits, case (3a), and quadratic growth
for paraboloidal orbits, case (1). Since we are dealing
with very pure samples wherein the sample dimensions
are smaller than the mean free path, the question of the
interaction of almost open trajectories (extended orbits)
with the boundaries becomes important. This will be
discussed in Sec. VI.

Recall again that we have neglected the effects of any
oscillations along f which alter the time of transit in the
sample. Oscillations in the resistivity can result from
oscillations in the time of Right between the parallel
faces as well as the spatial oscillations of the electron

III. EXPERIMENTAL DETAILS

Single-crystal specimens were grown in carefully
machined Plexiglas Schubinkov molds from 99.9999'%%uo

purity gallium supplied by the Aluminum Company of
America (ALCOA). Internal surfaces were wiped suc-
cessively with acetone, and alcohol, and given a light
coating of Bow Corning DC200 silicone oil before assem-
bly to facilitate removal of the crystal. The mold was
loosely stoppered at one end and injected with gallium,
heated to about 80'C in dilute HCl. A small seed crystal
of the required orientation was placed in contact with
the liquid column, and a temperature gradient es-
tablished across the mold. The growth of the 15-cm-long
crystal required approximately 1 h; then the mold was
disassembled and the sample carefully removed.

The location of the crystallographic axes with respect
to the faces of the samples was checked by x-ray dif-
fraction, and misalignment held to less than 1' in all
cases. Current connections were made with S-in.
copper ribbon tinned with gallium, and pairs of No. 38
potential leads spot welded to each face as described by
Yahia. "

Figure 2 is a block diagram of the electrical circuitry,
used to record both the magnetoresistive potentials and

23 V. F. Gantmakher, Zh. Eksperim. i Teor. Fiz. 42, 1416
(1962) /English transl. : Soviet Phys. —IETP 15, 982 (1962)j."J.Yahia, Ph.D. thesis, Northwepte)tn YZn&versity, Evanston,
11L, 1958 (unpublished).

"W. A. Reed and J. A. Marcus, Phys. Rev. 126, 1298 (1962}.
~2 The observations for a particular orientation of cadmium of

the oscillatory conductivity by Grenier et at. (Ref. 8). (H't&o.
having constant amplitude at large 6elds; see our Eq. (24)j and
the oscillations in the oG-diagonal resistivity p~„seen by H. J.
Mackey, J. R. Sybert, and J. T. Fielder, Phys. Rev. 157, 578
(1967) P p „having constant amplitude at large Selds; see our Eqs.
(24) and (39)) are to be explained as Sondheimer oscillations
(limiting-point electrons) in a compensated metal. The fact
that Mackey e$ ul. observe both p and p „going as II2 in high
fields also shows they are dealing with a compensated metal.
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FIG. 2. Block diagram of the
experiment.
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their first and second derivatives with respect to mag-
netic field. The dc magnetic field was modulated by a
small, parallel, audio-frequency component Ht cos2mft,
of 10 to 100 Oe at 36 Hz. It can be shown" that for
small modulation, H~&&AJI, where AH is the period of
the data, the signal appearing at the eth harmonic of
the driving frequency is directly proportional to the
eth derivative of the resistance with respect to the
magnetic Geld (8"2;;/BH").

A 4-in. Weiss-type electromagnet, fitted with 500
turn-modulation coils provided a maximum staticfield of
16 kOe. Most of the measurements were made between
1.5 and 11.0 kOe to minimize mixing with de Haas-
Schubnikov signals which are comparable in amplitude
to the size eBect in the higher field range.

Sample potentials were selected by an eight-position
rotary switch and mixed with a bucking signal of ap-
propriate phase and amplitude to cancel the residual
pickup in the lead pairs. Coupling to the preamplifier,
by means of a low-level impedance-matching trans-
former, provided electrical isolation of the sample and
suppression of the dc signal component. The signal was
further amplified, synchronously detected, filtered, and
recorded on an X-I' plotter as a function of the magnetic
field. The data were simultaneously recorded in digital
form at 1000 points with a Datex processor.

The magnetic field readout was provided by a high-
linearity Hall probe, which, suitably loaded, was ac-
curate to within ~s% in the speciGed range. The correct
termination resistor was chosen by comparing the Hall
output with a Rawson rotating-coil gaussmeter, and the
final calibration obtained by locating several field points
with NMR. Precision of the frequency determination

"J. A. Munarin, Ph.D. thesis, Northwestern University,
Evanston, Ill. , 1966 (unpublished).

was limited to about 1%, primarily by drift in the con-
trol current of the Hall sensor.

IV. EXPERIMENTAL RESULTS

The oscillatory effects described here were first found
during a series of exploratory measurements on samples
previously used for a detailed investigation of the mono-
tonic magnetoresistance by Reed and Marcus. "These
specimens were square rods with 1.-mm' cross section,
and had residual resistance ratios of about 20000
between room temperature and 4.2'K. At the time of
the present experiments, however, higher purity
material was available from ALCOA, and a new set of
crystals was prepared which resulted in significantly

improved residual resistance ratios" (see Table I).
Frequency measurements described in this section were
made on the latter at 1.2'K. Sample C1 corresponds
roughly in size and shape to the specimens used by
Reed and Marcus but has a ratio measured at 4.2'K of
nearly 40 000, and more than 60 000 at 1.2'K, indicating
that the resistivity has not saturated at 4.2'K. Samples
CA1 and CB1, approximately half as thick, have a
smaller ratio at 4.2'K of only 30000 because of en-
hanced boundary scattering. In Sec. II we mentioned
that when the mean free path / is comparable or longer
than the sample dimensions, the conductivity becomes
weakly dependent on l and more strongly dependent on
the sample size. In the last paragraph in this section we
show that a smaller sample is expected to have a higher
resistivity.

