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The propagation characteristics of high-frequency waves (HFW) which occur in simple metals near the
Azbel'-Kaner cyclotron resonances are discussed in detail. In particular, it is emphasized that, while the
existence of such wave propagation may be understood using a noninteracting-electron-gas model of the
conduction electrons, the HFW are sensitive in principle to direct electron-electron interactions. Using
the Landau-Silin phenomenological description of the Fermi liquid, it is shown that the IF' oBer the
possibility of direct measurement of all but the lowest moments of the spin-independent electron correlation
function.

I. IN TRODUCTIO5

'N the presence of a magnetic field the conduction
~- electrons of pure, cold metals may collectively
support a variety of relatively undamped wavelike
electromagnetic excitations or plasma waves. ' In this
paper we wish to present an extensive but primarily
theoretical discussion of a new class of plasma waves„
first observed in 1965,' ' which propagate most readily
perpendicular to the magnetic Geld in the vicinity of the
fundamental cyclotron resonance and its harmonics
/the Azbel'-Kaner cyclotron resonances (AKCR) ].
Because these waves occur for or m~„v=1, 2,
(where co,= eH/rrt*c and nt* is the effective mass of a
conduction electron), they will be referred to as high-
frequency waves (HFW) as contrasted with the more
familiar helicon or Alfven modes of electromagnetic
propagation in metals which require co((or,. While it
proves to be possible to understand the existence and
general features of the HFW in terms of an independent-
particle representation of the conduction electrons
(free-electron model), we wish to emphasize that the
propagation characteristics (dispersion relations) are
explicitly sensitive to electron-electron interactions.
Using the Landau-Silin' phenomenological description
of a weakly excited Fermi liquid, it is shown that the
HFW o8er the possibility of experimental determina-
tion of the spin-independent moments of the electron-

'Proceedings of the Symposium on Plasma Effects in Solids,
Paris, 1964 (Academic Press Inc. , New York, 1965); E. A. Kaner
and V. G. Skobov, Usp. Fiz. Nauk 89, 367 (1966) /English transl. :
Soviet Phys. —Usp. 9, 480 (1967)'j.' W. M. Walsh, Jr., and P. M. Platzman, Phys. Rev. Letters
15, 784 (1965).' P. M. Platzman and W. M. Walsh, Jr. , Phys. Rev. Letters 19,
514 (1967);20, 89(E) (1968).

4 By an explicit sensitivity to correlation e6ects we mean that
the simple e6ective-mass renormalization procedure which is
satisfactory for most observable phenomena in metals does not
sufBce to explain the HFW dispersion relations. The effective
mass itself depends implicitly on many-body interactions.

'L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956)
LEnglish transl. : Soviet Phys. —JETP 3, 920 (1956)g; V. P. Silin,
ibid 33, 495 (1957) LEn.glish transl. : ibid 6, 945 (1958)g. .

electron scattering or correlation function (Landau f
function), though in practice the two lowest. moments
are not measurable in the presently accessible experi-
mental regime. Their explicit sensitivity to many-body
effects make the HFW complimentary to the recently
discovered spin waves associated with the conduction-
electron spin resonance of simple metals. ' ~ The spin
waves provide quantitative information concerning the
spin-dependent part of the electron-electron inter-
actions.

Following a general description of the regime in
which the HFW are observed and the corresponding
limits in which the theory is to be developed (Sec. II),
the dispersion equations are discussed and their relation
to prior calculations of wave propagation in metallic
and gaseous plasmas are indicated (Sec. III). The
nonlocal magnetoconductivity tensor for the free-
electron gas is then used to compute dispersion curves
for the "ordinary wave" which are compared with
experimental results for potassium (Sec. IV). Finally,
modifications of the dispersion relations due to electron-
electron correlations are treated using the Landau-Silin
theory of interacting fermions (Sec.V) .While no attempt
is made to evaluate the moments of the interaction
function from experiment, the general character of the
predicted observable eGects is discussed in some detail.

II. HFW REGIME

The HFW have thus far been most clearly observed
in the alkali metals potassium'' and sodium, ' whose

' P. M. Platzman and P. A. WolG, Phys. Rev. Letters 18, 280
(1967).' S. Schultz and G. Dunifer, Phys. Rev. Letters 18, 283 (1967).

8 W. M. Walsh, Jr., in Proceedings of the Simon Fraser Summer
School, "Electrons in Metals, " Alta Lake, 1967 (Gordon and
Breach Science Publishers, Inc. , New York, to be published). The
HFW have also been observed in rubidium LW. M. Walsh, Jr.,
and P. M. Platzman, in Proceedings of the Tenth International
Conference on Low TemPerature Physics, Moscow, %66 (VINITI,
Moscow, 1967)g and, presumably, in the noble metals LS. Schultz
(private communication)j. Both observation and analysis are
seriously complicated in all but the simplest metals due to anisot-
ropy of the conduction-electron velocity distribution.
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Fermi surfaces are known to be single-sheeted and quite
accurately spherical. ' Wave propagation occurs under
the same experimental conditions as are required for the
observation of well-resolved cyclotron resonance spec-
tra, i.e., samples of very high purity, liquid-helium
temperatures, and sufficiently high excitation fre-
quencies (co 10"rad/sec) that &or))1, r being the mean
electron scattering time due to lattice imperfections.
The HFW occur in association with the AKCR phe-
nomenon" which requires the magnetic field to be in or
quite near the plane of a IIIat specimen. " Using con-
ventional techniques, the magnetic-6eld derivative of
the metal's total microwave power absorption versus
6eld is recorded. The linearly polarized surface currents
J which Cow on both sample faces may be oriented
either parallel or perpendicular to the slowly varying
magnetic field H. When plane-parallel samples of thick-
ness L 10 cm are examined, one 6nds, in addition to
the AKCR spectrum of single-particle resonances,
"extra" structure in the power absorption on the high-
Geld side of the Grst few resonances. The variations of
this extra structure with sample thickness and experi-
mental frequency are consistent with the concept of
wave excitation carrying microwave currents from one
sample face to the other. The oscillations of the power
absorption result from the varying phase of the trans-
mitted currents relative to the primary driving cur-
rents. "The 6eld-dependent phase variation yields the
dispersion or variation of wavelength with 6eld and
frequency. Typically, the observed wavelengths prove
to be comparable to maximal cyclotron orbit radii:

