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"Slater=6" calculation does show a neck, while the
"Slater= 1"calculation does not.

Unlike the neck radius, the belly radii are far less
sensitive to the location of the Fermi level, and the
"Slater=6" results for the belly radii are in good
agreement with those reported by Sohm and Ksterling. 4

The four peaks in the d band observed by Krolikowski
are also present in the "Slater= s" curve (see Pig. 2).
Since the experimental curve is based on an optical
density of states, the relative heights of the peaks are
not necessarily expected to agree with the density of
states from the present calculations. However, the
locations of the peaks with respect to the Fermi level
should be, and are, in agreement.

4. CONCLUSION

It is concluded that although the self-consistent APW
method of calculating the energy band structure of
silver yields results that, in general, are in reasonable
agreement with experimental findings, that agreement
is improved when the Slater exchange term is reduced to
6 of its original value.
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The Knight shift of the Hg"' nucleus in oriented single crystals of mercury has been measured at T= 1.2'K.
The isotropic shift given in terms of vHN, the resonant frequency of the Hg"' nucleus in the metal, and
vn the resonant frequency of the deuterium nucleus, is (vn)293 K/(vn, )~.2 K=0.83856&0.00003. The
anisotropic Knight shift was measured and led to the result (Kr—Kn)/E';, 0 ——7.8+0.3 jo. Field-dependent
oscillations of the Knight shift were not seen. Theoretical equations for the oscillation amplitude are dis-
cussed for particular oscillation frequencies in Hg and Sn.

I. INTRODUCTION

'T was demonstrated in 1962 by Sagalyn and Bof-
f - man' that with proper attention to the relevant
considerations, nuclear resonance signals can be seen
without great difficulty in single crystals of metals.
Since their original work on Cu and Al, work has been
reported on the noncubic metals tin, ' cadmium, ' and
thallium, 4 and recently on an oscillatory Knight shift
in tin' and cadmium. ' We have added to the list the
nuclear resonance of the 16.9/o abundant isotope Hg"'
in single-crystal mercury.

Our original intention had been to search for a Geld-
dependent Knight shift such as has been successfully
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seen in tin5 and cadmium6 subsequent to the beginnings
of our work. We will report the negative results of our
e6ort in Sec. III of this paper. In addition, we have
measured both the isotropic and anisotropic Knight
shifts at liquid-helium temperatures. The isotropic shift
of Hg'" has been measured~ accurately by observation
of the resonance frequency and Geld in the liquid state
(room temperature). The isotropic shift has also been
measured, ' with a relatively large uncertainty of 2%
at helium temperature in polycrystalline mercury. The
anisotropic shift has previously only been inferred in
Ref. 8 from the linewidth and line shape in polycrystal-
line samples at relatively low fields and temperatures.

Problems involving experimental technique played a
signiGcant role in the conduct of the experiment. We
had to overcome a variety of interconnected difficulties
brought about by the low abundance of the only spin-~~

isotope, Hg"', the nuclear-resonance techniques re-
quired when working with oriented single crystals, and
the highly inconvenient fact that mercury is liquid at
room temperature. These questions will be discussed
brieQy in Sec.II of this paper; for many of the details we

7 W. E. Blumberg, J. Eisinger, and R. G. Shulman, J. Phys.
Chem. Solids 26, 1187 (1965).

s F. Reif, Phys. Rev. 102, 1417 (1956); 106, 208 (1957).
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refer the reader to the thesis' of one of us (R. W. W.).
Section III describes the measurement of the Knight
shift and the search for field-dependent effects, and these
are all related to appropriate theory in Sec. IV.

