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Using thermally averaged double-time Green's functions, we develop a theory to calculate the effect of a
small concentration of nonrandom mass defects on the vibrational properties of a monatomic crystal. The
low-concentration approximation used is shown to be equivalent to that used by Elliott and Taylor for the
random-impurity case, correct to 6rst order but only approximately correct to higher orders in the concen-
tration. This simple theory is used to 6nd a shift of the resonant or local-mode peak due to short-range order
among defects, which might be seen by infrared absorption in imperfect insulators. The integrated absorp-
tion is shown to be independent of the ordering for charged defects, but not for uncharged defects which
induce optical absorption through atomic deformations. The general expression derived for the inelastic
coherent neutron scattering cross section includes a branch-mixing term which disappears for scattering
vectors of high symmetry. Using the Debye approximation (for which the cross section can be written in a
self-energy form) and the appropriate short-range order parameters from the linear theory of Clapp and
Moss, we calculate the shifts and widths of the neutron scattering peaks for Cuo. 907Aup. og3. The agreement
with the experimental results of Svensson, Brockhouse, and Rowe is not good. A small clustering of light
mass defects, represented approximately by nearest-neighbor correlations, is shown to broaden a low-fre-
quency impurity band but to have relatively little effect on a high-frequency local mode.

I. INTRODUCTION

HEN defects are introduced into a crystal, strik-
ing changes in the vibrational properties of the

crystal may occur. Uibrational modes may appear at
frequencies above the band of perfect-crystal vibration
frequencies, or the band itself may be altered. These
effects have been observed experimentally in measure-
ments of the infrared absorption coefficient and neutron
scattering cross sections. Their thermodynamic con-
sequences have been apparent in measurements of speci-
6c heat, thermal conductivity, and thermopower. On
the whole, the theories of imperfect-crystal vibrations
which have been developed are successful in explaining
the general features of a wide variety of experiments
when the defect atom concentration c is low and when
the effect of a single defect extends only to the nearest
or second-nearest neighbors. In the simplest approxi-
mation, a foreign substitutional atom is treated as an
isolated mass defect with force constants unchanged.

The Green's-function theory provides a way to sum
exactly all the phonon scatterings from a single defect.
At 6nite defect concentrations, however, the interfer-
ence between phonons scattered by different defects
may become important. Since Dyson's' paper on the
vibrations of a disordered harmonic chain, many
authors have tried to account for these interference
eGects in one, two, and three dimensions. ' Recently,
Payton and Visscher' have performed extensive com-
puter calculations for three-dimensional crystals, and
Elliott and Taylor, ' and Taylor' have derived approxi-

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

F. J. Dyson, Phys. Rev. 92, 1331 (1953).
See the review by A. A. Maradudin, in Solid State I'hysics,

edited by F. Seitz and D. Turnbull (Academic Press Inc. , New
York, 1966), VoL 18, p. 273 8.' D. N. Payton and W. M. Visscher, Phys. Rev. 154, 802 (1967);
156, 1032 (1967).

4 R. J.Elliott and D. K. Taylor, Proc. Roy. Soc. (I.ondon) 296,
161 (1967).This paper will be referred to as ET.' P. W. Taylor, Phys. Rev. 156, 1017 (1967).

mate analytic theories for calculating the thermal aver-
ages of physical properties of realistic imperfect crystals.

So far as we know, no general theory has been given
without the assumption that the defects are randomly
distributed in the crystal, although correlations between
nearest-neighbor defects have been included in a com-
putation of the moments of the frequency spectrum of
a linear chain' and in a calculation of the normal-mode
frequencies of P-brass to second order in perturbations
on a mean crystal. 7 At large concentrations of defects,
of course, many alloys become ordered, and a proper
theory would begin with the stoichiometric alloy rather
than with the pure solvent crystal. Even at defect con-
centrations well below the ideal concentration, the de-
fects may tend to order themselves to approximate the
arrangement of an ordered phase close to the given
concentration on the phase diagram.

The theory developed in this paper involves a low-
concentration expansion, but allows for possible short-
range order among the defects as can be measured by
x-ray diffraction. The theory is useful then for those
concentrations that are low enough for a low-concen-
tration expansion to apply yet high enough for some
ordering of the defects to occur over short ranges. The
nonrandom defect distribution is introduced through a
defect pair correlation function p~, ~„which depends
only on unit ce11 indices. For presentation, we have
taken the simplest such case, mass defects in a mon-
atomic cubic crystal, but the theory is directly applic-
able to any problem in which the mass defects can be
considered as segregated onto one particular site of the
unit cell. Mass defects in alkali halides and III-IV
compounds could thus be treated directly, whereas de-
fects in diamond or anion defects in alkaline-earth
halides would require a somewhat more complicated
formalism with 8, site-dependent g.

' V. Fukuda and K. Voshida, J. Phys. Soc. Japan 17, 920 (1962).
7 P. J.Wojtowicz and J. G. Kirkwood, J. Chem. Phys. BB, 1299

(1960).
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II. GREEN'S-FUNCTION METHOD

We shall use the double-time thermodynamic Green's
functions reviewed by Zubarev' and first applied to
lattice dynamics by Elliott and Taylor. ' The time Four-
ier transform of the thermally averaged (( )&) dis-

placement correlation function, from which physical
properties may be immediately calculated, is given by

(Ni. (t)Np p(t'))re'" &'-'&d(f —t') =—lim 2s hn(io)
$~0

It is convenient to introduce the Fourier transform

1
&-p(k)—=—Z& -p( ) "'""'

1 o 't(k)o p'(k)
(g)

m ~ x—x, (k)

where x=—co' and x;(k)—=cofs(k).
For substitutional defects of mass m' the matrix C

is diagonal:

XlmLGi, -p( se)-G„-.p(+IV) j, (1)
where

CZZ'aP= C~Zs~Z'e~a4 ~&~ ~ls~l'a~aP p

where ui (t) is the displacement in the nth direction
of the atom 1 at time t, Gii p(io) is the retarded
Green's function of the imperfect crystal, and n(a&)
= Lexp(A(o/k T)—1]—'.