The nature of the var'iation of the transverse magneto-
resistance with magnetic field is illustrated in Fig. 3

"C. S. Barrett, Advances in X-Ray Analysis (Plenum Press,
Inc., New York, 1962), Vol. 5.
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TABLE I. Sample dimensions and residual resistivity data.

Sample

C1
CB1
CA1
Bi
CE1

d, (mm)
293'K 2.35'K ~

0.981 0.980
0.894 0.893
0.532 0.531
0.935 0.934
d293'K = 1.47

ds(mm)
293'K 2.35'K

0.998 0.990
0.544 0.539
0.899 0.891

20 ~ ~ ~

d2. 35'I = 1.46

d.(mm)
293'K 2.35'K

20 ~ ~ ~

20 ~ ~ ~

20 ~ ~ ~

0.930 0.926
20 ~ ~ ~

48.8
48.2

~ ~ y b

6.63
44.8

12.30
16.05

~ ~ ~

1.73
10.90

p 293'K
(10 ' 0 cm) (10 "0 cm)

p F93'K
p4.2 K

39 700
30 000

~ ~ ~

38 400
41 100

PI.S'K
t,
'10-1o 0 cm)

8.08
10.42

p293 K
P1.2'K

60 500
46 200

a The sample dimensions at 2.35'K were computed using Barrett's x-ray diffraction values of the lattice parameters at room temperature and at 2.35'K
(Ref. 26). The differential contraction in length hL/L between the two temperatures is —1.02 )&10 I, —8.37 &(10 3, and —4.12 )&10 3, for the a, b, and c
axes, respectively.

b Sample CA1 WaS aCCidently deStrOyed befOre aCCurate reSiStiVity meaSurementS Were made, but the ratiO p293oK jp4, 24K WaS apprOXimately 30 000.

for sample C1. Here the current runs parallel to the
c axis, and the magnetic field is perpendicular to the
u-axis face of the crystal, corresponding to the Sond-
heimer geometry. Plots (a), (b), and (c) represent the
direct magnetoresistance, the hrst, and the second
derivatives, respectively. Note that the oscillations in

(b) and (c) are not discernible in the direct measure-
ment (a). Representing the resistaace as the sum of the
monotonic component E;;(H) quadratic in the field H
and an oscillating part AR,;(H), the ratio &R;;(H)/
8;;(H) goes as H ', and from Fig. 3gplot (b)], is about
1 part in 5000 at 5 kOe.

The complexity of the oscillations, evident in Fig.
3(c), severely restricted the use of visual reduction
methods. Even when coupled with electronic filtering
techniques which have recently been described, '7" it
is dificult to discriminate several periodic components
differing by only a few percent because the hlter pass
band cannot be narrowed suKciently. Therefore, the

l 2 5 4 5 6 7
MAGNETIC FIELD {kQe)

Fro. 3. Transverse magnetoresistance, sample Ci. Curve (a) is
a direct plot of R(17). Curves (b) and (c) are Grat and second
derivatives with respect to the magnetic Geld obtained by Geld
modulation.

' A. Goldstein, S. J. Williamson, and S. Foner, Rev. Sci.
Instr. 36, 1356 (1965).

's J. B. Ketterson and Y. Eckstein, Rev. Sci. Instr. 37, 44
(1966).

data were recorded directly in digital form and numeri-
cally integrated to yield the Fourier transform" for a
preselected range of frequencies covering 1 to 15
(kOe) '. According to Rayleigh's criterion, " two
neighboring frequencies are just resolved when (AF/Ii)
is equal to 1/e, where e is the number of periods included
in the integration interval. Separation of two branches
of equal amplitude differing only by 1 jo in frequency
therefore requires 100 or more cycles of data, which was
usually the case for the primary data.

ab P1ane

With the current X parallel to the c axis (c type), the
transverse magnetoresistance oscillated with H for
virtually any orientation of the magnetic held within the
(transverse) ab plane, although the effects were strongest
within 15' of the a axis. The specimens were, in all
cases, oriented with the crystallographic axes perpen-
dicular to the lateral faces, so that H parallel to either
u or b for the c-type specimens corresponds to the
Sondheimer geometry.

Typical field-sweep data for sample C1 are shown in
Fig. 4 for tilt angles of 0', 15', 35', 63', and 72'measured
from the g axis. The second harmonic is recorded in
each case, and the accompanying plots give the Fourier
spectrum.

For 0=0', hve frequency terms are present within the
range 10.0 to 14.0 kOe ', labeled F1 through F5 for
reference, in order of increasing frequency.

At 15' the oscillation amplitude reaches an absolute
maximum, and F2 strongly beats with an additional
term F6. Here the sensitivity of the vertical scale in the
data plot is reduced 2-,' times.

Periods F2, F3, and F6 are all comparable in size
(13.3, 13.7, and 14.1 kOe ') and amplitude at 35' creat-
ing a complicated three-way beat pattern. Beyond this
angle, the signal amplitude falls off rapidly, approaching
a minimum at about 45', near the diagonal of the sample
(see Sec. VI)."

Period F6 is still observed at 63' but new periods of
4 2

p
6 0 and 6.4 kOe ' appear. Slow fluctuations in the

~'The computer program was adapted from a de Haas —van
Alphen reduction scheme due to J. Graebner tace J. Graebner,
Ph.D. thesis, Northwestern University, 1967 (unpub1ished)i.' F. A. Jenkins and H. E. White, ENndamemtals of OPtics
(McGraw-Hill Book Co., New York, 1957), p. 300.
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FxG. 4. Field-sweep data for sample
Ci with B in the ab plane for 8,=0'
(relative amplitude 1), 15' (relative
amplitude was 2-,' times larger), 35'
(relative amplitude 1), 63' (relative
amplitude was 36 times smaller), and
72' (relative amplitude was 36 times
smaller). The frequency spectrum ob-
tained for each curve is shown to the
right. Note the change of horizontal
scale at the two largest angles.
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baseline, about 2.5-kOe long are attributed to the dif-
ference frequency 0.4 kOe ' between the two higher
spectral terms. Here the amplitude of the oscillations
is considerably smaller than for 0', and the vertical
sensitivity is increased by a factor of 36.

l4-

I

Ip

IO

O

QJ 8

(3
K
LLI.