II. EXPERIMENTAL TECHNIQUES

A. Electronics

The experimental arrangement is shown schematically
in Fig. 1. A super-regenerative oscillatorM (SRO) was
used to excite and detect the Hg"' resonance in single-
crystal mercury, in conjunction with audio-field modu-
lation and synchronous detection equipment. For most
of the data to be presented later, the SRO was operated
with a duty cycle of —,', a quench frequency of 40 kHz,
and with approximately 30 V peak to peak of rf on the
sample coil. Measurements of the radio frequency and
external magnetic field at resonance were done in the
following manner. The SRO was locked to a stable
external source of rf while the Hg'" resonance was being
recorded, and the frequency of the external source was
measured with a conventional frequency counter. The

6eld measurement was done by observing the nuclear
resonance of Al2' in an aluminum metal powder sample
placed inside the Dewar and around the mercury
sample. The aluminum resonance was detected with a
Robinson box," and the frequency of this cw detector
was measured directly with a frequency counter. Since
the Knight shift of aluminum is known at helium
temperatures, "relative to the room-temperature value,
this frequency measurement yielded the value of the
external field at the sample site. The mercury sample
and aluminum sample were small in size (less than
1 cm in length and diameter) so that the external field
measured with the aluminum metal differed from the
actual external field at the mercury sample by less
than 1:10'.

B. Samyle Considerations

Because mercury metal is liquid at room temperature,
single crystals of mercury are diKcult to work with, and
special techniques had to be empolyed to obtain the
samples used in this work. The samples were grown
from oriented seeds; the technique employed in obtain-
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Fxo. 1. Equipment used to display and measure the Hg'" and Al"resonance in the metal.

R. W. Weinert, Ph.D. thesis, Carnegie-Mellon University, 196'7 (unpublished).
'q A. Narath, W. J. O' Sullivan, W. A. Robinson, and W. W. Simmons, Rev. Sci. Instr. 3S, 4j6 (l964).
» F.&N. H. Robinson, J. Sci. Instr. 36, 481 (1959).
"D.W. Feldman, Ph.D. thesis, University of California, 'Berkeley, 1959 (unpublished),



KNIGHT SH Il T IN SINGLE —CRYSTAL Hg 713

ing the seed crystals is discussed in Refs. 13 and 14.
Mercury metal freezes at —38.5'C into a rhombohedral
crystal structure with a= 2.9963 A and u= 70 44.6' at
4 K."The two samples on which experiments were done
were grown from seeds with the threefold L111] axis
and with the L011]axis along the cylindrical seed axes,
respectively. All of the mercury metal used in this work
was stated to be 99.99999% pure at obtained from the
United Mineral and Chemical Corporation.

Since poor signal-to-noise was anticipated, the rf 611-

ing factor was an important consideration when making
the coil forms. For obvious reasons no attempt was
made to wrap the rf coil directly on the metal as has
been done for some metals, " but the coil forms used
were made of extremely thin-wall C-8 Epoxy tubes. The
sample on which the anisotropic Knight-shift data were
taken was seeded from the bottom and was split up
into four pillars of metal in the interior of the rf coil.
Since each pillar grew from the same seed, the orienta-
tion of each was identical, as was veri6ed by x ray. For
this sample the L011) axis was parallel to the coil axis
and perpendicualr to the external magnetic field IIp to
within 2'. The sample used for the oscillating Knight-
shift search was grown in a right circular-cylinder coil
form made of C-8 Epoxy with a wall thickness of 0.003
in. The coil consisted of 60 turns of No. 40 copper wire
seated in Epoxy. For this sample the t 111] axis was
parallel to the coil axis to within 2 . For both of the
above samples the signal-to-noise ratio at T~1.2 K and
Hp 16 kG was between 10 and 20 when a 4-sec time
constant was used at the output of the lock-in detector.
Under these same conditions the Hg"' resonance in
the single crystal could not be seen with the Robinson
box or a Knight box. '

(v~i/vHs) i.s'x ——1.42571&0.00002. (2)