Using a harmonic Hamiltonian, Klliott and Taylor
have derived a general equation of motion in time t
expressing the imperfect-crystal Green's function in
terms of the analogous perfect-crystal Green's function
Eii. p(io) and a defect matrix C:

G« -p(~) =&ii -p(~)+ 2 &i»-v(~)ciiisrsGi. i Ip(~), (2)
ZlZ2y ~

or 10

G= P+PCG.

Considering the system evolution in time t' gives

For the monatomic crystal,

&«p(io)=
o &t(k)o.pi(k)

p
—is ~ iri—ri i (4)

m, V ia ios —io,'(k)

Here, o &'(k) is an eigenvector of the perfect-crystal
dynamical matrix D, i.e.,

Q D.p(k)op'(k) =o&f'(k)o (k),

and by symmetry the perfect-crystal Green's function
depends only on the difference (r& ri.) bet—ween the
equilibrium positions of the atoms, of mass m, labeled
l and l'. The eigenvectors may be chosen to satisfy
the orthonormality conditions

(10)

cc Q PiigPigP p

ZI

(12)

where we have dropped the Cartesian indices for the
moment.

The third term may be represented by graphs (b) and

(c); the latter represents a double scattering from the
same defect. We introduce the defect correlation func-
tion pz, z, which gives the following probability: If there
is a defect at l1, then there is a defect at site 12. In a
homogeneous crystal, this pair-correlation function is

9
I

999
I
I

~ ~ I

and where s is a member of a collection (s;} of defect
sites. Equation (2) may be iterated,

G= P+PCP+ PCPCPyPCPCPCP+" (11)

We find a configuration-averaged Green's function (G)
by averaging each term of (11)over all possible crystals
with cS defects in a certain state of short-range order.
In the limit of a large number of lattice sites, this con-
figuration average, indicated by brackets (. . ), may
be performed by assigning defect occupation probabili-
ties to these sites.

In the second term of (11), there is no possibility of
multiple scattering. This term may be represented by
graph (a) of Fig. 1," and its average over all defect
configurations is

P o. t(k) o p'(k) = b p (6)

alid
P o &'t(k)o. &'(k)=8,,'. (7) II

s ~ s

' D. N. Zubarev, Usp. Fiz. Nauk 71, '/1 (1960) LKnghsh transi. :
Soviet Phys. —Usp. 3, 320 (1960)g.

~ R. J. Elliott and D. W. Taylor, Proc. Phys. Soc. (London) 83,
189 (1964).

"In this paper a Green's function without indices G or I' will
imply the site representation G«p or I'« ff, where site indices
always appear as subscripts. The space Foprier transforms will
be written as G(fr) or P(fr).

Pro. 1. Impurity scattering graphs. Each dashed line represents
a single scattering from one impurity, indicated by a dot. From
left to right along the solid horizontal line, dashed lines are in the
order of the defect matrices in Eq. (11).

"These graphs are of the type introduced by J. S. Langer,
J. Math. Phys. 2, 584 (1961),
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simply related to the Warren short-range order param-
eters nl used by Cowley" and others,

pttts e+ (1 e)t)'(tr —ts) ~ (13)

Similarly, the fourth term involves pl, l,l„ the probability
that if there is a defect at l~, then there are defects both
at ls and ts. This term is represented by graphs (d)—(h)
of Fig. 1. The eth term in this expansion will involve

pl 1l L L, defined similarly to pl, l, L, ~

We now make the approximation

CPl1l2l3 CPL1LgPLgL3 y

CPLILgL3L4 CPLILgPL2LSPL3L4 y

cPLILgL3" .Ln
—cPLILgpl g L3 Pln

This approximation has several aspects. The multipli-
cation of pair-correlation functions to obtain higher-
order correlation functions is exact only if the pair
functions are independent of one another. This multipli-
cative aspect of (15) is correct then for random-defect
crystals and for perfectly ordered crystals. For the
short-range-ordered case, the approximation may be
justified for small defect concentrations if there is no
very strong tendency for defects to cluster. In this case,
it can be argued that defects are well separated from
one another on the average and pair correlation func-
tions may be taken as independent. The second. aspect
of approximation (15) is its unphysical asymmetry,
which has the e6ect of weighting properly all uncrossed
graphs in the expansion (11) but weighting improperly
all crossed graphs. A crossed graph represents a term
in (11) in which two or more nonadjacent defect indices
are the same, e.g., graph (g) of Fig. 1. This effect may
be seen easily in the random limit, where

The value of O, L is the same for all sites / in a given shell
) of atoms around the origin. The third term becomes

(ZPttCt tPt tCt trPt t)
lll2

=«' Z Ptt gt, t,Pt, t pt, t, (.14)
l1L2

and using (4) and summing over internal l indices, we
find that

cc
(G« -p(td))=Ptt p(o))+ ZP—~(k) Z —Z P(k')

n=o gX
qn-

Xp(k —k')
~

pr p (k) e ik ~ (r t r—t ) (1—9)
- vt'

If the sum is performed,

(G -p( ))=P -p( )

cC
+—P P.,(k)Z, r(k)Pr p(k) e '"'("-"' (20)

E vs~
where

C ~ ]

Z(k) =—I——P P(k') p(k —k') (21)

The transformation

T '(t k)—= (m/E)'"o. (k)e
—' ' (22)

In Appendix A, we show that our approximation (15)
is equivalent in the random limit to the approximation
of ET derived in a more intuitive way. Additional dis-
cussion of both aspects of this approximation appears
in Sec. VII.

In the limit of perfectly ordered defects in a stoichio-
metric alloy, our approximation is exact since all e-
defect correlation functions are either 1 or 0. However,
the perfect crystal thus represented is still an average
crystal, because of the con6guration average over the
Grst defect site. For CuaAu, for example, the averaging
distributes the heavy gold defect evenly over the four
sites in the unit cell. The symmetry of the perfect copper
crystal is restored and it is not possible with this tech-
nique to leap from one crystal type to another.