0

t t t

00 IO' 20 30o 40 50O 60o 70o 80 90
8

FIG. 5. Frequency spectrum for sample C1 with II in the ub
plane. At 44.7' the magnetic Geld is parallel to the diagonal of the
sample.

At 72', another set of oscillations are present with
frequencies 1.9, 3.0, and 3.9 kOe '. The oscillations
become considerably weaker as the magnetic 6eld is
tipped toward the b axis (90'), although a number of
distinct periods are still resolvable.

The complete frequency spectrum determined by
Fourier analysis for this sample is presented in Fig. 5.
The group of primary periods F1 through Ii4 have a
relative minimum at 0', rising through an absolute
maximum at about 25'. E6 appears abruptly at 12',
and follows the first set very closely for 8&20'. Measure-
ments in the neighborhood of 45' (near the diagonal)
are dificult because of the low signal level, and only
F1 and F6 can be resolved. For greater values of 8,
other low-amplitude branches are observed within
rather limited angular ranges and are designated F7
through J 16.

The relative magnitude of each of the primary terms
can be estimated from Fig. 6. This plot was made by
computing the average value of the Fourier transform
in the interval 1.5 to 11.0 kOe; assuming the amplitude
growth is linear over this interval (see Fig. 7), it repre-
sents the relative sizes of the branches approximately
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FIG. 6. Second derivative amplitude, sample CI. Note the vanish-
ing amplitude for all frequency branches at the diagonal.

15—
CL

v& ~
LLI2 CLIO—

~ 0
I

UJ
CL

X p
~& oC

II

2
I I I I I

4 6 8 10 12

MAGNETlC FlELO tkOe j

FxG. 7. The maximum peak-to-peak amplitude of magneto-
resistance second derivative versus magnetic Geld strength. Curves
81 and 82 were measured from data taken with crystals which
were sandblasted so as to produce surface irregularities of the size
of the sand particles (23 y). Curve 81 is from Fig. 1 of Ref. 10;
curve 82 is from Fig. 20 of this paper. In both cases H is '7 from
the a axis in the ac plane. Curve CI is from unpublished data on
sample CI with H 15' from a axis in ab plane; curve C2 is from
Fig. I of Ref. 10 for H 20' from a axis in ab plane; curves C3 and
C4 are from Fig. 4 of this paper, H being 63' and 0' from a axis,
respectively.

at the midpoint, i.e., 6.25 kOe. The set Ii1, Ii 2, P3, and
F4 have an amplitude maximum at 0' and fall oB
towards zero at the diagonal of the sample. "F6, how-

ever, has a sharp maximum at 15', possibly related to
an increase in the number of extremal orbits on the
Fermi surface. Beyond 00, F1 and Ii6 appear, but with
greatly reduced amplitude.

Oscillations in the Hall voltage were found only
within a narrow range of ~2' about the axis in this
specimen. A phase shift of ~~x between the magneto-

resistive and Hall potentials is expected on theoretical
grounds (see Sec. II), but it is diflicult to measure
experimentally because of the complex beat structure
(see Fig. 8). There is indication that this condition is
fu1611ed at least for the dominant term from both visual
inspection of data such as in Fig. 8 and the fact that the
oG-diagonal oscillatory resistivity was found to be odd
in current and magnetic 6eld Lsee Eqs. (21) and (22)$.

SAMPLE CI

(a)

(a) Hal I E 'feet

(b) Ma gn& toresis1 ance

-~~vyqyl~~
500 IOOO I500 2000 2500

MAGNETIC FIELD (Oe)

FIG. 8. Second derivative of Hall voltage curve (a) and
resistivity curve (b}, for sample Cl.

Shaye and Size Deyendence of Periods

Theoretical investigation of oscillatory size eBects
has heretofore been limited to the thin-61m geometry in
which the transverse dimensions in the plane of the film
are assumed to be in6nitely large. The observations of
size effects for arbitrary orientation of the magnetic
6eld in the present experiment, however, permit the
relationship between the periodicity and sample geome-
try to be studied in detail. For this purpose c-type
samples (current parallel to c) CA1 and CB1 with
rectangular cross section were prepared (see Table I).
The crystallographic a and b directions were aligned
perpendicular to the lateral faces and the samples
made identical in every respect except for the inter-
change of the two axes. The frequency spectra for
these two specimens are plotted in Fig. 9. The plots are
qualitatively similar to Fig. 5, except for some missing
detail probably due to difficulties in sample preparation,
since size effects depend very critically upon surface
conditions as well as impurities and strain imperfections.

From Eq. (2) the frequency of the oscillations
P= 1/H, depends upon sample geometry through the
factor d sec0, where d is the thickness and 8 is the angle
between the magnetic-field direction and the perpen-
dicular to the surface.