E,=Vs/&o, 10 ' cm for Fermi velocities V~ 10'
cm/sec and magnetic fields of a, few thousand G. Since
the direction of propagation is along the sample normal,
the wave vector k is usually perpendicular to H (propa-
gation does, however, persist out to 10'—20' of tilt of H
relative to the sample plane). In general, the most
intense and easily interpreted evidence of HFW
propagation is found for co,&co in the J~~H polarization
with kJ HP Similar "propagation windows" are also
found on the high-6eld side of the 6rst few subharmonic
resonances. Generally weaker and more complicated
structure is observed in the JJ H polarization. ' '

Analysis of these magnetically induced transparencies
is based on recognition that one is dealing primarily
with wave propagation in the bulk of the metal. Almost
all the incident radiation is refIected at the sample
surfaces where intense Gelds and currents Qow in the
anomalous skin depth 8.To the extent that the specimen

e D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. (London)
A281, 62 (1964); M. J. G. Lee, shsd A295, 440 (1966)..

'0 M Ya Azbel' and E. A. Kaner, Zh. Eksperim. i Teor. Fiz. 32,
896 (1957) )English transl. : Soviet Phys. —JETP 5, 730 (1957)g;
J. Phys. Chem. Solids 6, 113 (1958).

"C.C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963).
~~ A more extensive discussion of experimental details appears

in ProceeChlgs of the Scmort Eraser Sstrmmer School, Electrons jrt
Metals, "Alta Luke, 1967 (Gordon and Breach Science Publishers,
Inc., Net York, to','be published). The complete data for potassium
and sodium will be published as a separate paper.

thickness is much greater than the surface region where
the transmitted wave is excited (L/8 10' in practice),
the propagation characteristics are those of the bulk
metal. For the purpose of studying the HFK dispersion
we need not, therefore, solve the complete and enor-
mously dificult boundary-value problem but may re-
strict the analysis to the dielectric behavior of the
unbounded medium. We thus ignore any questions con-
cerning the amount of incident radiation which actually
penetrates the metal slab in favor of studying the bulk
response of the conduction-electron system.

An important aspect of the HFW is the particular
range of frequencies and wavelengths in which they
have been observed: An earlier theoretical investigation
of helicon-wave propagation along the magnetic 6eld"
indicated that in the limit kVs/&o 1 it should be possi-
ble to observe explicit efkcts due to electron-electron
interactions, i.e., to 6nd deviations of the collective
response from that predicted for noninteracting parti-
cles. The regime kVs/co=kR 1 is very dif5cult to
attain in the case of helicons but is precisely where the
HFW are observed (X= 2sr/k E, R). It is, therefore,
to be anticipated that the HFK dispersion behavior
may differ significantly from that predicted for an
electron gas and thus provide experimental information
concerning many-body effects.

Kith this point in mind the remainder of the article
is devoted to calculation of the dispersion relations for
the HFW, 6rst in the free-electron approximation and
then allowing for interaction effects. The latter are
treated within the framework of the Landau theory of
Fermi liquids as extended by Silin for the case of conduc-
tion electrons. ' This semiphenomenological theory
provides a prescription for calculating all low-frequency,
long-wavelength transport properties of a system of
interacting quasiparticles. In this context frequencies
are to be low with respect to Et/k and co~, where Ft is
the Fermi energy of the distribution and co~ is the
phonon Debye frequency. Wavelengths must be long
compared to the Fermi-Thomas screening length.

Since the theory is semiphenomenological, the linear
response of the metal, i.e., the electrical conductivity
and the magnetic susceptibility, involves moments of an
unknown function. This function, the Landau or quasi-
particle quasihole scattering function f(p, rr, p',cr'), is, in
principle, calculable. In practice, however, because of
the low density of conduction electrons in a metal, i.e.,
r,&1, it can not be calculated with any real accuracy. "
We may think of the HFW as an experimental means of
directly measuring certain properties of this Landau
scattering function. The question we will attempt to
answer in the body of this paper is: What properties of
the Landau function can be determined by carefully
studying the properties of the HFK in very pure alkali
metals? Ke shall show that these waves give informa-

'P. M. Platzman and K. C. Jacobs, Phys. Rev. 134, A974
(1964)."T.M. Rice, Ann. Phys. (N. Y.) 31, 100 (1965).



FERMI —LIQUID EFFECTS 69i

tion about the Landau function which is complementary
to the information which is obtained from the dispersion
of the recently discovered spin waves. The two sets of
experiments can i' prilcipip be used to obtain a com-
plete quantitative description of the functional form of
the Landau scattering function.

FIG. 1. Coordinate system used
in the analysis of the text.

Z, H

V

III. DISPERSION RELATIONS

If, as discussed in the Sec. II, we con6ne our attention
to the dispersion behavior of the HFW, rather than
such aspects as their degree of coupling to the incident
radiation, it is valid to ignore the complete boundary-
value problem and concentrate on the bulk dielectric
properties of the metal. Consider, therefore, the propa-
gation characteristics of a weak electromagnetic plane-
wave disturbance {Eexpl i(k r cot—)]) in an un-
bounded, translationally invariant metal. Maxwell's
equations reduce to

ky. (kXE)+k.'e E=O,

where the dielectric tensor

e~p(kq(d) =B~p 41l'0'(gp(k)QlqH)/le)

is the sum of a diagonal contribution, the displacement
current, and a complex tensor contribution due to the
magnetized. conduction electrons. The quantity o.

p is
the frequency-, field. -, and wave-number-dependent
magnetoconductivity tensor which contains the physical
essence of the problem.