With this approximation, we may sum all the terms
of Eq. (11).We de6ne

p(k)=E p«e'" ",
l

ptrts =e+ 8ttts(1 —e) . (16)
selects a particular mode with wave vector k and branch

j from the perfect-crystal Green's function,

In this limit, for example, cpl, l, l, ——cpl, l,pl, l, for all values
of lt, ls, ls except for lt ls Lgraph (g)j, ——where the ap-
proximation is wrong by a factor c. Generally, the ap-
proximated graph for the expression

PttlPtlt2Ptrtr P4t'Ptttrtr' ' ' 4 (17)
l1l2 ~ ~ ~ Ln

will be underweighted by a factor c', where b—j is the
number of changes of defect-site indices along the
horizontal line minus the number of defects in the
graph. Thus the fourth-order graphs in two defects i
and j are underweighted by factors c and c', respectively.

"J.M. Cowley, Phys. Rev. 77, 669 (1950).

P T &t(/, k)Ptt p(o))Tp'(/'k')
LL'eP

s;;.s(1 k') —=P,y(kk') . (23)
(k)

The normal modes of an imperfect crystal are not speci-
fied by a single wave vector. Such experiments as in-
elastic neutron scattering and optical absorption do,
however, look for the response of a system at a par-
ticular wave vector. Since we have restored the trans-
lational symmetry of the perfect crystal, we 6nd that

(Grr (kk'))= Q T~'t(lk)(Gtt ~p(o)))Tp"(t'k') (24)
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is diagonal on k:

(Gyp (kk') )= b(kk') f b,yP;(k;
+c xP, (k)Z;;.(k)P,'(k)), (25)

where we define

Z;,'(k) =—P 0.&'(k)Z.p(k) 0-p&'t(k) .

G,y hh(kk') = [b(kk')/ex] ([exP, (k) —c]b;,'
+cZ,y(k) [exP;(k)—1][exPy(k)—1]). (39)

These Green s functions will be diagonal on j if Z p(k)

(26) is diagonal on n with all three diagonal elements equal,
and also in the case of the random limit.

In general, the correlations between defect sites mix the
branches of the crystal vibrations.

The above Green's function (G) represents the re-
sponse of a crystal to a probe which interacts with
both host and defect atoms in the same way. In the
more usual situation, defect and host atoms interact dif-
ferently. The defect and host atoms may have a different
effective charge and thus interact differently with light;
they may have different neutron scattering lengths.
Therefore, we need to find conditionally averaged
Green's functions, Gg «pd(cv) and G)) «pdd(a&), where,
respectively, the first site and both sites are occupied
by defect atoms. %e define

III. OPTICAL ABSORPTION

If defects with a charge t,' are introduced into a co-
valent crystal of volume V, only the defects will interact
with light in the harmonic-rigid-atom approximation. "
Because of its relatively long wavelength, infrared radi-
ation with velocity pv and transverse polarization vector
t is absorbed only by the response of a crystal at k=0
and the absorption coeS.cient is

4m-o)Ee'h.
E((u) = Imp [t e'(0)]'G;d"(0), (40)

6'=—(1/C) (CG) .

The average of Eq. (2) gives

(6)=P+PCG"
or

ex njt'(k') n&'(k')
(») Z„(0)= 1——P

X ' x—x'(k')
(41)

(2&) where A is a local 6eld correction—= [sh(q'+2)]'. In this
limit,

(G;,'(kk') )= b y b(kk')P;(k)+ exP;(k) G y "(kk') (29)

upon transformation. Comparing Eqs. (25) and (29),
we find that

G,,'"(kk') = b(kk')cP, (k)Z, ,'(k) . (30)

If Eqs. (2) and (3) are combined and averaged as

(6)=P+P(C)P+ P(CGC)P (31) (42)g 2 0

The above sum over wave vectors k' may be separated
into a sum of sums over a star of k values constructed
by operating on a particular k with the rotation ele-
ments of the perfect crystal space group; x, (k) and
p(k)[= p(—k)] are then the same for any k in the star.
For crystals of cubic symmetry, every star sum of the
form

Gdd—= (1/C2)(CGC), (32) vanishes unless x and y are the same and
then

(G;y (kk')) = b,,'b(kk') [P,(k)+cexPP(k)]
ye'x'P, (k)G" ""(kk')Py(k'). (33)

Z,„(0)=b,„1-ex p(k')

3Ã 'h' x—x, '(k')
(43)

If Eq. (19) is written with the v=0 term explicitly
included and the remaining terms summed, it may be
compared with Eq. (33) and

G,y""(kk') = b(kk') (c/ex) [Z,y (k) —b,y]. (34)

In 6" the f)rst site is necessarily a defect, but since
the second site must be either a defect or a host atom,

Then, manipulating Eq. (34) and discarding terms pro-
portional to the perfect-monatomic-crystal Green's
functions which give no absorption, we find that

4m(vive'h. c(1—c)
h'( )= Im Q (h)P;(h))

qv Vm 3'

Similarly,

G.d Gdd+. 6dh

Gh —Ghd+ Ghh

(35)
(

(1—c)ex
1— P n(k')P, '(k'), (44)

3$
(36)

where we have used the Fourier transform of (13)
(G)=G'+6"

From Eqs. (30) and (34), then,

G,y d"(kk') =G,y'"(kk') = b(kk') (c/ex)

y(b, , +Z,,'(k)[.xP, (k) —1])

(3&)

(38)

p(k) = cNb(k)+ (1—c)n(k) . (45)

"The assumption that only the defect contributes to the optical
absorption has recently been criticized by R. S. Leigh and B.
Szigeti, Proc. Roy. Soc. (London) AB01, 211 (1967); Phys. Rev.
Letters 19, 566 (1967).
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-p1
r(a)=tv''Im

~ Q [ '—ra (k)j—' (k))
' l3E ~k4s.lVe'Ac(1 —c)E= — Im[mco Q ~tPoi(~)/

eCd (1 c)
P Lco'—to "(k')j 'cr(k') ~, (51)

3~V(1—(1—c)me~' P ~d'ot(~))]. (46)

The effect of the correlations between defects can be form
seen by rewriting (44) as

The zeros of the denominator give the frequencies xg of
localized modes for light mass defects and the fre-
quencies of resonances in the band for heavy mass de-
fects where optical absorption peaks should occur. Since
Qp ls always equal to 1, and since all other 0!& are zero
for the random defect arrangement, it appears that the
correlation between defects result in a shift of the peak
from xg. If the shift Axe is small compared to xg,