In the present case where both transverse sample
dimensions are small compared to the mean free path,
we must be careful to discern which pair of crystal
faces are involved. For closed orbits this is determined
by the angle between the sample diagonal and magnetic
field, i.e., carrier drift, direction. Therefore, to make a
direct comparison of the rectangular specimens, we
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TAsx.z II. Frequency data for sample C1
at the principal symmetry directions.

l4-

Hi)a(e, =o')
p/ AH

(kOe mm) ' (Oe mm)

H~~~(e. =9o )
p' b JI

(koe mm) ' (Oe mm)
lo

P2
p~
p4
ps

11.6
11.8
12.0
12.1
12.6

86.2
84.8
83.4
82.7
79.4

P12
p14
F15
P16

6.7 149.0
10.6 94.4
4.3 233.0
4.6 217.0

must plot the "reduced" frequency

F'= F/(d. sec8,), 8.(80
F'= F/(dy sec8~), 8„&80

(40)
l4-

which should be independent of the size and shape of
the cross section and depend only upon the Fermi-
surface parameter (BA/Bk, ),~. Here, 8e refers to the
position of the diagonal relative to the indicated axis.
The spectral data for the three samples C1, CA1, and
CB1, plotted according to this scheme are given in
Fig. 10.At the diagonal of either rectangular sample, the
frequencies have a cusp and are approximately 15% too
low. The lateral edges for these specimens, however,
are not sharp but are rather rounded which means the
quantity d sec8 is smaller than the ideal value, invali-
dating the comparison in this region. Nonetheless, ex-
cluding the points near the respective corners of either
sample, the results are consistent with Eq. (40) to
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FxG. 10. Reduced frequency, samples C1, CA1, and C81.
Note the close correspondence except in the region of the diagonal
for CA2 and CB1.
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FIG. 9. Frequency spectra for samples CA 1 (lower) and CB1
I'upper). The diagonal 80 is located at 59.2' and 31.1, respectively.

within experimental error (see Table II), and seem to
establish that these effects are associated with closed
trajectories on the Fermi surface.

Near the a axis, in sample CB1, an additional period,
shown in Fig. 11, was observed which appears to be
nearly a second subharmonic of the dominant oscil-
lations. This frequency F'= 6.0 (kOe mm) ' was of low
amplitude and was not found in the other specimens,
perhaps because of misalignment.

Additional. measurements were made on a cylindri-
cal sample CR1 with a diameter of 1.46 mm, and are
shown in Fig. 12. Here the reduced frequency F' is
given simply by F/d, where d is the diameter of the rod
and the results are in agreement with the prior measure-
ments. The amplitude of the oscillations, as expected, is
very small, due to the large diameter and cylindrical
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12I

Cat number of periods clustered together within a small
range of frequency. The oscillations vanish beyond 38'
and are not observed in the vicinity of the c axis.

Temperature Dependence —Mean Free Path
I
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Fr o. 11. Low-amplitude subharmonic
period observed in sample CB1 with H in
the ub plane.

geometry, but are easily discernible below 6 kOe. At
higher fields, de Haas-Schubnikov oscillations growing
exponentially in H, mask the size effect, since the latter
is of relatively low amplitude. The reduced frequency is
plotted in Fig. 13.

ac Plane

Measurements were made of the magnetoresistance
and Hall-e6ect oscillations in b-type samples in the
range 8,&38', where 8 refers the angle between the
magnetic Geld and the a axis measured in the plane
perpendicular to the current (ac). We wish to point out
that for these crystals the Hall oscillations were ob-
served in a wide region of the ac plane (in contrast to
the c-type samples) and were comparable in magnitude
to the resistance oscillations at corresponding angles.
The frequencies were identical for the two measure-
ments, in some cases the data being clearer for the Hall
oscillations. The spectrum of reduced frequencies for
sample 81 is presented in Fig. 14. For H~~a, four
periods have been identified: 11.2, 11.4, 11.5, and 18.1
kOe ' (see Table III). The three lowest terms corre-
spond to the group Ii1 through Ii4, but the additional
high-frequency term 18.1 kOe ' has not been found in
the c-type samples. The connectivity of the various
branches at 22' is ambiguous because of the large

For large magnetic fields according to the theory
developed in Sec. II, the frequency of the oscillations
should be independent of temperature, while the ampli-
tude depends most strongly upon T through the factor
expL —(d sece)/l(T) j, where l(T) is the bulk mean free
path of the conduction electrons. Thus, the logarithm of
the amplitude of the oscillations is expected to follow the
temperature behavior of the bulk resistivity which is
inversely proportional to /. At low temperatures, the
temperature dependent part of the resistivity due to
normal electron-phonon interactions is proportional to
T', and is ultimately dominated as T—&0 by the
electron-electron collisions which contribute a term
proportional to T'. Cochran and Yaqub" have found
an empirical temperature dependence of T24 for the
ideal resistivity of gallium in the range 2.26 to 4.2'K,
which presumably represents the combined effect of
these two mechanisms. Plotting the amplitude versus
T'4 in Fig. 15 gives good agreement with Cochran and
Yaqub's results.

For zero magnetic Geld we find from Sec. II that when
l is greater than or equal to the sample thickness, the
conductivity

28

~ (41)

This formula neglects scattering o6 the side walls of
the sample since it was calculated for only one relevant
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Pro. 12. Transverse magnetoresistance in the cylindrical
sample CR1. The rapidly growing oscillations above 5 koe are
due to the de Haas-Schubnikov eGect.

Pro. 13. Reduced frequency plot for cylindrical sample CRI.
"M. Yaqub and J. F. Cochran, Phys. Rcv. 137, A1182 {1965);

140, A2174 (1965).
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sample dimension. In the absence of a magnetic 6eld
both transverse directions are relevant and we can
average two expressions like Eq. (41). Replacing re, by
an effective mean free path l, we write

2lo/os dtI 1—-'sdt/I+ —,', (dt/I)'j
+d L1—ld /I+ '(d /I)'j—(42)

where 00 is the bulk conductivity which is proportional
to l. Substituting from Table I into this formula with
(4.2/1.2)"equal to 20.2 and l(1.2)/l(4. 2), we find from
the ratio of the resistivities ( 1.5) that for sample
CB1, l(1.2) is 14 mm, while for sample C1, l(1.2) is
18 mm. If one accepts these estimates, we 6nd upon
substituting back into Eq. (42) that a resistivity ratio
of 39 '/00 for sample C1 predicts for sample CB1 the
value, 29000. Since the drift velocity is highly aniso-
tropic, it is probably fortuitous that we And quantita-
tive agreement. In fact, as Cochran and Yaqub have
pointed out, many formulas having properties similar
to Eq. (42) can be used to correlate resistivity data
and mean free paths.