In order to avoid gratuitous algebraic complications,
we shall restrict the calculation to the cases of propaga-
tion accurately perpendicular to the magnetic field.
Defining 2IIH and *"Ilk as in»g. 1, the oif-diagonal
components o.„=o., and o-„,= —o-,„vanish. Setting the
determinant of the coefficients in Eq. (1) equal to zero
yields the fami1iar dispersion relation"

u' (') u,' k"" e„1
The first root

lP/kp'= e..
is the so-called "ordinary wave"" which is purely
transverse in character, i.e., Ella. Because of its particu-
lar simplicity, it will be treated in detail below. The
other root

k'/ks'= e„„+e,„'/e

is known as the "extraordinary wave. '"'" It differs from
the ordinary wave in that it is not purely transverse in
character but has a longitudinal component of electric
field associated with it (E k/0). In the low-density
gas-plasma case, this solution of the wave equation

"%'.P. Allis, S. J. Buchsbaum, and A. Hers, TVaves jn ArIiso-
troPic Plasmus (M. I. T. Press, Cambridge, Mass. , 1963), pp.
90, 67.

n.
X, I4,

A. HFW Disyersion in the Free-Electron Model

The problem of wave propagation in bulk metals
reduces essentia1ly to the calculation of the conduc-
tivity tensor o p(k, &o,H). Rather than attempt a com-
pletely general treatment, we shall henceforth take a
rather limited definition of a metal in which the eIectron
velocity distribution is isotropic and relatively un-
aGected by the periodic potential due to the ion cores.
Fortunately, nature has provided sodium and potas-
sium, for which these statements appear to be valid. ' "
It is the almost total absence of any band-structure
e8ects which makes detailed studies of bulk wave-
propagation phenomena profitable in these materials.
They are the concrete embodiment of the hypothetical,
uniform electron fluid. or "jellium" for which the theory
of interacting charged fermions has been developed. As
such, they constitute unique arenas for the confronta-
tion of experiment and the many-body theory of normal
metals.

To begin, consider the conductivity tensor e of a gas
of noninteracting particles of charge e and mass m* in a
highly degenerate Fermi distribution. The tensor
components have been evaluated previously"" using
a linearized Boltzmann theory. A typical component of
present interest is

eJ„'(b) cos't) sin8d8
(6)

s (1+8„s)(a' rP)—
"I.B. Bernstein, Phys. Rev. 109, 10 (195g)."S.J. Buchsbaum and A. Hasegawa, Phys. Rev. 143, 303

(1966).
~8 F. %. Crawford and H. H. Weiss, J. Nucl. Energy CS, 21

(1966)."M. Cohen, M. Harrison, and %.Harrison, Phys. Rev. 117,937
(1960).

'0 S. J. Bnchsbanm and P. M. Platzman, Phys. Rev. 154, 395
(1967).

o-'„=iS

yields the longitudinal Bernstein modes" which mani-
fest themselves both in absorption'7 and transmission'
near cyclotron harmonics. In metals, however, the very
high plasma or screening frequency e~~=4srip'/no*~10"
rad/sec))e~ (m being the density of conduction electrons)
prevents any appreciable charge separation from
developing. "As will become apparent, this reduces the
physics of the extraordinary wave to the same level of
interest as the algebraically simpler ordinary mode
which wil1, therefore, receive most of our attention.
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where

E=3o)~s/4ro) „
a= (o)+i/r)/o)„
0=kV p sine/Mg= kRg slnt).

In the range of parameters where the HF% are observed
one has o)s'/o). '~10"&&k'/ks'~10'))1. Because of the
extremely high plasma frequency, the conduction-
electron response completely dominates all other con-
siderations, i.e., we may neglect both the displacement
current in e,s [Eq. (2)j and the k'/kss in the dispersion
relations Eqs. (4) and (5). These equations may be
quite accurately solved by seeking the zeros of the
appropriate conductivities:

~'*.=0 gila), (7)

'„„+ '.„'/'. =o (z&a). (s)

The physical content of these equations is that wave
propagation, as opposed to nearly total reQection at a
boundary, can only occur if for some combination of
experimental frequency, wavelength in the medium, and
magnetic-field value it is possible to make the conduc-
tion current essentially zero. In fact, of course, the
current is not rigorously zero in a wave in a metal but
the dispersion properties of the wave are given very
accurately (to order ksc /co„s) by going to that limit. The
apparently paradoxical requirement that the total

conductivity become vanishingly small is only achiev-
able because of the nonlocal nature of o, i.e., its k
dependence. This means that the total current is made
up of a local contribution due to the electric Geld at a
point in the medium plus a nonlocal contribution arising
from electrons arriving at that point with velocity
increments acquired at other points and earlier times.
It is only when essentially exact cancellation between
the local and nonlocal currents occurs that the possi-
bility of wave propagation exists.

The idea that wave propagation might occur near the
AKCR's was first discussed by Kaner and Skobov" but
they envisaged appreciable coupling only to wave-
lengths comparable to the anomalous skin depth 8, i.e.,
much smaller than cyclotron orbit radii (kR&)1).They,
therefore, sought and found solutions to the dispersion
relations Eqs. (4) and (5) in the short-wavelength
limit. These Kaner-Skobov modes actually join
smoothly with the HFW solutions of Eqs. (7) and (8)
in the long-wavelength limit. Whereas little theoretical
distinction exists between the two limits save for reten-
tion or neglect of the term k'/kss, it is important to
recognize that only the long-wavelength limit has
proved to be experimentally accessible.