Qigo rri&oi(xs) where

7
av & av

2(1—o)' 1—e
(52)

where y is a constant depending on the parameters of
the model used. The integrated absorption in the ran-
dom case depended on the second and fourth moments
of the perfect-crystal frequency spectrum. A similar
expression results from the ordered case, except that
the moments required are those of the spectral function
weighted with n(k). To first order in c,

xs (P Q;k o.(k)x;(k)/Lxir —x;(k)j' (~'),=— P o.(k)~,'(k) =P D«,.n, ,
3Ã ~~

(53)

where (P indicates that the principal part is to be taken.
The total integrated absorption, however, is independ-
ent of the defect correlations. Because the imaginary
part in Eq. (44) is even in ro, the net absorption is
temperature-independent, and the integrated absorp-
tion is given by the half of the integral of (44) from
minus to plus infinity. The conjugate real part of this
integral is zero, and the imaginary part is given by
half the integral clockwise around the contour at in-

6nity enclosing all the poles in and out of the band.

(~')o~—= P rr(k)rog (k) = Z Dot*q&it t&Dr oz~—.
3Ã ~~ Ll'y

(54)

In the last step, (5) has been used. The dipole moments
induced on the defect atom depend upon the nature of
the neighboring atoms. The optical absorption is
weighted more strongly at high frequencies where
neighboring atoms have opposing motions, and the in-

tegrated absorption is not independent of the order.

E(co)doo = lim -', E(M+1p)doo

E(or)d&o. (48)

1
lim Eoi.p(ro) = ~pi~aP,

SSQ)

However, from (4) and (6),

8'0. k2=—S(Q,~).
808co kg

(55)

IV. NEUTRON SCATTERING

The most complete information about a vibrating
system can be obtained from measurements of the in-
elastic cross section for scattering neutrons with an
initial wave vector ki to a final wave vector ks= ki+Q
with a neutron energy gain of Ace.

and, since np=1,
2''Ee'c(1 —c)A.

X=
rioVmL1 —(1—c)oj

2hn(ro)
S(Q oo) = (( Q A (A ) e'"' &" "'&Q Q

Ll'aP
A similar result can be expected to hold in the more
useful case of diatomic crystals such as diamond.

For uncharged but polarizable mass defects randomly
distributed in a rare gas crystal, it was found" that the
optical absorption was given by an expression like Eq.
(40) with an effective defect charge proportional to the
square of the frequency. If short-range order is in-
cluded, the optical absorption to 6rst order in c is of the

&&ImGg .p(co))~). (56)

The effective scattering length of the atom at site l is
the usual atomic scattering length a~ multiplied by an
atomic Debye-%aller factor,

g $
—g$g k((Q'+l) }T

~ (57)

The brackets in Eq. (56) indicate a configuration aver-

In the harmonic approximation, the Van Hove function

(50) S(Q,co) may be transformed to"

'4 W. M. Hartrnann and R. J.Klliot t, Proc. Phys. Soc. (London)
91, 187 (1967}.

'~ C. Kittel, Quanta Theory of Solids (John Wiley 8z Sons, Inc. ,
New York, 1963), p. 394 G.
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age over the defect sites of the imperfect crystal and
the brackets ( ~ )tv indicate an average over nuclear
isotopes and spin states. In the exponent, the wave-
vector transfer Q has been reduced by an appropriate
reciprocal-lattice vector to place x in the perfect-crystal
6rst Brillouin zone

x=Q —~. (58)

The averages above may be taken, and from the
definitions (27) and (32),

2hm(co)
s(Q, )=- P(g() t()g

XIm{(~a)N G ' (&)+2(~d)Ã(~ a)WB' (v')

+ (A p)tv'G;;. "'(ot))+S;.,(Q,co) . (59)

The incoherent term is

1Ã aP

XIm{na (Goo p(oo))+(&p cta )Go—o p"(ot)), (6O)

where the incoherent scattering lengths are de6ned as

a'=—(A')a —(A)a '. (61)

Upon substitution of Eqs. (34), (38), and (39) into
(59) for the coherent scattering,

2hrt(oo)s-.(Q,~)= 2 LQ ~'(~)jEQ ~"(~)j
m jj'

XIm f't (3„) P (x)+ Z(to—)$(e» (x) 1)(A—a)a

+(&.)~jL(», ()—1)(~a) +(~ ) j (6»

A typical constant-Q neutron scattering experiment
compares the plots of scattering intensity versus energy
transfer at a particular Q value for perfect and imperfect
crystals. In the perfect crystal the neutrons gain energy
from the destruction of phonons of a particular branch
and of wave vector x. In the case of an imperfect crystal
with mass defects randomly distributed, the observed
response of the crystal to a probe of wave vector x is a
combination of phonons, all from the same branch.
Correlations among the defects, however, are seen to
mix the branches of the perfect crystal in Eq. (62). In
addition, the mixing of branches prevents (Goo p) and
Goo p" from being diagonal and the broad incoherent
background will no longer depend simply on Q' but
will show some dependence on scattering angle.

V. COPPER-GOLD ALLOY

Svensson, Brockhouse, and Rowe" have measured
the inelastic neutron scattering cross section for copper

«6E. C. Svensson, B. N. Brockhouse, and J. M. Rowe, Solid
State Commun. 3, 245 (1965).