V. FERMI SURFACE

Although considerable information has accumulated
over the past few years, our understanding of the band
structure and Fermi surface of gallium is far from
complete.

The nearly-free-electron (NFE) model, which has
given a good 6rst approximation to the electronic bands
of many of the simple metals, was shown by Reed and
Marcus to be topologically consistent with the galvano-
magnetic measurements. Slater, Koster, and Wood, "
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Fro. 15. Temperature de-
pendence of the amplitude of
the oscillations in sample C1.
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on the other hand, concluded from a study of the free-
electron properties of the energy bands that the details
of the Fermi surface may be profoundly modified, and
de Haas —van Alphen studies by Condon" and by
Goldstein and Foner, "indeed, suggest that this model
is not suitable for describing many of the extremal cross
sections observed.

Recently, Wood" calculated the energy bands for
gallium by the augmented-plane-wave (APW) method
using a one-electron muffin-tin potential and found, as
anticipated, large deviations from the NFE model in
all bands, although certain pockets retained a free-
electron-like character. There seems to be some support
for the modified topology of bands 5 and 6 in this model
from the extremal areas determined by the de Haas —van
Alphen effect as well as from the radio-frequency size-
effect measurements of Fukumoto and Strandberg. "
Magnetoacoustic experiments, by Bezuglyi, Galkin, and
Zhevago" on the other hand, have confirmed the exis-
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Fxo. 14. Reduced frequency plot for sample 81
with B in the ac plane.

Fro. 16. The Brillouin zone for gallium showing the symmetry
points in the notation of Slater, Koster, and Wood.

"J.C. Slater, G. F. Koster, and J. H. Wood, Phys. Rev. 126,
1307 (1962).

's J. H. Condon, Bull. Am. Phys. Soc. 9, 239 (1964)."A. Goldstein and S. Foner, Phys. Rev. 146, 442 (1966)."J.H. Wood, Phys. Rev. 146, 432 (1966)."A. Fukumoto and M. W. P. Strandberg, Phys. Rev. 155,
685 (1967).

'7 P. A. Bezuglyi A. A. Galkin, and S. E. Zhevago, Zh. Eks-
perim. i Teor. Fis. 47, 825 (1964) t English transl. : Soviet Phys. —
JETP 20, 552 (1965)j.
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Fn, i7. The 7th- and 8th-band surfaces of the NPE model for
gallium as given by Reed and Marcus. The pockets located at the
zone edges in the 7th band form the butterflies in the extended zone
scheme, and the corresponding sections in band 8, the cigars.

tence of free-electron-like sections in the 7th and 8th
bands located at the symmetry point I on the edge of
the hexagonal Brillouin-zone face (see Fig. 16). These
surfaces, referred to as the "butterQy" and "cigar"
(Fig. 17) have been observed. also in the de Haas —van
Alphen and rf size-eGect measurements and seem to
follow the NFE model about as well as the APW pre-
dictions. Similar pockets at the nonequivalent points
iY have not been observed experimentally and are
probably missing or at least greatly distorted as sug-
gested by the AP% calculations.

The orbital area A. and derivative (ciA/Bk, ),~ along
the direction of the magnetic field were computed as a
function of k, with H in the k,k~ plane, the region. where
the strongest effects were observed. The result of this
calculation for a tilt angle of 20' is plotted in Fig. 18.
The area in band 8 is maximal for the equatorial orbit,
k,=0, and decreases smoothly with k,. The orbit area
at the waist of the butterfly, on the other hand, is
minimal, and approaches a maximum just to the left
of the saddle point. Consequently, the butterQy gives
rise to two distinct sets of oscillations, one of which is
degenerate at 0' with the cigar period.

The orbits from which the size-eAect oscillations arise
are determined by the extremum properties of the
derivative (BA/Bk, ),~. From Fig. 18(c), the differential
area in band 8 vanishes at the waist and drops to an
absolute minimum at a small value of k,. The butterfly
also has an extremal orbit which cuts through the sur-
face near the point I. for small positive k„degenerate
with the cigar at O'. The derivative in this band is dis-
continuous at the saddle point and has a broad minimum
approximately two-thirds of the distance from the
point I. toward the tip of the lobe, nearly independent

TABLE III. Range of the subsidiary periods in the ub plane.

l ! t 1 f 1 I 1
I

0.25-

o~ 0.20-

~ o.lS-
UJ

~ O.lo-

0.05-

0.00-,
r I I

I I I

0.8-
I

O~
0.4- (c)

-0.8—

of 8. Additional periods of oscillation are possible due
to the discontinuity in the derivative at the saddle point
which is a limiting point of the hyperbolic type.

Figure 19 summarizes the main predictions of the
NFE model for these bands. The band-8 extremals
follow the primary-data periods in the range 0' to
55' remarkably well considering the di6erential nature
of the FS measurements. The frequency associated with
the body orbits on the butterfly, on the other hand, is
strongly 8-dependent and does not represent the data
in this region.

Frequencies F]p aI1d J y] in Fig. 5 may be identified
with the saddle-point orbits in the 7th band in the range
55' to 65'. A more likely explanation, however, is that
these frequencies, together with Ii7 and F~3 are associ-
ated with limiting point orbits on the cigar and "clarn-
shell" surface which results from magnetic breakdown
of the small spin-orbit-induced energy gap at the
hexagonal face of the zone. The limiting angles for
observing each of these four periods are given in Table
lII and compare favorably with the ideal angles pre-
dicted by the NFE model. The reduced frequency values
cannot be estimated since all limiting-point oscillations
would have the value 1.45 (kOe mm) ' determined by
the Fermi radius independent of 8. The discrepancies
are, nevertheless, in the right direction since the
influence of neighboring Bragg planes would enhance
the Gaussian curvature and, therefore, the character-
istic frequency.