The most useful form of the magnetoconductivity
tensor components in the long-wavelength limit is an
expansion in the parameter kE., :

(kR )sos a)—
os,.=isa Q

~=) (2N —1)(2N+ 1)(a'—1)(u' —4) . [a'—(ts —1)'j

[a'+2(ss —1)sssj(kR,)s&" ')

9

g n=r (2g —1)(2g+1)(a —1)(g —4) . . (g' —ss )

(kR )s(s—1)

u ~=) (2ss+1) (a'—1)(a'—4) (a' —I')

0 — 0 —A70 zy (T yz LV

n(kR )"" ')

s-r (2ts+ 1)(a'—1)(a'—4) (a'—I')

(kR.)'
gs, ~1+ + =0

5(u' —1)
(13)

The resonances in these components occur at the
cyclotron resonances co= mo, and have coefFicients in the
long-wavelength limit kR, -+ 0 proportional to (kR,)s"
in the case of o „and (kR,)s&" " for the others. Near
the fundamental Azbel'-Kaner resonance the long-
wavelength limits of the dispersion relations Eqs. (7)
and (8) are

For us&~ 1 (t0,)o)), Eq. (13) has a solution quadratic in
kR„whereas Eq. (14) predicts an extraordinary wave
with a quartic dependence on kE, for co,&~. It is of
interest to note that the coefIIcient of the latter quartic
term, 1/350, is remarkably small. One is tempted to
remark that the electron gas apparently resists exhibit-
ing an appreciable singularity at the fundamental
cyclotron resonance, a state of affairs noted earlier by
Smith, Hebel, and Buchsbaum22 in a treatment of

(kR.)'0 20 zy
~s + ~1+ + =0

350(a'—1)
(14)

"E. A. Kaner and V. G. Skobov, I"iz. Tverd. Tela 6, 1104
(1964) LEnglish trsnsL: Soviet Phys. —Solid State 6, 851 (1964)g."G. E. Smith, L. C. Hebel, and S, J. Buchsbaum, Phys. Rev.
129, 156 (1965).
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nearly local conductivity. The situation is quite diferent
on the second subharmonic for JJ H, however, where

6(kE,)'
(15)

16—

a singularity quadratic in kR„appears analogous to the
J~~H, o), &co case.

The numerically computed solution of Eq. (4) in the
region co, &&~ with s&~/co=0. 85)&10' and V~/c=3&(10 '
is shown in Fig. 2. A similar computation using the
approximation of Eq. (7) does not differ appreciably
from this curve until kR values of 20 are reached. For
kR &6 the dispersion curve oscillates, a behavior which
is characteristic of a sharp Fermi distribution. The
oscillations in the attenuation of sound waves in pure
metals as a function of a swept magnetic field (magneto-
acoustic effect) has &e same origins. "At still higher
values of kR&10', the dispersion curve eventually
becomes monotonic and asymptotic to the co,/~ = 1 axis,
which is just the behavior calculated by Kaner and
Skobov using Eqs. (4) and (6) and the asymptotic
forms of the Bessel functions for large values of their
arguments.

Over the experimentally accessible region (0(kE &6),
the dispersion curve is single-valued for cv,/~(1.77,
whereas in the interval 1.77(~,/sr(1. 95 it becomes
multiple-valued, i.e., for a given magnetic 6eld several
waves of distinct k may be excited. Finally, for ro./ro
&1.95, no solution of the wave equation is found and
the metal is totally cut oB.

Experimental data for a potassium slab are shown in
Fig. 3. Under the existing antisymmetric excitation
conditions, power-absorption minima are expected to
occur for I.= (e+ rs)X. Using this criterion, the extrema
of the power-absorption derivative may be assigned kR
values and plotted as in Fig. 4. Here the magnetic-6eld
scale is determined by the effective mass ratio m*/ms
= 1.21, originally measured by Grimes and Kip."
Ambiguity as to the kR assignment may arise if only one
such experimental curve is available. By examining the
same specimen at several experimental frequencies or a
series of samples of appreciably varying thickness, the
"correct" wave-vector assignment may be determined.

The comparison of theory and experiment in Fig. 4
reveals quite good general agreement, though a small
discrepancy exists at the kR~ 0 intercept where the
experimental points tend to intercept at somewhat
higher magnetic-field values than expected. This detail
will be discussed later. At higher kR values, the general
features of the theoretical dispersion appear to be
reproduced: A large number of experiments have failed
to reveal clear evidence of HFW waves for &a,/ce appreci-
ably greater than 1.7. We attribute this "washing out"
to excitation of several distinct k vectors as the dis-
persion curve becomes multiple-valued. This would
clearly lead to interference between the waves and a
severe weakening of structure in the total power

kR 10

0
1.0 1.2 1.6 I.B 2.0

Fro. 2. The dispersion curve of the ordinary mode (J~)H) HFW
associated with the fundamental cyclotron resonance of a non-
interacting electron gas. The curve is a computed solution of Eq.
(4) using the values cu„/a&=0. 85&&10' and V~/c=3)&10~. The
approximation of Eq. (7) yields a curve which is essentially
indistinguishable from that shown here for kg& 20. At higher kg
values the dispersion curve continues to oscillate wealdy and
6nally, for M&100, returns monotonically to the cu, /can=1 axis
LKaner-Skobov limit (see Ref. 21)$.

absorption. Furthermore, a weak but well de6ned and
reproducible "break" (change of slope) in the experi-
mental trace occurs for co,/&v~1. 9. Presumably this
reQects the "cutting off" of the metal as the limit of the
propagation region is reached. .

Qualitatively similar evidence of HFW propagation
is also found on the high-field side of the Azbel'-Kaner
subharmonic resonances. A comparison of the observed
dispersion for potassium and that computed from Eq.
(7) near the second subharmonic is shown in Fig. 5. The
over-all agreement is very satisfactory. In particular,
there is no discrepancy in the kR —+0 intercept in
contrast to that found near the fundamental resonance.

