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The linear response of the optical constants of Cu to a general strain is presented for the range
1.5&Ace&5.5 eV. The transitions Xs-+ X4' at 4.0 eV and E~ -+ i.~ at 4.15 eV are identihed. The deformation
potentials 8(E» Lp»"—)/8e= —(1.1+0.1) eV and 8(Li Er)/—8e= —(9.6+1.5) eV with e=AV/V, and
8Lq/8e„, = —(72+12) eV with e „=e„,=e„, e =e»=e„=0 for k~~L111j are evaluated from the measure-
ments. They are used to derive the volurue coefficients of the Fermi energy, 8(lnEr)/8e= —1.1&0.3, and
of the position of the d bands, 8(inEe)/8e= —1.2&0.5, with respect to Pq. The measurements are consistent
with the assumption that direct interband transitions dominate the absorption above 2 eV.

of solids mentioned above. However, the topology and
the symmetry of the problem give rise to singularities
in the joint density of states, " ' which dominate the
behavior of semiconductors and insulators in the region
of the interband transitions. In metals, the modi6ca-
tions of this structure due to the overlap of the Fermi
energy with the electron bands might give even sharper
singularities in the absorption. '

The basic virtue of the measurements to be discussed
here is their ability to distinguish between singularities
of different symmetry. The main diKculty in the
analysis is that the "symmetry of a singularity" is
quite frequently not well de6ned. For example, a
structure in the absorption caused by an 3f& or an M2
type singularity in the joint density of states is com-
posed of transitions with k vectors terminating on the
optical energy surfaces E(k) = E(3II&) and E(k) = E(3E&),
respectively. These surfaces stretch through the Bril-
louin zone, i.e., there is a whole range of transitions
with different k vectors which contribute to the ob-
served structure in the absorption. However, if the
structure in the absorption is made up of transitions
with wave vectors con6ned to a region close to a
symmetry point k, in k space, the structure will ap-
proximately respond to a perturbation as if it were
composed of transitions with k, only. We will refer
to transitions of this kind as strongly localized transi-
tions. Transitions arising from the SI& and 352 type
singularities mentioned above are only moderately
localized around the corresponding saddlepoints, and
some transitions connected with singularities caused
by the Fermi energy are not localized at all.

The experiments reported here were done with a
technique similar to the one used for the alkali halides. "
They give the linear response of the optical constants
to an arbitrary strain for photon energies between 1.5
and 5.5 eV. This information is used to determine the
symmetry of strongly and moderately localized transi-
tions; it also reveals which structure in the absorption

INTRODUCTION

A PPLYING a shear strain to a single crystal re-
duces its symmetry and may split formerly de-

generate levels. In optical experiments, the 6rst such
splitting was observed accidentally in the investigation
of the excitonic absorption of germanium. ' ' The power
of the method was soon recognized; it was used to study
the excitonic absorption of other crystals, e.g., CdTe'
and Cu20. ' The method was 6rst applied to the con-
tinuous interband absorption by studying the strain-
induced change of the reRectance of Ge and Si.'~
Modulation techniques were also used successfully. ' "
Polycrystalline 6lms of the noble metals were in-
vestigated. "A preliminary version of the present paper
was published elsewhere. "

According to the band-structure calculations of
Cu,"'4 direct, k-conserving interband transitions are
possible for hew&2 eV. These lead to a continuous
absorption in contrast to the sharp excitonic structure
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FIG. j.. The mechanical oscillator. The extremal positions of the
crystal are shown in the lower half of the figure. The oscillator is
driven by an inhomogeneous ac magnetic field which acts on the
small permanent magnets at the ends of the level arms.

is due to nonlocalized transitions. In addition, it is
used to determine the deformation potentials of the
observed transitions. The consistency of the assign-
ment deduced from experiment with the calculated
electronic structure of Cu is discussed. The effect of a
general strain on the electronic structure is treated
theoretically. The results obtained here are compared
with those deduced from other experiments (e.g. , photo-
ernission") and with theoretical calculations.

EXPERIMENTAL METHOD

Mechanical and Electronic Setuy

An ac bending of rectangular single crystalline bars
(1)&3&&20 mrn') was used to produce an ac strain at
the surface of the crystal. The motion of the crystal is
sketched in the lower half of Fig. 1. The two axes of
rotation near the ends of the crystal (lower half) are
realized by thin bronze bands, soldered to the two
clamps which hold the crystal (upper half). Two lever
arms are attached to the clamps, carrying small

permanent magnets at their ends. The driving forces
acting on these magnets were produced by the in-

homogeneous ac magnetic Geld of two electromagnets.
The frequency of the current passing through the elec-
tromagnets was tuned to the bending mode resonance
frequency of the mechanical system.

There are also counterweights attached to the
clamps (omitted in Fig. 1 for sake of clarity), which
balance the mass of the permanent magnet, the lever
arm, and the clamp. After removing the sample, the
bronze bands wiB be a main axis of the moment of
inertia for each assembly (magnet, lever arm, clamp,
counterweight) individually. Thus, no forces are
transmitted through the bronze bands. Otherwise,
these forces might give an unwanted wavelength

» C. N. Berglund and W. K. Spicer, Phys. Rev. 136, AT030;
136, Aj.044 (1964); Colloquium orl, the OPtical Properties arId the
ElectrorIic Strucfure of 3Atals and Alloys, Pairs, 1965, edited byI. Abeles (North-Holland Publishing Co., Amsterdam, 1966),
pp. 285 and 296.

modulation by coupling the mechanical vibration to the
monochromator or give acoustical feedback by coupling
the vibration to the photomultiplier,

The reQected-light intensity, slightly modulated by
the strain-induced change of the reflectance, was de-
tected by a photomultiplier with quartz window (EMI
9558Q, Trialkali). The dc current of the multiplier did
not change when the wavelength setting of the mono-
chromator was changed. This was achieved by using an
electronic feedback control of the photomultiplier.
Thus the ac component of the anode current of the
multiplier was proportional to hR/R, the relative
change of the reAectance. This component was mea-
sured as a function of wavelength by means of a phase-
sensitive detector and displayed on an x-y recorder.
The linearity of the system was checked with a photo-
diode; the ac to dc ratio was found to be correct to
within a3%.
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We tried to approach this limit in our measurements.
The quantitative conditions for the validity of Eqs. (1)
were found experimentally by measuring p& and p2 of
bent aluminum bars of various thicknesses and widths.
The strain at the middle part of the surface is given
by (

e„'
~

= d/2pt and
( e„„')= a'/2pm. On the other hand,

the ratio
j e„'/e»'~ can be calculated using the stress-

strain relation and the form of the stress tensor. Using

X'

FxG. 2. A closed ring, formed by joining the ends of a previously
straight bar with rectangular cross„'section. The stress axis is z'.