(vzi) i.s'K must now be related to the room-temperature
vD. The Knight shift of aluminum as a function of
temperature has been independently measured by Feld-
man' and by Borsa and Barnes. In Ref. 12 it is found
that (BE/Ev)~i (1.75&——0.05)% and from Ref. 20 it is
found that (BE/Eg)~i= (—7.3&2.1)% where BE
=(E& E4 s'K—). As . yet this discrepancy has not been
resolved. Magnetic effects caused by the Dewar may
be one explanation. Feldman did his experiment in such
a way that Dewar effects were rendered unimportant,
whereas Borsa and Barnes do not discuss Dewar effects.
Because of this we will work out our results using Feld-
man's data. We now need to know E~ for aluminum
in order to calculate (v~i)ii/(vgi)i. s'K. Using our Eq. (1)
and the published value" (v~~/vn) ii= 1.69750&0.00008
for AlCls in an aqueous solution, we find (Eg)~i
=(0.161&0.006)%. Other values which use aqueous
solutions of A1C13 as the reference compound are
(0.161&0.001)%%u~,

" (0.162&0.001)'%%u~,
" and (0.150

&0.001)%%uo.
' Since our calculation is fairly insensitive

to the value of (Eg)si, we will not discuss the differ-
ences in these values but merely state that we use the
most accurate 0.161%%uo value. Therefore using (BE/Eg) p, &

= (1.75&0.05)%%uo and (Es)Al = (0.161~0.001)%, we
find

vD at room temperature. The result of this measurement
1S

(v~i/vn) g = 1.70024&0.00002,

where R denotes room temperature. Secondly, the ratio
of the resonant frequencies of Hg'" and aluminum
were measured at T= 1.2 K. The result of this measure-
ment is

III. EXPERIMENTAL RESULTS
(vs i) z/(vxi) i.s'I = 1.000028&0.000001. (3)

The isotropic Knight shift of Hg'" has previously
been measured" "at room temperature using Hg(NOs) s

as the diamagnetic reference compound. The resonant
frequency of the Hg'" nucleus in the metal at room
temperature has also been measured' in terms of the
resonant frequency of the deuterium nucleus in D20.
The low-temperature results reported here will be ex-
pressed in terms of the ratio of the deuterium frequency
(vn) in Dso to the metallic Hg resonance frequency
(vH, ).Measurement of this ratio was a two-step process.
First the resonant frequency of the aluminum metal
(v~i) was measured and compared with the measured
"G. B. Brandt, Ph.D. thesis, Carnegie-Mellon University,

1966 (unpublished)."J.M. Dishman, Ph.D. thesis, Carnegie-Mellon University,
1967 (unpubhshed)."C.S. Barrett, Acta Cryst. 10, 58 (1957)."H.E. Schone and P. W. Olson, Rev. Sci. Instr. 26, 843 (1965).

"W. D. Knight and R. V. Pound, Rev. Sci. Instr. 21, 219
(195O).

"W. D. Knight, A. G. Berger, and V. Heine, Ann. Phys.
(N. Y.) 8, 173 (1959).

W. D. Knight, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1956), Vol. 2, p. 98.

With the noted discrepancies so far the stated accuracy
of the above equation has questionable significance.
Finally, combining Eqs. (1), (2), and (3) we find

(vn) g/(vHs) i.s'K= 0.83856&0.00003. (4)

In obtaining these values for metallic samples, the
center of the resonance line had to be identified in the
presence of the asymmetry associated with the large
sample size to skin-depth ratio. '4 In spite of the corn-
monly accepted lore that line shapes from a SRO are
not to be trusted, we observed that the aluminum res-
onances at room temperature were of normal shape
and width on the SRO, just as if a marginal oscillator
detector had been in use. The line shapes at low tem-

~0 F. Borsa and R. G. Barnes, J. Phys. Chem. Solids 2?, 567
(1966).

2' R. E. Sheriff and D. Williams, Phys. Rev. 82, 651 (1951).
"H. S, Gutowsky and B. R. McGarvey, J. Chem. Phys. 20,

1472 (1952).
2' D. R. Teeters, Ph.D. thesis, University of California, Berkeley

1955 (unpublished).
24 P. S. Allen and E. F. W. Seymour, Proc. Phys. Soc. (London)

82, 174 (1963).
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made concerning the change in (E)Hsi» as mercury
changes state, this question remains open.