IV. I5'TERACTIOH EFFECTS

Although there is good over-all agreement between
the observed dispersion of the ordinary-mode HFW in
potassium and that predicted by an independent-
particle model, one can note modest discrepancies, such
as the kR —+0 intercept of the branch on the funda-
mental resonance which is found 3% higher in ield
than expected. Since, as indicated earlier, explicit
many-body interactions should appear in the frequency
and wavelength range of the HFW, it is interesting to
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2.5

FIG. 3. Field derivative
of the microwave power
absorbed by a slab of pure
potassium metal at 1.4'K
versus a magnetic held
lying in the sample plane.
The experiment was per-
formed in the JlH polari-
zation " 'with 11.985-GHz
surface currents flowing on
both faces of a sample
0.0141 cm thick. Oscilla-
tions due to ordinary-mode
HFW propagation are
clearly resolved on the
high-field side of the funda-
mental and second Azbel'-
Kaner cyclotron resonances.
The "break" in slope at
co,/co 1.95 is attributed to
the transition from a region
of propagation to a cuto8
condition (see Fig. 2).

examine the influence of such correlations on the dis-
persion relations.

In order to calculate the response of the system to
slowly varying electromagnetic disturbances, we use the
Landau theory of Fermi liquids. 5 By "slowly varying"
we mean that the frequency co and wave vector k of the
external field satisfy ho~/E~&&1, co/ron&(1, and ts/k~r((L

In this limit the response of the normal fermion system
is completely described by a quasiparticle energy-
momentum relationship E(y,r, t,e) and a quasiparticle
density matrix p(y, r, t,o). In equilibrium, the quasi-
particle energy E'(p)= p'/2m* and the quasiparticle
distribution function es(p) is a Fermi distribution. In
nonequilibrium situations, the energy of the quasi-
particles is a functional of its distribution function. To

kR

0
I.O l.2 l.4 l.6

0
0.50

I t I

0.55
I I I I I I I I

0.60 0.65
Fro. 4. A comparison of the free-electron ordinary-mode HFW

dispersion curve with experimental data for postassium takenII'at
two microwave frequencies using the sample of Fig. 3. While the
agreement is qualitatively quite good, the M —+ 0 intercept of the
experimental points lies ~3 jq above the resonance position. Such
a deviation appears to result from explicit correlation sects as
discussed in the text.

F&G. $. A comparison of free-electron theory with experimental
data for potassium in the region of the second-harmonic cyclotron
resonance. In this case, the agreement is excellent, and therefore
the discrepancy of Fig. 4 may not be removed simply by using a
slightly larger value of the effective mass.
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terms linear in deviations from equilibrium,

E(y, r, t, e) =Es(p)+ — Tr..
(2m-)'

where

X d'p'f(y, e,y', e')bp(y', r, t,e'), (16)

~p= p —tso.

f(y,y') 2=f-I'-(cose) (18)

and

with
cos8= p p'.

The set of dimensionless quantities

A„=m*ppf /n (2rt+I), (2O)

a„=m*p f-„/e(2n+1)

is, along with m*/mp, the set of phenomenological
parameters which describes the transport properties of
a Fermi liquid. "In liquid He', for which the theory was
originally envisaged, the effective mass is directly
related to one of the Landau parameters (m*/ms
= 1+As), but in metals, such a simple relationship does
not exist because of the presence of virtual phonon
excitations. '

The parameters m, 80, and 8& are experimentally
accessible: Azbel' has shown" that to an accuracy of
order 8/R„ the AKCR experiment yields m* as does
the electronic speciGc heat. The quantity 80, as well as
m*, appears in the Pauli susceptibility of the conduction-
electron spins"

7'/" = (m*/mo) I:I/(I+&o)j,
»,D. Pines and P. Nozieres, The Theory of Quantum Liquids

(W. A. Benjamin, Inc., Neve York, 1966).
'4 R. Prange and A. Sachs, Phys. Rev. 158, 672 (1967).
'5 M. Ya. Azbel', Zh. Eksperirn. i Teor. Fiz. 34, 766 (1958)

/English transl. : Soviet Phys. —JETP 7, 527 (1958)g.

The function f is the basic phenomenological quantity
characterizing the Fermi liquid. In microscopic terms,

f is the forward quasiparticle-quasihole scattering
amplitude where both momenta y and p' are condned to
the Fermi surface. In the random-phase approximation
(RPA), the f function for particles interacting via
Coulomb forces is'4

g2

f~ — —,'Ll+e e'j.
I y y'I—'+I Fr'

In general, for an isotropic system, f takes the form

f(y,e,y', e) =f(y,y')+t (y,y')e e' .(I&)

Since y and y' are fixed on the Fermi surface, f and t
may be expanded in a series of Legendre polynomials:

where

euro, = s18lm+ es ' e&m,

2p~~= rsvp +@ e&», — .

I=Tr.[8p],

(23)

(26)

(27)

"R.Schumacher and S. Vehse, J. Phys. Chem. Solids 24, 297
(1963)."G. Dunifer, S. Schultz, and P. H. Schmidt, J. Appl. Phys.
39, 397 (1968).

'8 A. L. McWhorter and D. Hamilton (private communication).
»V. P. Silin, Zh. Eksperirn. i Teor. Fiz. 35, 1243 (1958)

)English transl. : Soviet Phys. —JETP 8, 870 (1959)j.

which is measurable, albeit with difhculty. 2' The entire
set of B„parameters is, at least in principle, determined
by the dispersion of the spin waves which accompany
conduction-electron spin resonance in very pure metals. ~

Thus far, 80 and Bj have been measured in sodium and
potassium. '~

The quantity Ao is directly related to the compressi-
bility of the interacting electron system. "The velocity
of acoustic waves in metals should, therefore, yield
information about the magnitude of Ao. Unfortunately,
the electronic compressibility is only one contribution
to the over-all compressibility and there does not appear
to be a sufficiently reliable means of calculating the
ionic-core contributions at this time. The parameter Al
was shown by Azbel"' to produce a shift in the cyclotron
resonance of quasiparticles, but only in the limit of
uniform rf excitation over the entire orbit (diamagnet, ic
resonance), the antithesis of the Azbel'-Kaner experi-
ment. In an earlier publication' two of the authors
(P. M. P. and W. M. W.) reported that both A s and A &

measurably affect the dispersion of an extraordinary-
mode HFW. However, as pointed out, by McWhorter
and Hamilton, 28 this result is incorrect. The following
development illustrates the manner in which the A „cue
inQuence the dispersion of HFW.