Strain Measurement

The strain at the surface of the sample will be the
same as that of a closed ring, formed by joining the
ends of a previously straight bar with rectangular cross
section, as shown in Fig. . This is true if the inhuence
of the clamps can be neglected. The cross section of the
ring will generally be no longer rectangular. There are
two limiting cases for the stress tensor e and the strain
tensor e at the middle line of the surface of the ring.
One limit is approached if the radius p~ and the thick-
ness d of the ring are large and the width b is small.
In this case, the stress tensor and the strain tensor take
the form
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(2)

where ao is the position of the image for zero strain and
ha is the diGerence in the position for maximum ex-
tension and compression. The accuracy of this method
increases with decreasing distance between lens and

sample. It was about +5% for the geometry used
here. The components e, ', e»' of the strain tensor
are expressed in terms of the measured component e„
by means of the stress-strain relation using the form

(1) of the stress tensor. The elastic constants are taken
from Ref. 20. Because of the sample dimensions

chosen, the errors in e„' and e»' due to deviations
from (1) are smaller than 3%. During the optical mea-

2' sample

strob

FIG. 3. The optical design which was used to determine the focal
length of the cylindrical mirror formed by the bent sample.

se American Institlte of Physics Handbook (McGraw-Hill Book
Co., New York, 1957), Chap. 2, p. 56.

the stress tensor given by (1), we found the agreement
between the measured and calculated ratio to be better
than 3%, provided the condition ~e„'~ &4d'/b' was

fulilled. In the optical measurements on Cu crystals,
typical numbers were

~

e„'
I
= 4&& 10 ', 4d'/b'= 0 4.

Thus the above condition was always met.
In the actual measurements, the crystal forms a

small segment of the ring shown in Fig. 2; the distor-
tions produced by the clamps cannot always be ne-

glected. Measurements of p~ and p~ of large aluminum

bars clamped at the ends in a way similar to that
shown in Fig. 1 were carried out. The difference be-
tween. the calculated and the measured

~
e.,'/e»'j at

the midpoint of the sample was again below 3%, pro-
vided the free length of the sample (Fig. 1) was «
least t~ice its width. Typical values for the Cu crystals
used in the optical experiments are l= 10 mm, b= 3 mm,
i.e., this condition was also fulfilled.

Figure 3 shows the arrangement to determine the
component e„' of the strain tensor by measurement of
the focal length of the cylindrical mirror, formed by
the bent sample. The sample was oscillating, and the
frequency of the stroboscope was tuned close to the
resonance frequency of the sample. The distance be-

tween the sample and the image of the slit changed
periodically with the difference frequency co(strobo-

scope) —co(sample). The amplitude of the strain at the
surface is given by

e..'= Dad(2ae) '{1+L1+(ha/ao)']'"} ',
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FIG. 4. The reflectance and ep, the imaginary part of the dielec-
tric constant of Cu at room temperature. The values determined
by Ehrenreich and Phillipp (see Ref. 18) and by Beaglehole (see
Ref. 22) are only shown if they differ by more than 2/z from the
values given in the present paper.

surement, the strain amplitude and phase was monitored

by a pickup capacitor, consisting of one of the magnets
at the ends of the lever arms (Fig. 1), moving against
a axed, insulated piece of sheet metal.

Sample Preparation

The orientation of the samples cut from a single crys-
tal was determined to within ~1' using Laue diagrams.
The surface preparation consisted of grinding, mechan-

ically polishing, and electropolishing" the sample. The
electropolishing was terminated by quickly rinsing in
deionized water and alcohol. After taking the sample
from the alcohol bath, the thin film of alcohol at the
surface was immediately removed by a warm stream
of air. The reflectance of a freshly prepared sample,
measured within 10 min after the electropolishing, is
given in Fig. 4. The growth of an oxide layer at the
surface of the sample is responsible for the observed
decrease in the reflectance with time. This decrease is
most pronounced in the ultraviolet. We observed
a 1% decrease at 5.5 eV within 1 h after the
electropolishing.

Although the reflectance of our samples was measured
in air, it deviates less than 1% from the values deter-
mined by Beaglehole, " which were measured in a
high vacuum after reducing the oxide layer at the sur-
face. The only exception is the region around 4.3 eV.
The resolution of the vacuum monochromator used by
Beaglehole was not high enough to resolve finer details
of the minimum at tha, t energy" (see Fig. 4). Thus the
oxide layer on our sample modifies the reflectance not
more than 1% between 1.5 and 5.5 eV. The reflectance
given by Ehrenreich and Philipp" is slightly lower

~'W. J. Tegart, The Electrolytic am( Chemical Polishing of
Itfetals (Pergamon Press, Inc. , New York, 1959), 2nd ed.

» D. Beaglehole, Proc. Phys. Soc. (London) 85, 1007 (1965).
» D. Beaglehole (private communication).
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Pro. 5. The optical path of the beam behind the monochromator.

than the one we found, indicating a slightly thicker
oxide layer on their sample (Fig. 4).

Figure 4 also contains ~2, the imaginary part of the
dielectric constant. It was obtained from a Kramers-
Kronig analysis. Between 5.5 and 25 eV, Beaglehole's
reQectance values were used. Above 25 eV, the slope of
the reQectance was adjusted to reproduce the absolute
magnitude of e2 given by Beaglehole. "The slope of the
edge ill 62(h~) at 4.3 eV is approximately the same for
the function reported here and the one reported by
Khrenreich and Philipp. The edge determined by
Beaglehole is somewhat Qatter because of the less de-
tailed structure in the reflectance at this energy.

Oytical Design and Error Signal

A major difficulty peculiar to modulation techniques
such as described here and elsewhere"" arises from
error signals which might, for example, be generated by
the mechanical motion of the crystal. Such an error
signal is difFicult to separate from the true signal, be-
cause both have the same frequency and phase.

In designing the optical path behind the mono-
chromator, we tried to minimize such error signals. One
potential source of an unwanted intensity modulation
is the large inhomogeneity of the photocathode, which
tends to convert small lateral motions of the light
beam into intensity modulations. The optical setup is
shown in Fig. 5. The beam was focused on the sample
and on the semitransparent cathode of the multiplier.
The light spot on the cathode is the image of the cor-
responding point on the sample. It will not change its
position, although the reflected beam might sweep
over the toroidal mirror because of a motion of the
sample or change its solid angle because of a change in
the curvature of the sample. However, part of the light
is transmitted by the cathode. It will partly reach the
cathode again, being scattered by the dynodes. These
scattered rays move slightly with respect to the cathode.
They were found to be responsible for a substantial
error signal, which was strongly wavelength-dependent
oming to the wavelength-dependent transmission of the

cathode. This error signal was considerably reduced by
placing a scattering plate 30 mm in front of the cathode.
The plate consisted of a 0.1-mm-thick quartz disk,
roughened on both sides with mesh-1000 carborundum.
The intensity loss due to this plate was about 40/o at
5.5 eV and less at lower energies.