O, I

-O. I

O
—0.2

a
-0.3

—0.4
1

4
v, I O' Hz

FIG. 2. The shift of the frequency of the transverse response
of a Cue oovAuo. oge crystal at (}=L22eg from its value for pure
Cu plotted as a function of the perfect-crystal response frequency.
Curves are theoretical predictions of the Debye model for (a)
random defects, (b) ten shells of ordered defects with short-range
order characterized by a temperature T=T,/0. /, (c) ten shells
at T=T,/0. 95, (d) two shells at T=T,/0. 9, (e) two shells at
T=T,/0. 95. The zeros of the random curve diBer slightly from
those in the equivalent plot by Svensson et al. due to the factor
(1—c}in Eq. (74). Circles are the data taken from Z. C. Svensson,
Ph.D. thesis, McMaster University, 1M7 (unpublished), for the
alloy at room temperature.

with 9.3 at.% gold impurities. They have analyzed their
results in terms of the low-concentration theory of
Elliott and Maradudin, ' in which the gold defects pro-
duce a shift and width of the perfect-crystal one-phonon
lines. The scattering, which destroys a phonon in branch
j, is then proportional to a modified 8-function expres-
sloIl)

I
s,.at(Q, (o) ~ Im

to' —co,'(x)—co'Z(to)
(63)

where &op(to) is a self-energy with real and imaginary
parts, giving the shift and width, respectively,

Z(to) =—A(to)+ iF (to) . (64)

The experimental results and the predictions of this
random mass defect theory are given in Fig. 2. Despite
the large error bars at high frequencies, it appears that
the simple theory does not account for the experimental
results. In particular, the experiments do not show the
positive energy shift predicted by the theory. One might
argue that the low-concentration theory should not
work very well at defect concentrations as high as 9.3%.
The higher-concentration work of Taylor, ' however,
suggests that the discrepancy between theory and ex-
periment is not a simple concentration effect. Behera
and Deo" actually find that their higher-concentration

«~ R. J.Elliott and A. A. Maradudin, in Symposiums on Inelastic
Scatterertg of Neutrolr (International Atomic Energy Agency,
Vienna, 1964), Vol. I, p. 231. Several of the results obtained by
Elliott and Maradudin are also implicitly contained in earlier
work by Russian authors; e.g., Yu. Eagan and Ya. A. Iosilevskii,
Zh. Eksperim. i Teor. Fiz. 44, 1375 (1M3) /English transl. :
Soviet Phys. —JETP 17, 925 (1M3)j, and the references contained
therein.

'e S. N. Behera and B.Deo, Phys. Rev. 153, 728 (1967).



THEORY OF VI B RATIONS OF D I LUTE ALLOYS 683

theory shifts the emergence of positive energy shifts to
a lower frequency. It would be possible to provide better
agreement with experiment with a theory that took into
account force-constant changes between defects and
their neighbors, but the relatively good agreement be-
tween the random mass defect theory and the experi-
mental results on copper with 3 at.% gold defects"
suggests that force-constant changes may not be the
dominant contribution to the discrepancy in the 9.3%
case.

The low-concentration theory of this paper is not
strictly valid at 93%, although it might be expected
to predict correctly the qualitative features in this case.
At 25% gold concentration copper-gold forms a well-

ordered simple cubic alloy below 390'K with gold on
the corners and copper on the faces. It seems very
likely that there is a considerable remnant of this order
over short ranges at 9.3% concentration. The coherent
scattering lengths of copper and gold are virtually
identical. At room temperature 2' /T=1.2 and the
mean-square displacements of copper and gold atoms
are essentially the same. To a good approximation, then

and
(A g)~ ——(A e)~=—A (65)

2hn ((o)A'
S..~(Q,~) =— — P LQ o (x)][Q e"(~)j

1n jj'
XImG '(~). (66)

X Sj'K
XIm [x—x;(x)]8,,' —coax

x—xp(x)

X P o &(x)P e(k)oe&'(x)n(x —k)
a, P,k

(67)

Because of the branch mixing, it is not generally possi-
ble to attain a simple self-energy form. As in the case
of force-constant changes, however, the self-energy is
diagonal on j for certain x vectors along symmetry
axes, although the self-energy still depends on j and
x, and not just on co.

For the degenerate transverse branches studied ex-
perimentally at Q=[22~] the vector x is along the
crystal s axis. We may show that oR-diagonal elements
of Z e(x) are zero by a k-star sum argument, if we limit
the star to those wave vectors created by operating
on a particular k value with only those operations of
the cubic group that leave the s coordinate unchanged.

We may make this equation resemble the self-energy
form of Elliott and Maradudin by using (25), (26), (21),
and (45), and performing some algebra,

2hn(co)A'
&.a, (Q,~) = O' 'K C 'K

0 j =0 2 0 = 0 2 0' =0

Since p(k —x) or a(k—x) is invariant under this limited
set of operations, we 6nd that

Z (x) =Z (r), Z,„(x)=Z„,(x)=Z„(r)=0, (69)

and

Z,(x)=Z„„(x).
Then (67) becomes

8hn (co)A '
S..g'([22'], (o) = Irn x—x,(x)—coax

(1—c)C
X 1— PP.,(k)~(~—l) ~ (71)

A measurement of the diRuse x-ray scattering in-
tensity provides directly the short-range order func-
tion n(k), a half-bell-shaped curve. Equation (71) is
then in the best form to use the x-ray data for a calcu-
lation of the inelastic neutron scattering. The contribu-
tion to the self-energy from each of the atoms cor-
related with a central defect can be seen by rewriting
the convolution sum,

1 o.&'(k)o.&'(k)

( —k)=m +Po ..
X ~'~ x—x;.(k)

(72)

In the Debye model of a monatomic crystal, the three
branches are degenerate. By Eq. (6), then,

( ex p(k —k')
Z-e(k) = &-e 11—ZZ'x —x( )i'

and Z,y(k) is diagonal on J. Correlations among the
defects introduce no branch mixing, and the neutron
line shape may be represented by Eq. (63) with a self-
energy

2'(cu) =cc[1 (1 c)m—(v' Pe—( Pp(„(co)n,e '"'&"& '~]-—'.
(74)

Small-percentage shifts in peak frequency may be
written as

hv=coh'((o)/4n

and the width in hertz as

(75)

This star is large enough to ensure that for every k in
the star there will be other vectors, k~ and kg, in the
star, for which

o.&(k) = —o,~(ki), o „~(k)= o „&(k,),
o,'(k) = o.,&(kg), (68)

and

7= cv I"((a)/2m . (76)
"E.C. Svensson and B. N. Brockhouse, Phys. Rev. Letters

18, 858 (1967). In this continuous model the Brillouin zone is a sphere
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of radius k and for the perfect-crystal Green's function