In the presence of external Q.elds, the single quasi-
particle density matrix satisfies a 3oltzmann-like
transport equation of the form"

Bp Z—+-Ly, eh+ l f s,y)+-'f y, e) =— (23)
~~ collisions

Thesymbol f, }is the Poissonbracket and L, jis the
commutator. The quantity ~ is defined as

e= E(y—(e/c)A) —(eh/2msc)o" 8+earp, (24)

where A and qo are the potentials describing the "total"
(self-consistent) electromagnetic fields in the medium.
The relaxation term on the right of Eq. (23) arises from
collisions of quasiparticles with lattice defects and to
the nonforward scattering of two quasiparticles. Ke are
interested in pure materials at low temperatures and
high frequencies where (Bp/Bt)„»;„, , is negligible. We
wiH, in this calculation, neglect it, although it may be
included phenomenologically (relaxation-time approxi-
mation).

Defining the quantities
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y=- Tr,Lebpj, (28)

pi =E'(p)+
(2m-)'

eA 2
ep= H+

2mpc (2pr)'

d'p' f(y, y')n(y', r, t), (»)

d'p' i (y, y') te(y', r, t), (30)

Bei Bn ejei Bn 8$8epj l9tij
——+-/ XH

ay ar ar ay ck ay ay

Bpj Bc2j- Bpg Bc2~
=0. (31)

Br By By Br

The last three terms in Eq. (31) are second order in the
rf fields and, therefore, in an analysis of the linear
response they may be neglected. This leads to a com-
plete decoupling of the transport equations for e and p.
The inclusion of spin-orbit coupling or nonlinear effects
would reintroduce this coupling.

We next dehne the quantity g via

Bsp
n=np+ g. (32)

we may easily carry out the manipulations implicit in
Eq. (13) and obtain four equations for n and p. Since we
are only concerned with the electrical properties of the
Inedium, i.e., the induced current, we need only con-
sider the equation for e:
Bn Bn e (8ei ) Bn—yeE —+-~ XH ~—
at ay clay J ay

—~' g+(~k V+ . (g+8,)=eE V. (36)

It is useful to expand g in a series of spherical harmonics,

A number of interesting features of the problem are
immediately evident upon a cursory examination of the
transport equation (33) and the associated expres-
sions for the current, Eqs. (34) and (35). Equation
(33) reduces to the ordinary Boltzmann equation when
be~ —+ 0, i.e., in the absence of correlation effects. Only
6e& or, equivalently, the parameters A„enter. The
function a2 is not present; hence the B„will be absent
from the expressions for the conductivity.

The transport equation is composed of three terms:
The first is of order cu, the second of order k V~, and the
third of order co, . Since we can use either expression
(34) or (35) for the current, it is clear that if any one
term of the three dominates (for example, if ~))a&, and
&u))kVp), then correlations enter the conductivity only
as a multiplicative factor depending on A~. At Azbel'-
Kaner resonances ~=ear„ the conductivity could in
principle depend on all 3„.However, Azbel"' was able
to show that because of the large values of kV~ which
occur due to the skin effect, the term be~ may be ne-
glected and the experiments simply yield the value of
m*/m. If, on the other hand, we have a bulk wave with
k V p/cu 1 and cu pp„ then a priori all the 3„could enter
in a nontrivial way. The HFW have this property but,
for example, helicons do not."

The transport equation is a linear integral equation
which is not easily solved for an arbitrary scattering
function f. Choosing a disturbance of the form e"~' "'&

and a coordinate system as in Fig. 1, Eq. (34) becomes

with

Bg e—+ V. V'+ —(VXH) V', Lg+beij=eE V, (33)
Bt c

Ignoring collisions, the transport equation for g in the
linear approximation becomes

i.e.,
g= Z ~-,-l'-, -(O, p)

g+8ei= Q ee, (1+2„)Y„,„.

(37)

(38)

2
d'p'f(y, y') g(y', r, t).

(27r)'

As k~0, Eq. (36) becomes

The expression for the current becomes

e aj.= — d'P (g+Se&)S(E&—EP(P)) (34)
(2pr)' np*

for an electric Geld in the 9 direction. The "modes" of
the system, i.e., the zeros of the left-hand side of Eq.
(39), are given by

(40)~=co~~—=neo. (1+2~) .e (1+2i) p
d'p gp(EI E'(p)). —(35)—

(2pr)' m*/mp nip At k= 0, the electric field in the i direction only couples
to the n= 1, no= 0 mode, whereas fields in the i and g
directions couple to the m=1, @2=&1 modes. As k
increases, the k V term mixes in the higher ~„modes.
Unlike the spin case, ' we have no theory of the relative
intensity in these modes, i.e., their oscillator strengths.

Before proceeding to discuss particular forms of the
conductivity tensor components, it is important to

When the system is translationally invariant, i.e., the
total momentum of the electrons is a good quantum
number, 1+Hi ——m*/nep, which simplifies Eq. (35). In
the presence of phonons this is no longer a valid con-
clusion and the factor (1+Hi)/(en*/ntp) must be
retained.
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emphasize two quite general points originally made by
McWhorter and Hamilton": The parameter A p occurs
in the transport equation multiplying Yp, 0, i.e., the net
charge density produced by a disturbance. A p can,
therefore, only influence waves possessing some degree
of longitudinal character. This suggests that A 0 should
enter explicitly into the extraordinary-wave dispersion
relation, Eq. (5), and, indeed, each of the magneto-
conductivity-tensor components o.„,r», and 0 „does
involve A p. However, the particular combination of the
components of Eq. (8) corresponds to a divergenceless
current whence zero net charge is developed in the limit
that displacement currents are negligible with respect
to conduction currents ((0~2/40 2))1). Since the latter
approximation is extremely good at metallic densities,
it follows that A p does not observably aGect the HFW
dispersion relations.