As discussed above, one source of the error signal
mill be the change of the angle q between the incident
and the reQected beam due to the motion of the sample.
This error signal was minimized by shifting the sample
perpendicular to the beam in such a way that the beam
was reQected at the dynamical center of the sample. In
this position p no longer changes, although the crystal
is vibrating (Fig. 1). During this adjustment the error
signal itself served to monitor the position of the light
spot on the sample with respect to the dynamical center.
It was drastically enhanced for that purpose by masking
down part of the reQected beam.

In addition to the sources of the error signal dis-
cussed above, the small motion of the sample normal
to its surface needs to be considered. This will easily
produce an intensity modulation if the optical quality
of the surface is not excellent. The freshly electro-
polished surfaces were of high perfection; they did not
show any trace of light scattered at the surface. The
measurements which will be discussed here were carried
out within 2 h after the electropolishing. They con-
tained an error signal of only 2%%u~ of the maximum
signal. About 6ve days after the electropolishing one
could see some weak scattering of light at the surface,
probably due to an oxide layer of considerably larger
thickness. The error signal was then of the same order
of magnitude as the true signal, i.e., it had increased
by about a factor of 50, compared to the one im-
mediately after the electropolishing.

The response of the multiplier to small ac magnetic
fields (as produced by the driving coils) is another
source of error signal. An effective magnetic shield-
ing proved to be essential for the success of our
measurements.

Oytical Measurements

The reQectance was measured at 4.5' oG normal in-
cidence. The difference between near normal and nor-
mal incidence reQectance will be neglected in the
analysis.

The reflectance of a bent sample contains two con-
tributions. One comes from the discontinuity of e, the
complex dielectric constant at the surface. This con-
tribution is identical to that of a sample with homo-
geneous strain equal to the strain at the surface of the
sample. Another contribution is due to the small varia-
tion of t., caused by the variation of the strain in the
sample in the direction perpendicular to the surface.
The second contribution is normally several orders of
magnitude smaller than the first one, provided the
change of e over one wavelength is small compared to
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TABLE I. De6nition of the piezo-optical constants.

Strain tensor Type of strain Stress axis s'
4~2 with respect

to x', y', s' Components des and nR/R

1 0 0
io 1 0ie/3
IOO 1/

1 0 3 eyz

f —-', 0 0)
O —-,'- O /es.
0 0 lj

Hydrostatic

Trigonal

Tetragonal

None

$001$

f1 0 0
~

0 1 0 cher
(0 0 1

(4 0 0

)0 Sess 0
(0 0 Q gall

(4,' 0 0

)(
0 Ae2s 0

(0 0

&es = -', (Wgg+2Wgs) e
nR/ R= —,'(Qgy+2Qgs)e

&~"= —2&~2 = 4t/I/'44eyz

nR/Rn = 2D—R/Rs =4Q44e„,

Des~~ 2tie2s (Wll Wl'2)e-'z
AR/R" = 2tsR/R—s = (Qii —Qu) e.g

the strain-induced change of e at the surface. This
condition was always fulfilled in our measurements.
The second contribution will be neglected here.

The phase-sensitive detector was locked to the
fundamental frequency of the vibration. Thus, only
changes of the reflectance proportional to odd powers of
strain were detected. Tuning to twice the frequency
which should pick up mostly the quadratic effect pro-
duced a signal barely above the noise. Thus, only
changes linear in the strain components were detected
in our measurements.

EXPERIMENTAL RESULTS

Symmetry Relations

The optical properties of a solid are determined by
the complex second-rank dielectric tensor e, which re-
duces to the unit tensor times the complex dielectric
constant for cubic crystals, i.e., cubic crystals are
optically isotropic. A general strain applied to these
crystals destroys the isotropy. Restricting the discussion
to changes linear in the strain components, we may
write

/-1 &ij ~ ijmnemn ~ (3)

Cu has the point synunetry 0&. In this case, Eq. (3)
parallels the stress-strain relation (Aa replaces the
stress tensor, W the sti6ness tensor), i.e., the fourth-
rank piezo-optical tensor W has three independent
complex elements. ""We adopt the matrix notation
used for the stress-strain relation (see, e.g., Ref. 24).
Table I shows the resulting relations for c2, the imagi-
nary part of the dielectric tensor. (W44 defined in Ref. 11
is four times that of Table I. Using the corresponding
definition of the stiffness constant'4 might help to avoid
confusion, which frequently arose at that point in the
past. ) Selecting special geometries, namely the stress
axis, the normal to the rejecting plane, and the polariza-
tion of the light parallel to the principal axes of Aa
leads to' ' "

DR = (c)R/clei) hei+ (c)R/c)es)Des, (4)

where ~&~ and A&2 are the appropriate eigenvalues of

'4 C. Kittel, Introdtcctiom to Sotid State Physics (John Wiley 8z

Sons, Inc. , New York, 1956), 2nd ed. , pp. 87, 89, and 91.

Set and Aes. Thus we can define quantities Q,; (similar
to 8";;) that describe the relative change of the reflect-
ance. The definition of Q;; is also given in Table I.

Measurements and Piezo-Optical Constants

Figure 6 contains the measurements of the relative
change of the reflectance per strain along the stress
axis for three different samples, the stress axes being
parallel to [001], [111],and [110j,respectively. The
surface of the samples was the (110) plane in all cases.
For each stress direction, the reflectance for light
polarized parallel and perpendicular to the stress axis
is given. The independent information contained in

1

CL«0
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A
L

Ql

0
0

~~0
N 0

4
Photon Energy

5 eY

FIG. 6. The relative change of the reQectance per unit strain
along the stress axis at room temperature for Cu crystals with
the stress axes $001j, $111j, and L110), and with the retlecting
surface (j.10). The curves are given for light, plane polarized
parallel and perpendicular to the stress axes.
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TsaLE II. Reduction of the measured relative change of the
reAectance to the piezo-optical constants Q;;.

yi
CV

0
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-8-

Qv Determined from

Q, )+2Qgr nR/R" +2nR/Rt
nR/R" +26R/Rr

Q44 nR/R" —AR/R~
2nR/R" +DR/nt and Q(g+2Q, g

Qn —Qga &R/R" nR/Rt-
nR/Rt and Q»+2Q, 2

Stress Points in
axis Fig. 7

L111j Circles
(001j Squares
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functions Q;, smoothly with the zero line for Puu) 5.5 eV.
In order to evaluate the error introduced by this
approximation, another Kramers-Kronig transform was
done on Qtt+2Qts. This time the function was ex-
trapolated to the minimum Q, t+2Qtr ———2 at 6 eV and
joined smoothly with the zero line above 6.5 eV. The
deviation in 8'tt+25'ts for the two extrapolations is
5 at 5.5 eV; this is 6 % of the maximum value (81.5 at
4.3 eV). The weighting function in the Kramers-Kronig
integral assures that the error due to the extrapolation
decreases with decreasing energy. The error bars near
5.5 eV in Fig. 8 give the deviation due to the extrapola-
tion discussed above, whereas the ones at 3.5 eV give
the uncertainty produced by the error signal in hR/R.