The anisotropic Knight-shift data are shown in Fig. 2.
The experiment was done at an external field of approxi-
mately 13.73 kG and a temperature of 1.2 K. The solid
curve corresponds to E,„P~(3 cos'()—1)j, where () is the
angle between Hs and the threefold (111j axis, and,
from the data,

E„=(—0.140&0.002)%. (6)
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FIG. 2. Anisotropic Knight-shift data for the Hg"' nucleus in
single crystal mercury. The absolute value of the internal field at
the nuclear site corresponding to the O-G ordinate is Hp(1+E;,,o).

perature in Hg also had the normal appearance appro-
priate to an admixture of the dispersive and absorptive
mode. We used the correction theory of Ref. 7, which
is based entirely on the asymmetry of the resonance
itself, to determine the line-center position.

From the publishedr values, (vn/vrrs)a=0. 838247
&0.000015 and (Err) I, (2.724&0——.005)%, and our
data, we obtain

= (1.4+0.2)%,
Eg )ns'»

(5)
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FIG. 3. Oscillating Knight-shift data for P orbits in mercury for
T~1.2'K and H0~16 kG. Hp is in the basal plane and along the
(211j.The period of the p oscillation is also shown. The different
points represent separate runs.

"B.Cognac and J. Brossel, Compt. Rend. 249, 77 (1959).

where E is the isotropic Knight shift. We use the value
of (Eg)Hs»i of Ref. 7, since it is the most accurate value
we could 6nd in the literature. It was calculated in Ref.
7 by comparing their measured g value of Hg'" in the
metal to the free-atom g value. "Knight" et al. report
no measurable change (+2%) in the Knight shift of
Hg"' as the metal changes state from liquid to solid.
Since the magnitude of the fractional change in (E)ns»i
between 1.2 K and room temperature is only 1.4%
(0.8% if the Al data of Ref. 20 were used), it is dificult
to say whether this change is in fact due to temperature
or the change of state which occurs between the two
temperatures. Until a more accurate measurement is

where E~~=E;„+E, and E,=E;» ,'E,„.T—h—e nega-
tive sign indicates that the electron distribution about
the Hg'" nucleus, for electrons with energy near the
Fermi energy, is contracted along the L111) axis and
elongated in directions perpendicular to this axis.

The oscillating Knight-shift data are shown in Fig. 3.
The orientation of the Geld was in the L211) direction
relative to the crystalline axis of mercury. The Grst
zone orbits in reciprocal space responsible for the large
de Haas —van Alphen oscillations, seen when Ho is in
this direction, have been labeled as P orbits by Brandt
and Rayne. ' The same notation is used here, and the
expected period (in G ) is shown in Fig. 3. The search
was carried out at temperatures between 1.18 and
1.22 K and in the highest available external field of
16 kG. From the data we conclude that the fractional
peak-to-peak amplitude of any oscillations is less than
6&(10 '. Other high-frequency oscillations, labeled n
and r in Ref. 25, were searched for and were not seen.
We did not expect to see these oscillations, for, using
the estimates of Sec. IV they should be roughly 10'
times smaller in amplitude than the P oscillations.

IV. DISCUSSION

A. Knight Shift

We will concern ourselves here entirely with the
anisotropic Knight shift. The most recent discussion is
given by Boon, 2~ and we phrase our discussion in terms
of his. The anisotropic Knight shift may be delned in
terms of a second-rank tensor K by separating out the
isotropic part:

Eiso= s TrK. (8)

The remaining traceless component has, in the repre-
sentation in which K is diagonal, the xx, yy, and ss
elements ——,'E, , ——,'E, , and E, , respectively. Mer-
cury falls into the class of uniaxial systems for which

"G. B. Brandt and J. A. Rayne, Phys. Letters 15, lg (1965);
Phys. Rev. 148, 644 (1966)."M. H. Boon, Physica BO, 1326 (1964).