The extremal orbits associated with the lobe were
observed experimentally only for values of 0 near
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Fzo. i8. Orbital area and derivative of the area as a function of
k, from the NFE model. The magnetic GeM is assumed to be tilted
20' away from the a axis in the ab plane. Curves (a) and (c) refer
to band 8, and (b) and (d) to band 7. Due to the inversion sym-
metry on k space there are other pockets corresponding to bands
8 and '/ which produce dA/dk, with the same magnitude hut
opposite sign (see Sec. II).
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90' even though the model predicts a large oscillation
amplitude for all 8 because of the nearly parabolic
character of the surface. This is probably due to the
relatively slow drift velocity v,p for small 8 which makes
the phase of the oscillating term in Eq. (32) very sensi-
tive to variations in sample thick. ness. Under such
conditions, neighboring regions in the size-effect
specimen would interfere and effectively provide a high-
frequency cutoff for the oscillations. These orbits have
been observed for H along the g axis in the ultrasonic
attenuation" with the magnetic field parallel to the
sound-propagation direction, and the characteristic
frequencies agree to within 10% with the model. For
H along b, the lobe orbits in the NFE model yield a
reduced frequency Ii'= 7.3 (kOe mm) ' and correspond
to periods F15 and F16 in the data. Data frequency F14
furthermore, seems to fit the saddle-point orbit 7(c)
on the model in this region.

In the APW model where the lobes of the butterfly
have shrunk down in size, the surface has been de-
scribed by Wood as a "cigar with a double pair of
wings. " Therefore, it is likely that the waist orbits on
this surface are modified in such a way that the dif-
ferential area plot of Fig. 18(d) resembles that for the
8th band, and together would account for two parallel
branches near the a axis for the c-type crystals (Fig. 5).
A third branch would be attributed to coupling of these
orbits through magnetic breakdown across the hex-
agonal face. Evidence for breakdown of the gap has
been found by Goldstein and Foner with H along
c in 6elds of 30 kOe or higher; however, it most
likely occurs at much lower magnetic fields in the
present case with H in the ab plane for small values of
8 since the turning points of the orbits in this geometry
are very close to the line JX along which the energy
bands are two-fold degenerate. Finally, the APW model
suggests the possibility of a fourth parallel branch at
the c axis from the band-5 sheet of the Fermi surface

which is similar in size and shape to the 7th-band
winged cigar.

a~;;= [1 (dr/d—&) tan8]ao„(dr),

,,'=[1—(d„/d ) tan8), (d„)
dg sin8

(43)

+2 sec8/(d~dr) dx 0;P(x csc8)x csc8. (44)

Evaluation of the integral in Eq. (44) yields

VI. EFFECT OP MAGNETIC-FIELD ORIENTA-
TION, SAMPLE SIZE) AND SURFACE

PREPARATION ON THE OSCILLA-
TORY AMPLITUDES

For all size eRects a coherent discontinuity in the
motion of the current carriers is required. This coherence
is supplied by the precise parallelism and smoothness
of the two opposing sample surfaces. Disuse scat-
tering of the electrons is required to give a definite
cutoff to the path integral in Eq. (5). That is, a col-
lision with the surface which interrupts the transverse
(to i) oscillatory motion of the electron must occur in
a layer which is thin compared with the distance
travelled in a cyclotron oscillation. In this section we
discuss and qualitatively improve some of the approxi-
mations of Sec. II which affect these considerations.

First we calculate the inQuence of the rectangular
cross section on closed orbits. From Fig. 1 we see, upon
considering the electrons moving along H, that only
those terminating at the upper surface along the length
d~-dt tang are eRective2P in contributing to ho.. In
addition there are contributions to 0-' from the electrons
originating on the left face and terminating on the upper
surface along the length d~ tan8 as well as from those
originating at the bottom surface along the length
d~ tane and terminating on the right face. These con-
siderations" and Eqs. (15) and (16) yield

0 e ~

2 vg~) p

dk,m*r g
n&1

(45)

. .p—0 s&'

k &0&p vr — 3vr r 3dp E 2vr

8(e)
+—

! ! dk*(m*) "r' 1+—tan8+
dr kkH) r &s

8ec—2 1+—tan8 Q n 'Im(n "'v,'"') +
n&1 h H

"J.A. Munarin, Bull. Am. Phys. Soc. 12, 332 (1967).

dk (m')' Q [1—1/(nor r)'jn ' lm(s' "'v '"') (46)
n) 1

vg )p

4' 1 tang( vrsr) 1 tan8 v sr)
dk, m*rs sP 1 vrsr —+ —

! 1—2 !
——— 1+2 —

! exp( dr/nr'r)—
dr dg E dr) drd~ -dr I

8e' (1 tan81 —(n~, r) ) Re(v;& "&n &"&)

1—vrsr!
vt Opp (dr d( 1+(neo, r)'1 1+(n(o,r)'

( 1 tang 2n&o, r ne, r Im(v; "'v, "')
+ 1 ~rsr! —+-

(dr dp ) 1+(n~,r)' 1+(no,r)'
which for long mean free path and large magnetic field (l))dr and co,r))1) becomes

2e'dr v, sv 1 dr 1dr ( 1 dr )
tan8 1——

v or)

Q n 'Re(~' "&v'"&)
&1
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FrG. T9. Reduced frequency predicted by the NFE model for the
butterfly and cigar surfaces located at L.

Equation (46) shows that for a sample with small cross
section the bulk conductivity is transformed into a
form which no longer is directly proportional to the
relaxation time or mean free path.