FJG. 7. The relative change of the reRectance of Cu per strain
for a change in volume (Qu+2Q~r) and for trigonal (Q44) and
tetragonal (Qn —Q~~) shear strain, evaluated from the six func-
tions of Fig. 6 as indicated in Table II. The definition of the
functions Q;; is given in Table I. The room-temperature reflect-
ance of Cu is also included.

these six measured functions is that of three functions
only, e.g., Q»+2Q», Q44, and Q»—Q» as given in
Table I. There are in fact two measurements for each
of the independent functions. Table II lists the mea-
surements that were used to determine the Q;;; Fig. 7

gives the three functions, together with the reflectance
for zero strain. The deviations between points belong-
ing to the same function but originating from different
measurements is small; the error signal per strain along
the stress axis, estimated from the remaining devia-
tions is approximately &0.2. This is about 2% of the
maximum signal observed which is Qtt+2Qt2 ——9 at
Iten= 4.15 eV.

Figure 8 contains the change of a2 resulting from the
three independent symmetry distortions, expressed in
terms of 8';; (see Table l). The function es for zero
strain is also included. The quantities 8;;were obtained
from a Kramers-Kronig analysis of the Q,;. The values
for Q;; for ho&(1.5 eV and &to) 5.5 eV are not known.
The functions Q,; are zero between 2 and 1.5 eV. The
contribution of the free carrier absorption to Q;; re-
mains small further in the infrared. "%e therefore used

Q,;=0 as the extrapolation below 1.5 eV. The functions

Qg are small at 5.5 eV, but they are not zero. There are
probably nonzero values further in the ultraviolet. In
doing the Kramers-Kronig transform, we joined the

80
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30- Cu, 300oK

10 4
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3 4
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Fzo. 8. The change of the imaginary part of the dielectric con-
stant of Cu per strain for a change in volume (Wq&+2W&s) and
for trigonal (8'44) and tetragonal (W11—8'12) shear strain and
the imaginary part of the dielectric constant. . The definition of
the functions W;, is given in Table I.
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TABr.E III. Symmetry rules for the optical transitions, considering
the splitting of the k degeneracy only. (eV)2

S"44/0; 8'11—8'12 ——0
lV44=0; S'11—lV1g /0
TV44/0; W ii —8'12@ 0

A or L transitions
6 or I transitions
All transitions except A, L, 4, X

50—

The spectral resolution given in Figs. 6-8 is the half-
width of atomic mercury lines, as recorded with our
optical system.

-50—

THEORETICAL ANALYSIS

Symmetry Rules for Optical Transitions

Throughout the theoretical analysis we assume that
we are dealing with direct, k-conserving interband
transitions, i.e., that e2 is dominated by this process.
We exclude the region below 2 eV where free carrier
absorption is important.

There are two types of degeneracies in a solid, namely,
the orbital degeneracy (e.g., I.s, twofold neglecting
spin) and the k degeneracy (e.g., the star of kz, contains
four equivalent vectors; any I. level will be fourfold
degenerate with respect to k). Most of the orbital
degeneracy is lifted already by spin-orbit interaction.
If we include the effect of strain and assume that the
center of gravity of the levels under consideration is
not changed by the strain, the total splitting will be
given by"

(chopin orbit ++strain )
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1 re. 9. The band structure of Cu as calculated by Segall (see
Ref. 13) and Burdick (see Ref. 14) using Chodorotv's potential
(see Ref. 26). The dashed curves are the free-electron eigenvalues.
Ez is the Fermi energy as calculated by Segall and Burdick and
E~~ the Fermi energy calculated for the free-electron eigenvalues
of the sp bands.

2~ J. GoroG and 1.Kleinman, Phys. Rev. 132, 1080 (1963).

In Cu, the spin-orbit splitting is about ten times the
splitting produced by strain (the strain applied was
about 5&&10 '). This means that the change of 6 is

"100—

3 4
Photon Energy

I

5 eV

FIG. 10. The insert (a) shows the change of the joint density of
states in the neighborhood of an M& singularity produced by a
rigid energy shift of the joint density of states; in part (b) of the
figure the experimental function (Wii —Wn)(A&v)' is plotted.

second order in the strain and thus not detected in our
measurements. We therefore must exclude the effect
of a change of the spin-orbit splitting from our
considerations.

Four sects may contribute to the observed A&2 in
Cu, namely, the lifting of the k degeneracy, changes in
the oscillator strength, changes in the joint density of
states, and the splitting of the orbital degeneracy not
lifted by spin-orbit interaction. The lifting of the k
degeneracy normally is the most important eGect. Ke
con6ne the discussion to this effect for the time being.
The symmetry rules which follow are summarized in
Table III. They were derived by considering the effect
of trigonal and tetragonal shear strain on the set of
originally equivalent k vectors (the star of k). These
rules depend only on the symmetry of the crystal for
zero strain and on the symmetry of the distortion.
Exceptions from these rules can arise only from ac-
cidental degeneracy, e.g. , an I. and an. X transition at
the same energy will produce a nonzero change in e2
for both trigonal and tetragonal shear strain. It is
largely due to these simple symmetry rules that the
effect of shear strain on the optical constants is so
powerful a method in analyzing the electronic structure
of crystals.

U'sing Table III and the experimental results given
in Fig. 8, we expect the edge at 2.2 eV to be caused by
nonlocalized transitions, because shear strain gives
only very small A&2 without pronounced symmetry
behavior. Going from 2 to 4 eV, a 6 or X transition
must become increasingly important. A singularity in
the joint density of states connected with these transi-
tions is likely to occur at about 4.0 eV corresponding
to the minimum in 8'» —W» (see Fig. g). Finally, there
must be a pronounced singularity connected with A. or I.
transitions at 4.3 eV, which is responsible fog the
large maximum in 8'44.
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Fro. 11. The energy contours of the surface E(k)=E», Li',
L1—L2', and L1—Ez around the L point in a plane containing the
it axis (left-hand part of the figure); the joint density of states
near an 3II2 singularity and the joint density of states at the same
energy, but modified by the Fermi energy (right-hand part).