A convenient measure of the magnitude of the anisot-

ropy is given by

~

~ ~

+ll —+~ = (—7.8+0.3)%,
+iso T~1.2 K
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Soon shows that

K(8) =Z, Pss(cos8),

F'(r') is demonstrated explicitly by Boon; he shows that
it is a basis for the identity representation of the point
group of the crystal. It is this fact which Boon uses to
classify the angular dependences of the Knight shift
for various crystal classes. F'(r') may be written in terms
of eigenfunctions ip„(r') of the electron Hamiltonian,
which consists of the usual kinetic energy, potential
energy, and Zeeman terms. Boon's F'(r') is thus

F'( ') =gpss, s Q (af/ae)„)y, (r') ~', (10)

where g is the usual electron-magnetic moment, po is
the Bohr magneton, and f is the Fermi function whose
argument is the usual energy e~ associated with iP„(r')

It has frequently been conventional to discuss the
anisotropic Knight shift in terms of an expansion of

1t ~(r') in angular-momentum eigenfunctions of the
Hamiltonian. It is clear from the orthogonality of the
Legendre polynomials that the angular part of F'(r')
must transform as Ps'(cos8); otherwise the coefficient

E, vanishes. Early discussions" " of the anisotropic
Knight shift were couched entirely in terms of the cross
term in (iP„(r')

~

s which came from a product of l= 1
functions. Limited to this one term, the anisotropic
Knight shift, combined with knowledge of the fractional
s character from the isotropic Knight shift, seemed to
give satisfying information on the fractional p character
of the conduction-electron wave functions. We merely
wish to point out here that the s-d cross terms also
transforms as Pap(cos8), and there is no reason to believe
that the magnitude of the s-d term is negligible. This
comment has also been made by Jones and Williams'
with reference to tin. Indeed, an analysis in Ref. 9
which deliberately ignores the s-d cross term gives non-

sensical results. Thus the two pieces of experimental
information E;„and E,„are insufhcient to specify more
of the coeKcients of the wave-function expansion than
does E;„by itself in the usual way when considering
mercury.

In addition, we show in the Appendix that anisot-

ropy of the g tensor, and related anisotropy of the
conduction-electron susceptibility, is also a mechanism
for the anisotropic Knight shift. This point is implicit
in the appendix of Boon,"where the eGects of spin-

~ N. Bloembergen and T. J. Rowland, Acta Met. 1, 73k (1953)."'L Masuda, J. Phys. Soc. Japan 12, 523 (195'/).

where Pse(cos8) is an associated Legendre polynomial;
8 is the angle between the applied field Ho and the c
axis (or rhombohedral axis) of the crystal. The constant
E, is given by the integral

F'(r')
E, = d'r' Pss(cos8') .

r'3

orbit interaction are calculated. We note for complete-
ness that Boon's appendix shows that if the spin-orbit
interaction is included, higher harmonics than Pse(cos8)
are to be expected in the angular dependence; indeed,
he points out that in principle isotropy is not be to
expected in the cubic system because of these terms.
Our data are not accurate enough to warrant analysis
in terms of harmonics higher than I'2 however.

0'y osc=
4s'1Vp p' ( m 1

~51 PpHf p n

sin(norns*/m) cos(mph p/pp*~ —47r)

n '" sinh(ns'k T/pp*B)

To obtain a meaningful number for our particular
circumstances it is necessary to interpret and modify
this formula. The shielding constant (o~)„, has been
related to the oscillating part of the paramagnetic sus-
ceptibility by the equation

)-.= l(g )(X.)-' (12)

This relationship is valid for a uniform electron density;
use of the relationship in a real metal is, according to
Das and Sondheimer, "and estimate only. In the spirit
of that relation, Stephen has replaced the conduction
electron density at the nucleus (~ ftp& ~

')s~=Pz by the
factor 1/V, where V is the atomic volume. As he recog-
nizes, the use of 1/V in place of P r substantially under-
estimates the size of the paramagnetic term. We ar-
bitrarily modify his (a„)„,by multiplying by PzV.
X/V is now the density of electrons participating in the

30 T. P. Das and E. H. Sondheimer, Phil Mag. 5, 529 (1960).3' M. J. Stephen, Phys. Rev. 123, 126 (1961);see also S. Rod-
riquez, Phys. Letters 4, 306 (1963).