Reed and Marcus showed from their measurements
that the sixth-band "hole" FS has the topology of a
cylinder whose axis is parallel to the k. direction and is
the only surface capable of producing open orbits. "
For open orbits there are two components of the drift
velocity. In Eq. (19) we have already given the expres-
sion for v . The drift along the b axis is

ass= coso hK./27rns*+sing s ' (47)

for II in the ab plane. Thus, the open orbits can connect
(n) the parallel faces whose normal is parallel to the $
axis, as well as (tr) the adjacent faces, and (y) the op-
posite faces whose normal is parallel to the g axis
(those connected by closed orbits). For a particular
open orbit (n) prevails when

~
ttr%rs

~
&dr/dr, the

reverse inequality produces (p). When H is exactly along
the u axis, there is only a very thin band (LS,) of the
FS supporting open orbits (producing drift motion in
real space along the $ axis); these orbits are slightly
elevated from the central section and have considerable
drift velocity v~' with only a small oscillatory mo-
tion along the a axis (see Ref. 21, Figs. 14 and
15). When H is rotated toward the b axis, however,
there exist open orbits with ~~'=0 whose oscillations
v~'" cause the "holes" to move up and down from
the sample surface to a repeatable depth while they
are drifting along the $ axis. [Setting Eq. (19) to zero
and plugging into Eq. (47) shows, in this case, ass

=h&„/(2s.m*), as expected. ) This motion produces
current splashes under the vacuum-metal interface at
depths l =sp80/ro, in the metal. Such orbits are of class
(n) and have very complicated structure because of the
inany turning points within the interval E, (see Ref.
21, Figs. 14 and 15).The current splashes arise from the

places where v~= 0; they are very short in length due to
the small radius of curvature at these points.

The oscillations in the voltage which we observe in
the experiment are due to the motion of the electrons
back and fourth in the dc current Aowing in the sample.
For each completed motion (per cyclotron period) there
is no net energy absorbed by the electron (for long mean
free paths). The time of interaction of the electron with
the ith component of the dc current is determined by
the average radius of curvature on those portions of the
orbit contributing to the e;. In Sec. V we have identi6ed
many of the periods discussed in Sec. IV with the 7th-
and 8th-band electron FS located at the symmetry point
I. in the Brillouin zone (see Fig. 16).Keeping in mind
that the velocity is determined by the normal to the FS,
an examination of Fig. 17 shows that the radius of
curvature associated with eb is large, while v, is as-
sociated with small radius of curvature. Therefore
ho.„will be unaffected by the current splashes, while
Ao,„and Ao.,„will be diminished considerably due to
interference from these open-orbit current splashes.
%e associate the rapid diminution of oscillatory Hall
voltage for c-type samples when 0 &2' with this effect.
Mathematically, the inclusion of the skimming orbit
current sheets necessitates the elimination of Er(t) in
terms of the homogeneous E~ and E„";this step
(not included in Sec. II) links an orbit from one
piece of FS with the (self-consistent) electric field due
to orbits on another piece. For b-type samples a rotation
of H toward the c axis transforms open orbits into
closed ones; the only drift motion for closed orbits is
along H; this drift motion moves the current carriers
into the depths of the sample. Therefore, no cur-
rent splashes are produced by these orbits in a dc
experiment. "

One expects that class (n) open orbits would con-
tribute signals to the voltage oscillations we observe.
However, no frequencies were observed in our (CB1,
CA1, C1)-comparison experiments which would require
d~ rather than d~ for data reduction. From the theory of
Sec. II we see that for most of the orientations of H in
the ab-plane open orbits must not have been excited.
(The high-field growth in the resistivity oscillations are
due to 6nite radii orbits in a compensated metal where
o,' 1/Hs. ) When H was within 5' of the b axis, the

amplitude of the oscillations was not only reduced 50
times but exhibited a decay rather than growth with H.
These facts are consistent with expectations since in
practice it proves impossible to keep exciting open orbits
as H is rotated in the ab plane. "When H is not near
the b axis, a slight misorientation converts the open
orbits into extended ones which do not reach all the
way across the sample. The extent of the trajectory in
real space when H is misaligned by a small angle 58 is

"M. Ya. Azbel and V. G. Peschanskii, Zh. Eksperim. i Teor.
Fiz. 49, 572 (1965) LEnglish transl. : Soviet Phys. —JETP 22,
399.(1966)).
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given by40

d.,t,& (bkr) hc/(eH t18), (48)

where 8k~ is the size of the open-surface neck joining
one Brillouin zone to the next. For H along the b axis"
bkt=0. 39)&10' cm ' and d,„~&1mm for B&5kOe and
88&3'. However& for H near the a axis" 8k =0.03X 10'
cm—' and d,x&&1 mm for H~& 5 kOe and b8&~". The
extended orbits would still produce the current splashes
as described above, but would change the det 0' from
the open-orbit dependence H ' to the compensated
dependence, H 4. The nonappearance of class (n)
frequencies when H is near the b axis and open orbits
are excited may be attributed to the complicated motion
described above; it would give rise to high-frequency
oscillations which would be unobservable due to their
sensitivity to any surface irregularities. (See also the
discussion in Sec. V.) Pippard4' recently considered the
amplitude dependence of the conductivity oscillations
from a two-dimensional open orbit and found the II '
behavior which we see from Eq. (16) is just a conse-
quence of the two-dimensionality (dropping the k,
integration) and not the openness.

The amplitude dependence exhibited in Fig. 6 can be
qualitatively explained in the light of the discussion
given here and in Sec. II. The sharp rise in F6 in the
vicinity of 15' is probably due to signals from the saddle
point on the butterfly as discussed in Sec. V; this
behavior is very much like the description of Sec. II
LEq. (28)j.Otherwise the trend is a slow fall in ampli-
tude up to about 30' and then a rapid one to zero at the
body diagonal. Since

I
BA/8k,

I
is increasing to 26'

(Fig. 10) and sec8 is increasing, this behavior may be
understood from Eqs. (23) and (43) as a balance
between the increase expected from the (dA/dk, )4

factor and the decrease expected from the sece-depen-
dent factors. A complete understanding of the angular
dependence of the amplitude would require a Fourier
analysis over a much smaller field region so that the
amplitude of each component versus the (avera, ge)
field strength can be determined. Then a calculation of
(modified) orthogonalized-plane-wave (OPW) (8A/8k. )
and higher derivatives (where required for the formulas
of Sec. II) versus H orientation would have to be com-
pared with the data.