Comparison Experiment —Band Structure

The energy bands of Cu, as calculated by Segall"
and Burdick" using Chodorow's" potential, are shown
in Fig. 9. The free-electron eigenvalues are also in-

dicated, together with the Fermi energy for the empty
and the actual lattice. %e refer to this band structure
in the following.

The 2.1-eV edge in e2 is known to be due to transi-
tions from the top of the d bands to the Fermi surface
(FS)."'r The experimentally observed energy is well

reproduced by the E(k). These transitions will start
at Q near I., but at slightly higher energies various
parts of the Brillouin zone (BZ) will contribute. This is
consistent with the observed lack of response to shear
strain.

The only transition at about 4 eV with k parallel to
$001$ which is connected with a singularity in the joint
density of states is X5 —+ X4'. The energy difference is
4.0 eV, which is 0.1 eV larger than the position of the
minimum in 8 ~~

—8 ~2. The structure at 4.3 eV must
be due to transitions near I., since there are no A transi-
tions with comparable energies. The FS —+L~ transi-
tion is closest in energy, although the transitions
Ls' —+ FS and Lis ~ FS are also not far removed (the
superscripts i=lower and u=upper distinguished the
two Ls levels in the d bands).

Line-Shape Analysis

The X5 —+X4' transition is related to an Mz critical
point (c.p.) in the joint density of states. The contribu-
tions at lower energies, originating from 65 —+ A~, are
truncated by the FS below 2.1 eV. The contributions
J&x to the total joint density of states J are shown
schematically in Fig. 10(a). The change in J produced

by a rigid shift in energy is shown in the lower part.
For constant matrix elements, J will be proportional

"M. Chodorow, Phys. Rev. 55, 675 (1939); Ph.D. thesis,
Massachusets Institute of Technology, 1939 (unpublished).

27 S.R. Cooper, H. Ehrenreich, and H. R. Philipp, Phys. Rev.
138, A494 (1965).

to (hei)'es. 's Even for changing matrix elements we
expect (Aoi)'es to follow more closely the actual de-
pendence of J than es itself. Figure 10(b) gives the
function (hei)'(Wit —Wis), which is to be compared with
the predicted change of Fig. 10(a). The agreement
shows that the functional dependence of 8 ~~

—8 ~2 is
consistent with that predicted by the above assignment.

Considering the 4.3 eV structure in 8'44, we may
compare e2 and J directly, because the structure is
confined to a narrow energy region. The main difference
between the I~~ FS (3fi c.p.) and the FS~ Li transi-
tions (Ms c.p.) is the way the original contributions to
the joint density of states are truncated by the FS. In
Fig. 11, the lines of constant energy are shown for the
L~' band and for the difference I ~

—L2' in a plane con-
taining the A. axis. The joint density of states around
the M2 c.p. is modified as shown in Fig. 11.The energy
difference E~——E~—L~' is small compared to Lj—L2'
(the symmetry labels such as Li are also used to denote
the corresponding eigenvalues for typographical con-
venience). In this case, the variation of J in the region
Lj—If~&A(g&Lg —L2' is given by

&(~)=4irfi(2x) 'm "'mi(ho) —Lt+Es) (6)

In the derivation of Eq. (6) the neck was approximated
by a cylinder. The slope of J as given by Fq. (6) is
largest for Ace slightly larger than L&—E&. The slope
at Ace =L~—Ep will be 6nite because of lifetime broaden-
ing. The largest values of 8";; will thus occur at Ace

slightly larger than L&—Ep, provided 8';; is caused by
an energy shift of the edge in es. Figure 11 and Eq. (6)
show that the FS~ L& transitions are strongly localized
around the L point; all k vectors terminate in a region
enclosed by the neck.

The k vectors of transitions L"~FS terminate
outside the neck, i.e., these transitions are not localized.
According to Table III, we expect a change in e2 for
both trigonal and tetragonal shear strain, and we expect
this change to be small. The experiments show a very
large 8"44. The small 8»—8» at the same energy is
probably left from the X5—& X4' transitions near by
(this is the accidental degeneracy mentioned above).
Thus the structure at 4.3 eV is most probably due to
the strongly localized FS~ L& transitions.

The values of the square of the momentum matrix
elements 3I for the transitions of interest here, as
calculated by Mueller, " are given in Table IV. The
oscillator strength for the L2' —+ L~ transition is much
larger than that for transitions originating from d band
states. In fact, Mueller and Phillips" found that about
40% of the total es around 4.5 eV is due to the con-
duction-band —conduction-band transitions. The actual
value might be somewhat lower due to lifetime broad-
ening, which tends to reduce the height of the sharp
structure in es, originating from these transitions (Fig.

28 M. H. Cohen, Phil. Mag. 3, 762 (1958).
ss F. M. Mueller and J. C. Phillips, Phys. Rev. 157, 600 (1967).
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TAs LE IV. Transition matrix elements in (Ry)
for selected transitions.

Transition' L~' ~ L1 L1"~ L2' L3' —+ Lg' X;—+ X4'

2P;,'/~ 3.17 0.533 0.015 0.250

a The matrix elements are calculated using the eigenvalues given. in
Ref. 14 PF. M. Mueller (private communication)g.

11). From the experimental es we estimate a total
contribution of about 30%, extrapolating the contribu-
tion of the background below 4.1 eV to about 4.65 eV.
The high percentage of L2' —+ Lj transitions as calcu-
lated from theory is consistent with the pronounced
edge in the experimental e2 and with the large 8 44 as
well. This leads again to the conclusion that the ob-
served structure in 0 and he~ at 4.3 eV is caused by the
FS —+ L~ transition.

Another striking feature of the functions 8';; is the
vastly different magnitude of 8"44 and 8'» —5'». The
maximum hc2 observed for trigonal shear strain is nine
times the corresponding value for tetragonal shear
strain (the amount of the strain being the same). This is
partly due to the different degree of localization in k
space discussed above and partly to the difference in
the oscillator strength (Table IV). The small oscillator
strength for X5 —+ X4' as compared with the one for
L2' —+ L~ suggests that there is no pronounced structure
in e2 around 4.0 eV, and indeed the experimental curve
is nearly fiat in this region. However, we believe to'have
resolved a tiny hump in our room-temperature measure-
ments of e2, as shown in Fig. 12. The reQectance at
liquid He temperatures" shows a well-resolved structure
at about the same energy. The transition does show up
clearly as a minimum in 8»—8» at room temperature.