B. OsciHatory Knight Shift

The possibility that the Knight shift might be Geld
dependent in pure metals at low temperatures was 6rst
recognized in print by Das and Sondheimer. ' Since
their suggestion, the eflect has been calculated on a
free-electron model by several investigators, most corn-
pletely by Stephen. " We wish to employ Stephen's
formula for the Geld-dependent paramagnetic shift o.„
to estimate the size of the effect for P orbits in Hg with
the external field in the L211jdirection. We also wish to
compare the paramagnetic shift with the diamagnetic
shift O.q, which according to Stephen, is much larger. As
we shall see, Stephen's estimate that (o„/os)((1 is some-
what in error, at least as we interpret it for Hg, and the
inequality is probably reversed. We will show that
Stephen's formula, modi6ed slightly, does in fact predict
oscillation amplitudes less than we could have seen ex-
perimentally for P orbits in mercury, and gives reason-
able agreement with experiment for the recently
observed Knight-shift oscillators in white tin. '

Stephen writes the following result for (o „)„,:
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p orbits. We can estimate E/V by using the formulas
derived by Shoenberg, " which relate de Haas —van
Alphen frequencies to electron densities, and the results
of Brandt and Rayne's de Haas —van Alphen experi-
ments on Hg. t s is the Fermi energy for the p electrons
and pe* ——(m/m*)pe is the Bohr magneton ps multiplied

by the inverse effective-mass ratio for the p electrons.
The ratio fe/ps* is most usefully written as

l e/pe*= 2p p(1/H), (13)

where vp(1/H) is the frequency (in G) of the P de Haas-
van Alphen oscillations, for which we use the experi-
mental data. Keeping just the m=1 term in the sum,
we can rewrite Eq. (11):

(o „)...= —4s'

sin(em*/m) cost (2s/H)vp ——,'sj
X (14)

sinh(s'k T/pe*H)

The isotropic Knight shift, E= s(8')X+~V allows

one to estimate the electron probability density at the
nucleus. A reasonable estimate of X„, obtained in a
number of ways, ' is X~=1.5)&10 ' cgs volume units.
Using this value of &„and the measured isotropic
Knight shift we obtain Ps V~2000. Using E/V =0.10
X10ss/cms, 7=1.2'K, H=16000 G, vp(1/H)=10. 8
X10'G, andm*/m=0. 23, weobtain(or)„, 1.0X10 ',
i.e., the oscillatory shift in the resonance position at
16 kG should be roughly &0.2 G. This estimate rests
on the additional assumptions that the fractional s
character of the P electrons is the same as the average
s character over the entire Fermi surface and that T*,
the effective-scattering temperature, "is zero. From the
Geld dependence'6 of the de Haas —van Alphen oscillation
amplitude for p orbits in mercury samples very similar

to the one we used in this work, T* was found to be
about 1 K. Since our experimental upper limit on the
peak-to-peak amplitude (&3X10-') of the Knight-shift
oscillations is slightly more than the predicted oscil-

lation amplitude for T*=0, a value of T*=1 K would

certainly not allow us to see the oscillations experi-

mentally according to the above estimate. For T*=1 K,
Eq. (14) yields o„0.12X10 s. The fractional s charac-
ter of the p electrons cannot be calculated unless the
Knight-shift oscillations are seen and an accurate value

of T* for the particular sample is known. All that can
be said is that the theoretical estimate above is not a
gross underestimate for the particular sample and oscil-

lations that we searched for in mercury.
The conclusion is unchanged upon consideration of

(os)„,. From Stephen, we can write the ratio of the

8~ D. Shoenberg, in Progress il I.om TemPerature Physics,
edited by C. J. Gorter (North-Holland Publishing Co., Amster-
dam, 1957), Vol II, p. 226.