Ppt-3(~) =
38.3 3" k'dk sin(krt)

Lx-x(k)]krt
(77)

and the function

(1—nr, )3
(79)

the Cowley equations are

Lt Tr (1+4n——r+ 2np+4np+n4)+ Tp (2nt+ 2np+ 2n3)

+T3(4nt+2n3+4np+4n3+4np+ 2np+4n7) ) (80)

L2 = Tl(4nl+4np+4np)+ T2(1+4n4+np)
+T,(4n, +Snp+8n7+4npp), etc. (81)

The Cowley theory has worked remarkably well in

predicting the short-range order parameters for Cu3Au
at temperatures above the ordering temperature. It
seemed reasonable to try the theory at off-stoichio-
metric concentrations and to use the linear approxi-
mation

Lr, ——nr, /c(1 —c)

These functions are calculated in Appendix 8 in terms of
K=co co

The shift and the width of the inelastic coherent
neutron scattering peaks can now be calculated if the
short-range order parameters are known. The theory
of Cowley' provides a set of coupled equations for the
order parameters in terms of the interaction energies
V between AA, AB, and BBpairs which are jth nearest
neighbors. With the potential

kTj= 3(l AAj+ I, BB,j) I AB,j

TAaLE I. Short-range order parameters for Cup, 907Aup. p93

characteristic of various temperatures.

Site nr, (T,/T =0.95) nr, (T,/T =0.9) nr, (T,/T =0.7)

1 110
2 200
3 211
4 220
5 310
6 222
7 321
8 400
9a 330
9b 411

—0.0983
+0.291
+0.0387
+0.0709—0.0921.—0.0344
+0.0002
+0.1126—0.0431
+0.0367

—0.0958
+0.230
+0.0372
+0.0463—0.0743—0.0304
+0.0002
+0.0729—0.0245
+0.0262

—0.0825
+0.1055
+0.0250
+0.0152—0.0282—0.0141—0.0007
+0.0197—0.0043
+0.0083

& The value of a5 for Te/T =0.95 has been reduced by 10% to compensate
approximately for errors in the linear theory.

1/e=orz, jrrPpp(orz, ) . (84)

Interactions among the defects, however, broaden the
localized mode into a band. In order to demonstrate
the possible effects of correlations among the defects on
the width of this impurity band, we consider a clustering
correlation in which those sites which are nearest neigh-
bors of a defect (in the shell X=1) have a probability
of being occupied by a defect which is higher than the
concentration. It is assumed that the defect deficiencies,
required to make the total concentration equal to c, are
widely dispersed throughout the crystal.

In the Debye approximation, Kq. (20) may be
written in a self-energy form to give

VI. IMPURITY BAND

H a single light impurity is substituted for a host
atom in a crystal, a mass defect theory predicts a
localized mode at a frequency col. given by

of Clapp and Moss, " who have taken F1=450'K,
T2 SS~K7 T3 20 K Th e only parameter lef t jn
the theory, then, is the temperature T, which character-
izes the state of short-range order in the system. This
temperature is expressed in terms of the ratio T,/T,
where the critical temperature is given by

T,=Sc(1—c)LTt—-', Tp+ 2T3]=362'K. (83)

The order parameters initially computed from the linear
theory seemed reasonable and small enough to justify
the use of the linear theory, except for n& and 0.2. Using
the linear theory for all other values of e~, the first two
Cowley equations were solved for n& and o.&, which then
took on reasonable values. The results for several values
of T appear in Table I. The computed shifts and widths
for the random and short-range ordered systems appear
together with the experimental results in Figs. 2 and 3.

'"' Reference 12 and J. M. Cowley, Phys. Rev. 120, 1648 {1960);
138, A1384 (1965)."P.C. Clapp and S. C. Moss, Phys. Rev. 142, 418 (1966).

33 S. C. Mope (private communication).

tr3or 3' Z P0l (or 3)n l =
l (1—c) e

(86)

Q Ppr(or„)nrc'" ' r= 1— —, (87)
l or —

pp —e(i c)

where up=1, and otherwise for this example only n&=1
can be nonzero.

If nz=& is set equal to zero, the result of ET; for un-
correlated defects, is obtained. In this case the left-
hand sides of Eqs. (86) and (87) are the same, and are
plotted as curve R in Fig. 4. The right-hand sides are

X
orp orp(k) —ceorp(1—jrteorp(—1 c)gt P—pt„ntc'r'")

(85)

The values of ~ for which this function is singular, and
hence has a finite imaginary part, constitute the im-
purity band. The lowest such frequency co& is that which
makes the denominator vanish for pp(k) =0, the highest,
or„, for or(k)=or .

1—ce
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FIG. 3. The widths of the neutron scattering peak at frequency
v for Cup. 9p7Aup. p93 as calculated in the Debye model for random
defects (dotted curve), ten shells of defects at characteristic tem-
perature T=T,/0. 95 (dashed curve), two shells of defects at
T= T,/0. 95 (solid curve). The xxx are the data of Svensson et al. ,
corrected for the additional mosaic spread of the impure crystal.

I.8

I.6

plotted for e =0.448, c=0.05 and 0.10, and for e =0.823,
c=0.033. These values correspond to the systems Pd:Ni
and U:Be studied by incoherent inelastic neutron scat-
tering. ""The intersections of a horizontal (low-fre-
quency) line, marked by the concentration, with the R
curve occur at the lowest frequency in the random-
impurity band. The intersection of the curved (high-
frequency) line with R gives the highest frequency, and
the intersection of R with the horizontal 1/e line gives
the single-defect local-mode frequency that, for this
theory, lies near the middle of the band.

Both the Debye theory and the neglect of force-
constant changes tend to predict a local-mode frequency
which is too high, in this case by as much as 30% for
V:Be. The predicted widths for the random theory
given in Table II are much smaller than the widths
that might be inferred from the experimental results.

If a nonzero value of n), =~ is used, the left-hand sides
of Eqs. (86) and (87) are represented by two lines
which may be calculated from the Debye-model Green's
functions given in the last section and in Appendix B.