Similarly, the quantity A 1 enters the transport
equation only as a coefhcient of Y», , the current
associated with the disturbance. Since the essence of the
HFW calculation is to seek zeros of the appropriate

conductivities and, therefore, of their associated cur-
rents, it follows that A» cannot in6uence the HFW
dispersion as long as 40~2/00 ))k2/k02, i.e., in the long-
wavelength limit. A» might, however, become signi6cant
at short but perhaps attainable wavelengths as one
passes into the Kaner-Skobov regime (kR)20) . It
should also be noted that, inasmuch as A» enters the
problem via the current in the wave, it could a6ect the
degree of coupling, i.e., the actual amount of incident
power which is transmitted through a slab versus 0),/(d.
In the absence of a solution of the boundary-value
problem, however, any such coupling information is
probably uninterpretable.

Turning now to explicit solutions of the nonlocal
conductivity problem including the interaction or
correlation effects, it would appear most logical to seek
long-wavelength expansions in kR, analogous to Eqs.
(9)—(12).Using the spherical harmonic expansion for g,
one can 6nd such solutions by successive iterations of
the transport equation. For example, the series expan-
sion of a.„to order (kR,)' is

10C 12 C 10C 2—1-(

1+ (-', kR.)'— +— (1+A 1) (1+A 2)
a a—(1+A 2) a+ (1+A 2)

1 C C C„'"C„"(1„+"A„)"(1+A),(1+A,)'1 C, C , "C „—"'"C '
')+ (-,'kR, )4—

a (a—(1+A 2))'(a—2(1+A2)) a a—(1+A2) a+(1+A2)

C2» C»0 1 C 30C 21 10C 2—1 g„ 10C 21 )2

+ (1+A 1)(1+A.)'(1+A 4)+- +
~
(1+A 1)'(1+A.)'

a—(1+A 2) a+ (1+A 2) a a+ (1+A2) a—(1+A2)I

C2—1 L2-2 ( 2—1 +10 (1+A1)(1+A2) (1+A 2)

(a+ (1+A 2))'(a+ 2 (1+A 2))
where

C„, " = —1/ (2n,+1),

(n —n2+ 2) (n —n2+ I)

(2n+ 1)

C 1,„~1""——1/(2n+ 1),

(n+ n2 —1)(n +n2)

(2n+ 1)
(42)

Considering the earlier general statements as to the unimportance of the Landau parameter A» at long wave-
lengths, the reader may be justifrably startled by its frequent appearance in Eq. (41).This series-expansion form
of r„is, in fact, very misleading and cannot be used to compute the solution of the dispersion relation r„=0. The
difhculty arises because one is unwittingly' dividing one power series by another, a characteristic feature of such
calculations. The origin of the difhculty is most simply illustrated by examining a solution of the transport equation
analogous to Eq. (6) for 0'„which can be obtained if one sets A140 but all other A„=O, n, )&2:

where

F(a,kR,)= P
n=p

00 zz

1—LA,/(IyA, ))3am'(a, kR, )
'

J 2(b) cos28(N

(1+b„0)(a'—n')

(45)

(44)

(kR,)'("—'&

a2 n 1 (2n —1)(2n+ 1)(a'—1.) (a'—2) .t'a' —(n —I)')
(45)
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is functionally identical to 0.„itself."The presence of
the At-dependent denominator in Eq. (43) does not
aGect the solution of 0-„=0. In this severe truncation
of the scattering function, the real roots are identical to
those of 0 „=0.The wavelength-dependent renormali-
zation of o,./o'„due to At can only become significant
in the more general dispersion relation LEq. (4)j when
k'/los is no longer negligible with respect to o„. If,
however, both numerator and denominator of Eq. (43)
are expressed as power series in kE, and divided to
obtain the "simple" series form of Eq. (41), terms
involving A~ will appear.

Despite this serious shortcoming, the series solution
exhibits certain properties of general interest for 0-„.
The only modes ~„, which can appear are those for
which (n+m) is odd. This parity statement becomes
evident if we note that

sin8 cosy V„ (46)

i. e., the lt V term changes both I and m by unity.
Starting in the local, k -+ 0, limit with Ft,s(e+m= 1),
the odd parity is preserved to arbitrary order in k. By
a straightforward counting argument, one can show

that for a given resonance the series term having the
lowest power of k (which must dominate the position
of the k-+0 intercept of the dispersion curve) has its
singularity shifted by the next-higher-order Landau
parameter. That is, the intercepts no longer occur at
co=mv, but at

(0 = f20.(1+2 „+r) .

Thus the ordinary-wave intercept on the fundamental
resonance is shifted by A2,"that on the second harmonic

by 33, etc. The experiments appear to bear out this
picture of independent shifts of the intercepts in that
the data cannot all be reconciled with the independent-
particle model simply by a single change of the effective
mass parameter. Referring to Figs. 4 and 5, one may

The form of the argument may be seen by noting that
o„ccJ'gF't, s and that each iteration of the transport
equation brings successively higher order I'„, into g,
which starts as I'y p in the local limit:

The erst column is the k or local contribution, the
second is of order k, the third of order k', etc. The
shortest path back to V~, p for a given order in k produces
the leading term for a particular resonance. Thus to
order k~ the path is via F2,~ whose amplitude is resonant
at co~,~ and the fundamental singularity becomes shifted
by 22. These are, of course, also higher-order terms
shifting the fundamental singularity, e.g., in sixth-order
co4,& will appear, leading to a fundamental singularity
shifted by A4. While this suggests the interesting possi-
bility of new dispersion branches emerging from a series
of intercepts near each resonance, we do not feel con-
fident in interpreting the higher-order terms in the
iterative solution in view of the difFiculties mentioned
earlier. Only the shift of the lowest-order term in k for
a given resonance LEq. (41)j is unambiguously given
by the "simple" series. If a serious attempt is made to
fit the experimental dispersion curves at 6nite k values,
it appears necessary to truncate the expansion of the
scattering function after a few terms and to solve the
resulting set of coupled linear equations. The procedure,
although laborious, is straightforward and the solution
has been outlined by Fredkin and Wilson32" for a
similar problem. In practice, it is apparent that a
considerable amount of numerical work will be required
to establish a consistent scheme for actual evaluation
of the A„ from the data. Clearly there is no conceptual
di6iculty in treating the extraordinary polarization by
the same methods but the practical difficulties are far
from trivial.