"R.B. Dingle, Proc. Roy. Soc. (I.ondon) A211, 500 (1952);
A211, 517 (19.52); A212, 38 (1952); A212, 47 (1952).

amplitudes of the oscillating terms:

TABLE I.A comparison of theoretical amplitudes and experimental
amplitudes' (a,)„,for the oscillating Knight shift in Sn.

Orbit and Geld (e'~)O.~X10' (a'd)08cX10' (e)o.oX10'

3S, (10l G)
3S, (16l G)
3a, (10 kG)
382 (16 kG)

1.6
2.7
0.6
1.2

3.2
4.3
0.6
1.0

1.3
1.0
0.3
09

(cr,)„,X10'

3.5
1.5
2.5
4.0

a See Ref. 5

"M. L. Glasser, J. Math. Phys. 43, 158 (1964)."M. D. Sta6eu and A. R. de Vroomen, Phys. Status Solidi
23, 675 (1967);23, 683 (1967}.

's A. V. Gold and M. G. Priestley, Phil. Mag. 5, 1089 (1960).

=0.01Py V= 20 (15)

if previous numbers are used. In the above equation,
I(1)=0.3."Thus, unless the fractional s character of
the p electrons is less than 5 jo of the average, the dia-
magnetic shift is negligible.

Since oscillations in the Knight shift were recently
seen' in white tin, we wish to use Stephen's equations,
as we have used them above, in order to see if there is
agreement between theory and experiment. The tin ex-
periment was done at T=1.2'K in fields between 10
and 16 kG, directed along t 001], on very pure samples.
Because of the very high resistance ratio stated for the
tin samples, T* considerations will be ignored in what
follows. The de Haas —van Alphen frequencies needed to
calculate E/V for the 38 orbits of tin can be found in the
recently published work of StaQeu et al." and m*/m
values can be found in the work of Good and Priestly. '6

I'&V is calculated by using the published values of
E;„(Ref.2) and X„(Ref. 19) for tin. Using (1V/V)ss
=0.33X10"/cm', Ps V=450, (m*/m)ss, =0.095, and
(m*/m)», ——0.15, Eqs. (14) and (15) yield the results
shown in the first four columns of Table I. The Gfth
column contains the experimental values.

Since o„).„os)„,for the 38 orbits of tin in the Geld
range between 10 and 16 kG, o)...=a~)„,+a-p)„, is
the quantity which should be compared to the experi-
mentally observed o,)„,. It should be emphasized that
if the amplitudes of O„and 0.~ are comparable, the dif-
ferent phases of the trigonometric factors they multiply
must be considered in assessing the over-all Geld depen-
dence of the oscillatory shift. In general, the Geld de-
pendence under these circumstances will not be express-
ible terms in of a power of H. The agreement between
theory and experiment expressed in Table I is quite
good when it is realized that the average I'I:V was used
and not (Ps V)ss. The good agreement might suggest
that (P~V) ss is not too far from the average value. In
fact, if a value (Ps V)ss=4(Ps V), were used the agree-
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Using thermally averaged double-time Green's functions, we develop a theory to calculate the effect of a
small concentration of nonrandom mass defects on the vibrational properties of a monatomic crystal. The
low-concentration approximation used is shown to be equivalent to that used by Elliott and Taylor for the
random-impurity case, correct to 6rst order but only approximately correct to higher orders in the concen-
tration. This simple theory is used to 6nd a shift of the resonant or local-mode peak due to short-range order
among defects, which might be seen by infrared absorption in imperfect insulators. The integrated absorp-
tion is shown to be independent of the ordering for charged defects, but not for uncharged defects which
induce optical absorption through atomic deformations. The general expression derived for the inelastic
coherent neutron scattering cross section includes a branch-mixing term which disappears for scattering
vectors of high symmetry. Using the Debye approximation (for which the cross section can be written in a
self-energy form) and the appropriate short-range order parameters from the linear theory of Clapp and
Moss, we calculate the shifts and widths of the neutron scattering peaks for Cu0. 907Au0. 093. The agreement
with the experimental results of Svensson, Brockhouse, and Rowe is not good. A small clustering of light
mass defects, represented approximately by nearest-neighbor correlations, is shown to broaden a low-fre-
quency impurity band but to have relatively little effect on a high-frequency local mode.