The hydrostatic change (W»+2W») and the change
with trigonal shear strain (W44) have the same shape
between 4 and 4.5 eV. The position of the maximum is
4.3 eV in both cases. This suggests that both effects
are due to the FS —& L~ transition. The two functions
differ between 4.5 and 5 eV, where Wtr+2Wts exhibits
an additional shoulder around 4.8 eV, whereas 8'44
approaches zero rapidly. This behavior can be ex-
plained assuming transitions from the bottom of the d
bands to the FS.As in the case of the 2.1-eV edge (where
the top of the d bands provides the initial states), these
transitions originate from general points of the BZ.
This explains the lack of response to shear strain. The
transitions will of course change under hydrostatic
strain. The situation is equivalent to the one at the
2.1-eV edge, where only hydrostatic strain produces a
significant change in ~~.

Experimental Deformation Potentials

The assignment of the structure observed in 8",,
and e2 has been established in the preceding sections.
This information can be used to calculate the deforma-

"M. A. Biondi and J. A. Rayne, Phys. Rev. 115, 1522 I'1959).
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FIG. 12. A blow-up of the imaginary part of the dielectric
constant of Cu at room temperature around 4 eV, showing weak
structure slightly below 4 eV. The slope of the edge at 4.3 eV
and the slope of the background which were used to calculate the
deformation potentials of the Ez ~ L1 transition are also included.

tion potentials of the corresponding transitions from
the experiments, i.e., the difference in the deformation
potentials of the Anal and the initial state. Additional
knowledge is required to do so, namely, the slope
des/d(h~) of that part of es which is responsible for
the observed structure in 8';; and the selection rules
(required for the shear-strain coeflicients only). Further-
more, it must be possible to separate that part of 8';;
which is due to a change of the energy levels from the
ones due to modifications of the transition matrix ele-
ments 3f and of the density of states J.

The slope of the edge at 2.1 eV is large; modidcations
due to a background of transitions other than L3"—+ FS
(e.g., free carrier absorption) will be small. The selection
rules are not needed because only hydrostatic strain
produces a pronounced change in e2. The changes in M
and J produced by a hydrostatic strain will be much
smaller than the ones produced by shear strain, in
which case they are required by symmetry. ~ Only
W»+2Wrs is large at this edge, which shows that
changes of M and J contribute very little to W»+2W».
The deformation potential will be given quite ac-
curately by the maximum value of W»+2W» and
by the uncorrected slope of e2.

As discussed above, the 2.1-eV edge is due to non-
localized transitions; the transitions with lowest energy
have k vectors terminating just outside the neck, but at
slightly higher energies transitions with k vectors
located in other parts of the BZ will contribute. The
deformation potential determined from the energy
shift of the edge will be an average over the deforma-
tion potentials of all transitions which contribute.
However, the top of the d bands is rather fiat, particu-
larly the portion I.s" Q+, and it will remain Q—at if
the volume of the crystal is changed. Thus the deforma-
tion potentials of transitions contributing to the edge
differ only slightly from each. other. We therefore no
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TAar.z V. Matrix elements and strain coefI5cient of matrix elements which were used to calculate the deformation potentials at I-.

Orthogonality
matrix element

by = —0.366

Bbg/Be„.=0 73'.
kB(In')/B(31t) =0.332

Tight-binding
integrals

r= —0,332 eV
m =+0.180 eV
b= —0.027 eV

RB (Ina) /BE = —5.5b

Za(ln )/'am= —6.9
RB(lns)/BR = —8.0

Pseudopotential

t/'III ——0.29 eV

BUui/Be„, = —3.85 eV'
BU&u/Be= —0.93 eVO

Hybridization

II„d——1.32 eV

Zero of d
. bands above F~

kg=5.75 eV

a The strain tensor for trigonal distortion is given in Table I. b R is the nearest-neighbor distance. e e =AV/Vis the relative change of the volume
d See Text and Figs. 13 and 14. e See Table VII.

longer distinguish between the energy shift of the 2.1-eV
edge and the change of the E~—L3 separation. The nu-

merical value is B(Er Ls")/Be—= —(1.1&0.1) eV, where
e= A V/V denotes the relative change of the volume.

The X5 —&X4' transition contributes only a small
fraction of the total e~ at 3.9 eV. It is impossible to get
reliable values of des/d(ha&) appropriate to this fraction
of e2. We do not attempt to calculate the shear-strain
deformation potential of this transition; instead, we

simply show that it will produce a negative 8"»—8»
below the energy of the critical point. The level X4'
has free-electron character; it does not interact with
the d bands because of symmetry (Fig. 9). Its eigen-
value is k' (k= X, in atomic units), neglecting a small
pseudopotential form factor. The shear coefFicient for
k perpendicular to s (stress axis, see Table I) is B(inks)/
Be„=+1.The shear coefficient of the Xs level, which
has tight binding character, will be small compared to
that of O'. Thus the sign of the change in X4'—X5 is
given by the change of k'. For light polarized parallel
to s only those transitions of Xs~ X4' with k per-
pendicular to s contribute according to the selection
rules (these are strictly valid only for the X point and
zero spin-orbit splitting, but they will hold approxi-
mately). Thus, the Mt c.p. shifts to higher energies for
positive e„, producing negative values for 8'~~ —8 ~~

below 4.0 eU, as observed.
The FS —+L» transition has been found to be re-

sponsible for the large values of W44 and Wtt+2Wt,
at 4.3 eV and for the edge in e2 at this energy. Because
of the strong localization of this transition the deforma-
tion potentials derived from 8',, will be close to those
of the transition with k= 1.Transitions connected with
3XI~ and M2 singularities in J which are not modified

by the Fermi energy will behave diGerently, because
they are only moderately localized, a,s discussed in the
Introduction. The deformation potentials of transi-
tions with different 4 will generally be different. Indeed,
Brust and Liu3I have shown recently that the deforma-
tion potential of the transition with k of the saddlepoint
and the energy shift per strain of the corresponding
structure in the optical spectrum can differ significantly.

The background slope of e2 at 4.3 eV due to transi-
tions other than FS~L j cannot be determined

"D. Brust and L. Liu, Phys. Rev. 154, 647 (1967).

rigorously. We use the slope of e2 at 4.05 eV, which is
—0.5/eV (Fig. 12). The similarity of W»+2Wts and
'fX44 around 4.3 eU shows that changes of 3f and Jwhich
can be large for shear strain only do not contribute
significantly to 8'44. Furthermore, 5';, has its maximum
where the slope of e2 is largest and where the contribu-
tion of this transition to the total ~2 is still small. If
present, changes of J and M would have the largest
effect on 8'44 at the maximum contribution of L2' ~ L~
to e2. Thus neglecting changes of M and J is justi6ed
here. This also justifies the analysis of the previous
sections, where we considered the effect of shear strain
on the k degeneracy only.