There is an alternative approximate procedure for
solving the transport equation which does not depend
on a truncation procedure. It amounts to assuming that
I A„I«1.We can then expand the solution of Eq. (36),
more specie. cally, the solution for 0-„ itself, as a power
series in A„and the leading term, i.e., the linear term,
can be found. We solve, at least in principle, the
sn(0+1) coupled linear equations which result from
assuming that the scattering function is composed of
N&~1 spherical harmonics (I arbitrarily large)." The
quantity 0-„ is then expressed as the ratio of two
determinants,

The terms which are linear in A„can be found. In this
approximation the equation o-„.=0 reduces to

iaQ A—„l'„, "I', ," =0, (48)
0 y 2$

with N&~2, ImI &~n, and fts+e=odd. The four-index
quantity I'l, ,g" is deined by

'0 Equation (4i.) has been independently derived by D. Hamil-
ton (private communication).

O'S. C. Ying and J. J. Quinn /Phys Rev. .Letters 20, 100&
(1968)g have computed a dispersion relation for the fundamental
ordinary mode using A&QO and A„=O for z) 3.

(49)

"D.R. Fredkin and A. Wilson (to be published).
"Another discussion of the inQuence of Fermi-liquid inter-

actions on the HPW has been given by N. D. Mermin and Y. C.
Cheng, Phys. Rev. Letters 20, 839 (1968).
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where J ($)e~(&+si q

P„= sP'„& ~(lv+s sin@i

u —l—q

(5O)

The quantity F&,0' ' is proportional to the conductivity
o',.as given in Eq. (6).

V. ComCLUSrONS

The origin and general dispersion characteristics of
the high-frequency waves have proved, at least in the
case of the ordinary (J~~H) modes, to be explained quite
well by an independent-particle or free-electron model
of simple isotropic metals. Residual discrepancies exist,
however, and should permit evaluation of several

moments of the Landau scattering function which has
been used to describe the effects of quasiparticle inter-
actions. In practice, considerable care both in the
experiments and their analysis will be required, since

only moments V„, e&~2, produce directly observable
results and these higher moments are apparently quite
small. We defer this quantitative problem to a later
publication.
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Lattice Heat Conductivity in Annealed and Quenched
Gold-Platinum Alloys*

C. VAN BAAELEt AND R. P. HUEBENER

ArgonrIe Eationa/ Laboratory, Argonne, Illinois
(Received 11 March 1968)

The heat conductivity of dilute gold-platinum alloys, containing 0.11 and 1.02 at. % Pt, has been measured
between 4.2 and 80'K. The influence of vacancies on the lattice heat conductivity Eg of the alloy with the
higher platinum concentration was determined from measurements with specimens which were quenched
and subsequently annealed. Above about 30'K, Eg in the annealed alloy Au+1.02 at. % Pt is found to be
about 20% smaller than in pure gold. Whereas the lattice heat conductivity is clearly reduced at higher
temperatures by quenched-in vacancies, it is practically unaffected by quenching below about 15'K. The
phonon-scattering cross section of vacancies is estimated from the data, assuming a Rayleigh-type scattering
law. It is found to be in reasonable agreement with the value obtained earlier from the phonon-drag thermo-
power of quenched and annealed pure gold.

I5'TROD UCTION

HE lattice heat conductivity and the phonon scat-
tering by lattice defects has been studied in in-

sulators in many experiments. In metals, similar studies
are rather complicated because of the dominant conduc-
tivity of heat by the conduction electrons. Since, at low
temperatures, the lattice component of the thermo-
electric power is of the same order of magnitude as or
even larger than the electron-diffusion component, it
appears to be advantageous to study the scattering of
phonons by lattice defects from this property. For in-

stance, it has been suggested from thermoelectric experi-
ments with quenched platinum, ' that the phonon scat-
tering by vacancies in platinum is characterized by
a resonance at low frequencies. On the other hand, it

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

t Present address: Kamerlingh Onnes Laboratory, Leiden, The
Netherlands.

A. A. Maradudin, in Solid State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1966),Vol. 18,p. 273.

' R. P. Huebener, Phys. Rev. 146, 490 (1966).

has been pointed out' ' that the phonon-drag thermo-

power may be complicated at low temperatures due to
anisotropy of the relaxation times for electron scatter-
ing. An apparent anomaly in the phonon-drag thermo-
power at low temperature might be the result of either
one of the mechanisms described.

Recently, ' we have measured the thermoelectric
power of annealed and quenched gold-platinum alloys
between 4.2 and 300 K. For an unambiguous interpre-
tation of these experiments it was necessary to study
the eQect of quenched-in vacancies on the lattice heat
conductivity of the alloys. Therefore we measured the
thermal conductivity of quenched and annealed gold-
platinum alloys between 4.2 and 80 K. Preliminary
results of the present investigation were reported
earlier. '

' C. van Baarle, Physica 33, 424 (1967).
' M. Bailyn, Phys. Rev. 157, 480 (1967).
~ J. S. Dugdale and M. Bailyn, Phys. Rev. 157, 485 (1967).
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