I. INTRODUCTION

HEN defects are introduced into a crystal, strik-
ing changes in the vibrational properties of the

crystal may occur. Uibrational modes may appear at
frequencies above the band of perfect-crystal vibration
frequencies, or the band itself may be altered. These
effects have been observed experimentally in measure-
ments of the infrared absorption coefficient and neutron
scattering cross sections. Their thermodynamic con-
sequences have been apparent in measurements of speci-
6c heat, thermal conductivity, and thermopower. On
the whole, the theories of imperfect-crystal vibrations
which have been developed are successful in explaining
the general features of a wide variety of experiments
when the defect atom concentration c is low and when
the effect of a single defect extends only to the nearest
or second-nearest neighbors. In the simplest approxi-
mation, a foreign substitutional atom is treated as an
isolated mass defect with force constants unchanged.

The Green's-function theory provides a way to sum
exactly all the phonon scatterings from a single defect.
At 6nite defect concentrations, however, the interfer-
ence between phonons scattered by different defects
may become important. Since Dyson's' paper on the
vibrations of a disordered harmonic chain, many
authors have tried to account for these interference
eGects in one, two, and three dimensions. ' Recently,
Payton and Visscher' have performed extensive com-
puter calculations for three-dimensional crystals, and
Elliott and Taylor, 4 and Taylor' have derived approxi-

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

F. J. Dyson, Phys. Rev. 92, 1331 (1953).
See the review by A. A. Maradudin, in Solid State I'hysics,

edited by F. Seitz and D. Turnbull (Academic Press Inc. , New
York, 1966), Vol. 18, p. 273 8.' D. N. Payton and W. M. Visscher, Phys. Rev. 154, 802 (1967);
156, 1032 (1967).

4 R. J.Elliott and D. K, Taylor, Proc. Roy. Soc. (I.ondon) 296,
161 (1967).This paper will be referred to as ET.' P. W. Taylor, Phys. Rev. 156, 1017 (1967).

mate analytic theories for calculating the thermal aver-
ages of physical properties of realistic imperfect crystals.

So far as we know, no general theory has been given
without the assumption that the defects are randomly
distributed in the crystal, although correlations between
nearest-neighbor defects have been included in a com-
putation of the moments of the frequency spectrum of
a linear chain' and in a calculation of the normal-mode
frequencies of P-brass to second order in perturbations
on a mean crystal. 7 At large concentrations of defects,
of course, many alloys become ordered, and a proper
theory would begin with the stoichiometric alloy rather
than with the pure solvent crystal. Even at defect con-
centrations well below the ideal concentration, the de-
fects may tend to order themselves to approximate the
arrangement of an ordered phase close to the given
concentration on the phase diagram.

The theory developed in this paper involves a low-
concentration expansion, but allows for possible short-
range order among the defects as can be measured by
x-ray diffraction. The theory is useful then for those
concentrations that are low enough for a low-concen-
tration expansion to apply yet high enough for some
ordering of the defects to occur over short ranges. The
nonrandom defect distribution is introduced through a
defect pair correlation function p~, ~„which depends
only on unit cell indices. For presentation, we have
taken the simplest such case, mass defects in a mon-
atomic cubic crystal, but the theory is directly applic-
able to any problem in which the mass defects can be
considered as segregated onto one particular site of the
unit cell. Mass defects in alkali halides and III-IV
compounds could thus be treated directly, whereas de-
fects in diamond or anion defects in alkaline-earth
halides would require a somewhat more complicated
formalism with a site-dependent g.

' V. Fukuda and K. Voshida, J. Phys. Soc. Japan 17, 920 (1962).
7 P. J.Wojtowicz and J. G. Kirkwood, J. Chem. Phys. BB, 1299

(1960).