As H —+~ the compensated metal becomes trans-
formed into an uncompensated one due to the growth
of the small-coeKcient II-dependent term in D of Eq.
(38).However, before the onset of this "saturation" the
eRect of surface imperfections becomes important.
First we note from Eq. (2) that a discrepancy in the
thickness of the sample shifts the phase of the observed
oscillations. For example, a modification of 0.0001 in.

I. M. Lifshitz and V. G. Peschanskii, Zh. Eksperim. i Teor.
Fiz. 35, 1251 (1958) LEnglish transl. : Soviet Phys. —JETP 8, 875
(1959)j.

4' J. A. Munarin and Y. Eckstein, Phys. Rev. Letters, 19,
I426 (1967)."A. B. Pippard, PhiL Nag. 13, 1143 (1966).
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Fro. 20. First derivative of magnetoresistivity for sample
BA-II (Ref. 10) for H 7.4' from u axis in oc plane. Note that the
maximum amplitude for this specimen (which was sandblasted)
occurs at approximately 6 kOe. The de Haas —Schubnikov oscil-
lations are seen above j.0.5 kOe. The size-e6ect oscillations are
not seen with noticeable strength above 10.5 kOe.

in a 1-mm sample causes a phase shift of 10.5' at 1 koe.
This makes evident the necessity of careful surface
preparation. If the sample surface is perfectly smooth
and free of stresses, one might worry about the eRect
of the specular scattering of electrons. If the electron-
cyclotron radius is large compared with surface imper-
fections, it sees a Qatter surface and the probability of
specular scattering is larger. As the magnetic field
strength is increased and the cyclotron radius becomes
comparable and less than the extent of surface blotches
the specularity would tend to disappear. However, in
metals, small-angle scattering processes are important
and in most practical cases there is a smearing out of the
specularity. Specular scattering of the electrons at the
metal-vacuum boundary implies conservation of the
momentum parallel to the interface. In general this
does not imply continuity of the transverse velocity;
thus in our case this is equivalent to diffuse scatter-
ing. 4s ~ For a nonspherical FS (unless the FS is a closed
surface of revolution about the H direction) in-valley
specular scattering (staying within the same band) does
not conserve transverse velocity. Only if there is a
special relationship of the s axis (H direction), t' axis
(normal to sample surface), and the crystal lattice so
that the reAection of the electron across the Brillouin
zone (intervalley scattering) under specular scattering
(conservation of transverse momentum and reversal of

pr) means a continuity in m ur and transverse velocity,
will the amplitude of the resistivity oscillations be di-
minished

I
because of the unsharp cutoff of the path

integral of Eq. (5)j. When the Sondheimer oscillations
(limiting-point electrons with infinitesimal radii) are
being observed from a FS of revolution with II parallel

4' We are thankful to R. F. Greene for discussing these points
(private communication).

'4 R. F. Greene, Phys. Rev. 141, 687; 141, 690 (1966).
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l I l i i i i 21 we show for comparison the magnetoresistivity oscil-
lations for a b-type sample with a "smooth" surface. Its
amplitude is still growing out to our highest 6elds.

VII. SUMMARY

SAMPLE BA-l I

8 IO

MAGNETIG FIELO (koe)

FIG. 21. First derivative of magnetoresistivity for sample B1
for II in same approximate orientation as Pig. 20. This sample
was not sand-blasted. After a node at 9 koe the size-effect oscil-
lations continue growing in amplitude to largest fields.

to the f axis, ' the effects of specualr scattering will

probably be negligible since the specularity is least for
those electrons moving straight at the boundary.

In most of our experiments the amplitude of the oscil-
lations continued to increase out to the highest fields
(16 koe). Foner and McNiff" (1967) have observed the
increase in the amplitude of the oscillations out to 42
koe followed by a continuous decrease to their highest
fields (95 koe). We reexamined some data previously
taken from b-type samples which had their surfaces
sandblasted with particles 23 p, in diam. See Figs. 7 and
20. We notice that curves Bj and 82 in Fig. 7 show
exactly the same behavior (except occurring in the
range 4 to 12 koe) as that shown in Foner and McNiff's
Fig. 2 (1967)."It is interesting to note that as II in-
creases both the cyclotron diameter and the distance
travelled by the electron during one cyclotron period,
2vvro/r0, = (F'H) ' )from Eels. (2) and (40)$, become
comparable to 23 p in the range 5 to 7 kOe. For larger
6elds the surface irregularities incoherently scatter the
electrons and reduce the oscillation amplitudes. In Fig.

These results clearly establish that size-dependent
oscillations in the transport properties occur for regions
of the Fermi surface where (cia/elk, ),~ has an extrernum,
as well as for those which contain elliptical limiting
points. In this case, however, the amplitude dependence
in the high-6eld limit may be considerably modified
according to the nature of the singularity and can be
correctly established only by taking into account the
dependence on magnetic field of the entire conductivity
tensor (compensated, with open-orbit contributions, or
uncompensated), the boundary scattering of the reso-
nant electrons by the surface imperfections, and open-
orbit current sheets. The size-dependent oscillations in
gallium have been studied in detail, and the main
branches correspond quite well to the theory and seem
to arise from orbits in the 7th-, 8th-, and possibly 5th-
band sheets of the Fermi surface. An improved model
will be needed to establish this relationship unequi-
vocally since the differential nature of the effect is
sensitive to small distortions in the geometry. Similar
oscillatory effects are expected to occur in the lens-
shaped band surface of the divalent hexagonal metals as
well as in their butterQies. 4'
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