The body-centered U:Be is approximated with a value
of f=kr&/7r=1. 3—5376 for f in the X=1 shell of only
eight atoms. In Eq. (87), gt e'" '~ is replaced by
P& sin(k r&)/k r&, and not by its most negative value.

For a positive value of n», approximating very
crudely the clustering of light defects, the left-hand
sides of Eqs. (86) and (87) for low and high frequencies
are, respectively, below and above the random curve,
and give new limits to the impurity band. A positive
nq=~, then, is seen to widen the band, whereas a negative
n), =~, representing a mutual avoidance among the light
defects, would decrease the bandwidths, as might have

233. Mozer, K. Otnes, and V. W. Myers, Phys. Rev. Letters
8, 278 (1962).

24 B. Mozer, K. Otnes, and C. Thaper, Phys. Rev. 152, 535
(1966).
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FIG. 4. Impurity-band limits for Pd: Ni and V:Be.The curve R
for random defects intersects ()&) the low- (horizontal) and high-
(curved) frequency lines from Eqs. (86) and (87) to give the limits
of the impurity band for the concentrations indicated. The inter-
section of R with 1/e gives the local-mode frequency. The lines
adjacent to R marked with nonzero values of n), 1 give low and
high impurity-band limits, indicated by the encircled intersections
for defect clustering. For Pd: Ni, the curve for the high-frequency
limit for ay 1

——0.04 is indistinguishable on this scale from the R
curve and has not been drawn.

TABLE II. Local mode frequencies and calculated
impurity bandwidths.

Alloy

Vo.967~co.o:s

Pdo. 96N&o. os

Pdp gNip. 1

L(Debye) ~L x ~ ~X=

1.87 1.3—1.6 0 0.045
0.39 0.137

1.13 0 0.028
0.04 0.048

0 0.056
0.04 0.067

1.10

been expected from simple physical arguments. Further-
more, for very light impurities with high local-mode
frequencies, Nereulistically high values of nq=~, such as
n&=&=0.39 for V:Be, are required to produce any ap-
preciable broadening. For the relatively heavier Ni im-
purity in Pd, however, appreciable broadening is pro-
duced by values of n&=& that are quite possible for the
fairly high defect concentrations studied experimentally.
This result also seems physically reasonable; the lighter
defect vibrations are more localized, and are thus less
affected by the neighbors than are the vibrations of
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relatively heavier light defects with a local-mode fre-
quency closer to the perfect-crystal band. But, although
the sects of this type of short-range order on the
impurity bandwidth appear reasonable, the entire
theory is too simple to account realistically for the
widths, as ET has suggested.

If the incoherent neutron scattering lengths of defect
and host atoms are different, there is an additional con-
tribution, proportional to c, to that part of the inco-
herent scattering given by Eq. (60). For the Debye
model,

&& L1—(1—c)meaP P Poi(ra)uie'"'i] cu0')—', (88)

which has a 6nite imaginary part over the same range
of high frequencies as does (G00„(cv)).

VII. DISCUSSION

The approximation (15),which is central to the theory
developed above, is valid only for small defect concen-
trations. Furthermore, validity of the multiplicative
aspect of this approximation requires that the short-
range order be a perturbation on the random distribu-
tion of defects. This may indeed be the case for many
real alloys at small defect concentrations for which one
could expect the various

~
ui

~
to increase no faster than

c with increasing concentration. For such an alloy, the
multiplicative aspect of (15), which arises only in terms
of (11) with three or more different defects, then results
in errors of order c' or higher. Alternatively, one could

say that, at low concentrations, cp&, &,&, is expected to
deviate from its random value of c' for l&/l2&la/l& by
a value no greater than c'.

A more serious error would seem to result from the
asymmetrical nature of (15), which causes an improper
weighting of all crossed graphs. Any term of the general
form (17) which is underweighted by a factor c' in the
random case will be underweighted when defect sites are
correlated by the factor

Pc+(1 c)ui, i,$"—$c+(1 c)ui, i,$"—
tc+(1 c)ui„, —i„j' ', (89)-

where bi+b2+ b„ i= b. If the quantities ~ui, i, ~

rise
more slowly than c with increasing defect concentration,
the errors made in both random and short-range ordered
cases are equivalent. For the 9.3 at.% defect concentra-
tion system studied, however, ~u&~ is not always less
than c, especially for X=2, and one must conclude that
this concentration is somewhat too high for the theory
to be valid.

The theory is less satisfactory for the short-range
order parameters themselves. In the random theory, all

graphs corresponding to a single defect should be
weighted by c, those corresponding to a pair should be

weighted by c', etc. For the short-range ordered case,
a single defect should have a factor c, pairs a factor cy,
triples a factor cgg, etc. First-order terms in p then come
from pairs. In our approximation, however, crossed
pair graphs are weighted by factors cgg, eggy, etc. ;
only uncrossed pair graphs contribute to the linear de-
pendence on g. Generally, one can say that this theory
is approximate to eth order in the short-range order
parameters to the extent that the ET theory is approxi-
mate to (v+1)th order in the concentration. Solutions
to the random pair defect problem do appear in un-
published works, ""but the resulting expressions are
too cumbersome to be readily used in physical calcula-
tions.

In order to compare the predictions of this theory
with experimental results such as the shifts and widths
of the coherent inelastic neutron scattering peaks, an
experimentally determined u(k) should be used to calcu-
late Z(k). One cannot expect very good agreement with
experiment if n~ is used for X, =10, as was done here
for want of an experimental u(k). The short-range order
parameters for P)10 are probably not negligible, as
was shown for disordered Cu3Au by Moss's theoretical
reconstruction of the u(k) from the first ten shells of ui
and subsequent comparison with the experimental u(k)
from which the n~ were derived. "In our case, the cor-
rections to the self-energy are products of the n& and
perfect-crystal Green's functions which fall off with
distance only as 1/Qr& within the band of perfect-
crystal frequencies. Corrections from shells beyond
X= j.0 would be important. That the shifts and widths
calculated from the first two order parameters approach
the experimental results slightly better than do those
calculated with ten parameters is, therefore, not dis-
turbing, although it is somewhat surprising.