Without spin, the L~' ~ L~ selection rules are
cV, WO, M =M„=0, where k= L is parallel to
s' (s'= stress axis, Table I). With spin, these rules will
still be approximately valid ((M, js«(M, ('). The
selection rules for k&l. will be different from the ones
given above, even without spin. The strong localization
of the transitions in k space assures that this deviation
is small. The shear coeKcient of the transition will be
calculated neglecting the deviations from the selection
rules given above.

The deformation potentials determined from ex-
periment and evaluated using the assumption dis-
cussed above are B(Lt EI)/Be=(——9.6+1.5) eV and
B(Lt L&'s)/Be—„,=(—72+12) eV for k parallel L111$.
The largest uncertainty in these coeS.cients is due to
the background slope in es (the values given earlier"
are 8% higher because the background slope used was
—0.3/eV instead of —0.5/eU used here).

Theory of the Deformation Potentials at L

The theoretical estimate of the deformation poten-
tials of the FS —+ I j transitions given earlier'2 neglected
the plane-wave admixture to the wave function of the
d state L&q, i.e., d-sP hybridization. The treatment out-
lined below includes the hybridization.

We use the model Hamiltonian developed by
Siren, " Ehrenreich and co-workers, " and Mueller"

"M. Saffren, in The Fermi Sscrface, edited by W. A. Harrison
and M. B. Webb (John Wiley gt Sons, Inc. , New York, 1960),
p. 341."L.Hodges and H. Ehrenreich, Phys. Letters 10, 203 (1965);
L. Hodges, H. Ehrenreich, and ¹ D. Lang, Phys. Rev. 152,
SO5 (1966).

34 F. M. Mueller, Phys. Rev. 153, 659 (1967),
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TABLE UI. Deformation potentials (in eV) of
the transitions at L.

Deformation
potentials

B(Lg—Es)/Be„,
B(L& Fs)/Be—s
B(Fg Lg") /—Be

8(L1—L3 )joe

TheoryExperiment
Present Present
paper 7allen~ paper DFJb Jacohso

—72 +12 —56—9.6a1.5 9.7+2.0 —5.:l
1.1&0.1 Absolute —0.8

value (1.3 —5.9 —4.1

& Reference 47.
b Reference 43.
c Reference 48.
d e = AV/V is the relative change of the volume V.

The vector k is tha, t of the E- point, U~~~ is a pseudo-
potential form factor, E~ gives the position of the d
bands above Ft, and o.—= (ddo), s.= (dds. ), and 3=—(ddb)
are the two-center tight-binding integrals de6ned by
plater and Koster. " The two I.j levels are obtained
from the secular equa, tion

Egg —E IIgg

Hd, d,
—X~

(9)

The function d is a tight-binding Bloch sum sym-
metrized to L~ and C is a plane wave symmetrized to
I ~ and orthogonalized to d,

C = (q bdd)/C. —
The abbreviations used in Eq. (10) are

p= (2/U)'~' cos(k r),

bs=(s ld),
C'= 1—bg'.

The matrix elements of Eq. (9) are

H«= Z.—4(~—3),

H@s= (H „s bsHgs)/C, —

(10)

(12)

Hee ——(Is'+ Vnt+ V„„&"+bs'Hss 2bgH„s)/C'. (16)—
Ke calculated b~ and the tight-binding integrals using
the atomic wave function and the atomic potential
calculated by Hartree and Ha, rtree' and parametrized

3~ M. H. Cohen and F. M. Mueller, in Atomic crId Electrorlic
Structure of Metals (American Society for Metals, Metals Park,
Ohio, 1967), p. 61.' J.C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

37D. R. Hartree and %'. Hartree, Proc. Roy. Soc. (London}
A157, 490 (1936).

in the form given by Cohen and Mueller. "Using sym-
metrized plane waves as well as symmetrized tight-
binding functions, we can write down the eigenvalues of
L2' and of L3~ ' immediately:

L2 =O' —Vyyy,

-80 -'"

~ -60
CQ

cQ „40

-20-

0.0

8(ln H&d) 8(ln bd)
8 e&z 8 e&z

0.& ).0
8 bdQey~

)5 '0

8 RO ~ ~
~t

Bbdl8ey~ = 0.73

8(tnH„d) 8(lnbd)
B eyz Bafz

I l I

4 8 12

FIG. 13. The dependence of the shear strain deformation
potential BL&/Be„, on the strain coeKcient of the orthogonality
integral bs Lpart (a) of the 6gureg and on the strain coeKcient of
the hybridization H„s )part (b) of the figure). The value Bbz/
&e„ =0.73 was calculated using atomic d functions.

"G. C. Fletcher and E. P. Wohlfahrth, Phil. Mag. 42, 106
(1951).

39 V. Heine, Phys. Rev. 153, 673 (1967).

by Fletcher and Wohlfahrth. 3 The numerical values are
given in Table I/". The tight binding integrals agree
with those calculated by Fletcher and Wohlfahrth.
The value of the orthogonalization integral bz given
by Mueller'4 is 16% lower than the one reported here.

A first-principles calculation of the quantities Eq,
EI«, and AV«(" is extremely dificult and will not be
attempted here. Instead, we determine them from the
eigenvalues of Fig. 9,""using the calculated values of
b~ and of the tight-binding integrates. In particular, the
value of the hybridization integral IJ« is evaluated
from the ditference between Hss (the eigenvalue of I.ts,
neglect. ing hybridization) and I-t". Es is calculated
from I.s Ft using Eq (8—). (.I.s —I.s' given by this
equation agrees with the value taken from Fig. 9. One
would expect this, since these bands have no inter-
action with the sp bands. ) The form factor Vttt given
by Eq. {7) is also taken from the calculated band
structure.

6U«(') is the matrix element of the crystal potential,
calculated with the 1=2 component of q. It was in-
troduced in the model Hamiltonian" following a sugges-
tion by Heine. " Its numerical value (calculated using
the I.& I ts gap of Fig. 9) is sm—all, namely, —0.75 eV.
Neglecting AU«('& gives L»—L~"=9.85 eV using Eq.
(9), which is only 0.60 ev higher than the value of
Fig. 9. AV«&" will be neglected in the following. The
zero-strain values of Vi~~, H~g, and Eq are listed in
Table V.

The tight-binding parameters for changed nearest-
neighbor distances were calculated in the same way as
for the distance in the unstrained crystal. For trigonal
distortion {Table I) and levels with k parallel to L111j,
the strain coefficient of Hss is (R is the nearest-neighbor
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TmLE VII. Volume coefficients of the Fermi energy and of the
position of the d bands.