The shift and width curves are rather sensitive to the
model used for the perfect crystal and the use of the
Debye model, which greatly simpli6es the calculation,
cannot be justified. As usual, the Debye model over-
estimates the defect resonance frequency, an error that
makes the random mass defect theory (and perhaps the
short-range-ordered theory) appear to come closer to
the experiment than it should. Although this theory is
very crude, it is the logical extension to a short-range-
ordered defect system of the simplest defect theory
capable of producing analytically such physical features
as a shift and a width of neutron scattering peaks and
an impurity band; it may be a reasonable Grst step
towards an understanding of the effect of short-range
order on the dynamics of imperfect three-dimensional
crystals.

Pote added ie proof. The defect-correlation-function
approach may also be used with force-constant changes.
By techniques similar to those of Appendix A, we may

"A. A. Maradudin, Westinghouse Research Laboratorie s
Scienti6c Paper No. 63-I29-103-P9, 133, 1963 (unpublished)."K. Lakatos, thesis, Cornell University, 1967 (unpublished).

S. C. Moss, J. Appl. Phys. 35, 3547 (1964).
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demonstrate (ET) Eqs. (3.6) and (3.7) for general
defects in the random limit provided that Eq. (3.7) is
taken as a definition of X;; '(k,&p).

APPENDIX A: RANDOM LIMIT

Elliott and Taylor sum Eq. (2) by first selecting all
terms involving only one defect (Fig. 1, (a), (c), (h), etc.)
and applying corrections in order to re-include in those
sums of more than one defect some terms in which two
or more defect position indices are the same. After
extending this procedure to all numbers of defects and
applying a configuration average, they find, for a mon-
atomic crystal with mass defects,

where
(G) =P+cPX'(G), (A1)

X'—=CL1—(1—c)CPppg '. (A2)

%e show that this result is obtained from the defect-
correlation-function approach with approximation (15)
in the random limit, where

cp...,. . .,„'=c(c+(1—c)Si,i,)(c+ (1—c)Si,i,)
(c+(1—c)5t„,i„). (A3)

Mechanically summing terms (17), exhibiting ex-

plicitly terms up to fourth order, gives

(G)=P+cPCP$1+ (1—c)CP ps+ (1—c) 'C'P pp'

+ (1—c)sCsPpps+ ' ' ']
+c'PCPCPL 1+2(1—c)CPpp+3 (1—c) 'C'

XPpp'+ j
+csPCPCPCPP1+3(1 &)CPpp+ ' ' ')
+c'PCPCPCPCPL1+ ]

(A4)
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TABLE III. The number of graphs of diferent kinds
in the expansion of Eq. (2).

Defects
Uncrossed graphs

Order 12 3 4 5 67
All graphs

2 3 4 5 6

1
1 1
1 2 1
1 3 3 1
14 6 4
1 5 10 10 5 1
1 6 15 20 15 6 1

1
1 1
1 3
1 7 6 1
1 15 25 10 1
1 31 90 65 15 1
1 63 301 350 140 21 1

APPENDIX B:CALCULATION OF DEBYE-MODEL
GREEN'S FUNCTIONS

In order to calculate the Green's functions (77), we
introduce the parameter

w —=k/k„= tp/cp„

and the lattice parameter a for the fcc unit cell of four
atoms. Then

«= ~(sit) '" (82)

and from the relation between the volumes of the unit
cell and of the Brillouin zone,

we have that

where

vg, ——(2x) s/vi,

kri xw f+X, ——

f=W2(3/x. )'"= 1.39264.

(Il3)

to fall where they may, improperly weighted but not
omitted. The coefficients of the corrections are those of
the expansion of $c+(1—c)8ii $ and form a Pascal's
triangle (shown in the left triangular half of Table III).
The entries correspond simply to the number of un-
crossed graphs for a given number of defects to a given
order. For comparison, the total number of graphs is
given in the right triangular half of Table III.

The first square bracket in (A4) can be summed to
L1 (1 c)CPppj ', the second to L1—(1—c)CPppf
and the nth to L1—(1—c)CPppf ". Then using the
definition (A2) we have

(G)=P+cPX'P
+c'PX'PX'P+ c'PX'PX'PX'P+, (AS)

which is equivalent to (A1).

The first term (unity) in the first (second, . ) bracket
represents a sum over all possible graphs of one defect to
first order (two defects to second order, ~ ).The follow-

ing terms in a square bracket, which corresponds to a
certain number of defects, are corrections to brackets
involving more defects. These corrections are necessary
because two or more defect-site indices may be the
same. However, the corrections are only made for the
uncrossed graphs, and the crossed graphs are allowed

3' ZO

ImPpp p(tp) = 8 p (w(1)
2sscgm

=0

38 p
RePpp p(cp) =

2M'

(w& 1)

1+w
min ———2

1 Qf

For /'=0, therefore,

(f16)

(37)
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FIG. 5. The real parts of the perfect-
crystal Greens functions in the Debye
model for the atomic displacement auto-
correlation and for displacement correla-
tions between a central atom and atoms
in the erst four shells (X) of its neighbors.
The coordinate a —=cy/co . Osciliations at
high frequency are too small to be seen
on this scale.
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PzG. 6. The imaginary parts of the perfect-crystal Green's
functions of Fig. 5: Debye model. All imaginary parts are zero
for u =a /ca )1.

35 p
ImPpE s(cp) = sin(s fwQit), (w(1)

2m, rd 'f/'
=0,

Recept s(M) = {sin(7r fwQX)
2SRd~ 7rf+A

X LCi(s.f(1+w)QX)—Ci(s.f(1—w) QX)j
—cos(s fwgX) $Si(s f(1+w)QX)

+Si(7rf(1—w)QX)]}, (B10)

where Si and Ci are the sine and cosine integral func-
tions. The real and imaginary parts of these functions
for X=0, 1. 2, 3, 4 are plotted in Figs. 5 and 6. The
logarithmic singularities at zv=i are a feature of the
Debye model and would not occur for a more realistic
density of states.

The self-energy ot Eq. (74) still depends on the mo-
mentum transfer vector through exp(ix r~). For the
transverse branches under study, we may apply a simple
nearest-neighbor central-force model for which

«, (tp) = (4/a) arcsin(w&2) . (B11)