-10 Volume
coef6cients~

Present
paper

Derived from
dHvAb

4p -8
CQ

k8(ln bd)/8(3k) = 0.33

t

e =hV/V; 8(lnEd)/Be= -1.2:8(lnEd)/Be = -1.2
8(ln H}/Bk = n8(ln bd)/8k

B(ln J-g) /Be
B(lnEs)/Be

—1.2a0.5-1.1+0.3 —0.73
—0.85—0.86

a I'& is the zero of energy and e =hV/V is the relative change of the volume
V.

b Reference 50.
& Reference 43.

0

8(ln Hyd) 80n bd )
Bk

=
Bk

I I

0.2 0.4
k8(ln bd)/8(3k)

——:8(ln Ed)/8e =-1.2R
B(ln H&d)/Bk = 80nbd)/8k

I I I I I

0.6 0 0.5 ).0 1.5 2.0
0

be identical,

B(lnPve)/Be„, = B(lnbq)/Be„, . (2o)

Fxe. 14. The dependence of the volume deformation potential
B(Li—Li")/Be on the strain coefficients of bq and H, q plotted in
a way similar to that of Fig. 13. In addition, the dependence on
the volume coeflicient of Zs is given Ldashed curve in part (h)
of the figure.

distance)

BEBOP/Be„,= —L12o —8~+48
+EB(3o+4rr+58)/BR] (17).

The strain dependence of V~~~ is calculated using a sim-

ple model potential. ' lt is constructed from a bare ion
potential which is zero inside the core region (r(r,)
and equal to the Coulomb potential of a single positive
charge outside (—2/r in atomic units). Its Fourier
transform is divided by e„ the static Hartree dielectric
function for free electrons, " to give the form factor

where 0 is the volume of the unit cell. The value of r,
(0.23 of the nearest-neighbor distance) is determined

by t/'»& of Table V; it is regarded as a constant in cal-
culating the strain coeKcients of Uiii from Eq. (18).
The values of the overlap integral bq for the deformed
crystal are calculated in the same way as b& for zero
strain. All strain coefficients discussed above are listed
in Table V.

The calculation of the deformation potentials re-
quires additional knowledge, namely, the strain coef-
ficients of H„d, E~, and Eg. The effect of pure trigonal
shear strain will be considered first. In this case, there
is no change of Eq and Ep linear in the strain com-
ponents: The center of gravity of originally degenerate
levels remains unchanged to 6rst order; this causes E~
and E& to be constant, too. As a consequence,

B(Li Er )/Be„,= BLi/Be„, . — (19)

A rigorous calculation of BH„s/Be„, would be even more
dificult than the calculation of H„q itself. Ke therefore
simply assume the relative change of b~ and H„q to

0 N. W. Ashcroft, Phys. Letters 23, 48 (1966).
4' W. A. Harrison, in Frontiers in Physics, edited by D. Pines

(W. A. Benjamin, Inc. , New York, 1966), p. 49.

B(lna„e)/Bk = B(lnb„)/Bk, (21)

which is the equivalent of Eq. (20). There are several
choices on how to proceed. One possibility is to use the
coefFicient B(lube)/Bk as calculated with atomic d
functions and a value for B(Li Ls")/Be which is 24%—
smaller than the experimental one. Another choice
would be to increase B(lnbd)/Be„, until the theoretical
value of BLi/Be„, matches the experimental one t Fig.
13(a)g, to increase B(lube)/Bk by the same factor, and
to use the experimental value of B(Li Ls )/Be. The-
volume coefficient of E~ turns out to be the same in

both cases, proving that it does not depend drastically
on the strain coeffLcients of b~ and H„~. Its numerical
value is listed in Table VII. In Fig. 14, B(I.i Ls )/Be-
is plotted as a function of the strain coeScients of b~

Equation (20) completes the list of strain coefficients
which are needed to calculate BLi/Be„,. Its numerical
value (listed in Table VI) is 24%%uo lower than the one
determined from the experiments.

Figure 13 illustrates how the theoretical coeKcient
BLi/Be„, changes when changing the assumptions
specified above. Figure 13(a) gives the dependence on
Bbd/Be„, assuming Eq. (20) to be valid. Figure 13(b)
shows the variation with B(in'„e)//Be„, using Bbe/Be„,
=0.73 as calculated from atomic d functions. '"

Two volume deformation potentials B(Er Ls")/Be-
(determined from the edge at 2.1 eV) and B(Li Es)/Be-
(from the edge at 4.3 eV) are used to calculate the
volume coefficients of E~ and E~ relative to I'~. This
can be done more accurately than the large experimental
error of the I-j—Eg deformation potential might sug-
gest. Recalling that the error is due to the uncertainty in
the appropriate slope of e2, we note that the relative
deviation of the experimental value from the true
value is approximately equal for the volume and the
shear strain deformation potentials.

Summing the two experimental volume deformation
potentials eliminates Ep,' the sum B(Li Ls")/Be can-
be used to determine B(lnEd)/Be. In doing so, we
a,lways treat the normalization factor 0 '~' of b& and
H„z explicitly and assume
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and B„q in a fashion equivalent to that of Fig. 13. The
dependence on B(l nE a)/Be is also included [Fig. (14(b)$.

In calculating the volume coeKcient of Ep, we use
the experimental value of B(Et Ls—a)/Be, the volume
coefIicient of Ea as calculated above, and Eq. (2), to-
gether with the strain coefficients of the tight binding
parameters (Table V). The resulting value of B(l nE s)/Be
is given in Table VII.

Assuming no strain dependence of b~ and II„~ at all
(except for 0-"'), we find the theoretical values of
BLr/Be„, and B(Lr Ls")/B—e to be 62 and 50'Po of the
corresponding experimental numbers $Eqs. 13(a) and
14(a)j, respectively. This part of the deformation
potentials is mainly due to the strain dependence of k'
and, for hydrostatic deformation, to the strain depen-
dence of Q

—'~'.

Discussion

The preceding analysis dealt with the observed
structure in O';;. A legitimate question is whether the
energy bands predict more structure than actually
observed. Pure shear strain will produce a signihcant
change in e2 only for strongly or moderately localized
transitions. Moreover, even if the transitions are
localized but have k vectors of low symmetry (i.e.,
neither parallel to L001] nor to L111$), there will be a
signal for both trigonal and tetragonal strain (Table
III) and the signal will tend to be small. Looking for
localized 6, X, A., and I. singularities only, we expect
the X5—+ X4' and the FS —+ L1 transitions to show up
between 2 and 5.5 eV, as they do, i.e., the measure-
ments are complete. On the other hand, hydrostatic
strain will produce a signal for nonlocalized transitions
too. Experimental examples are the maximum in
8'rr+2l'Fre at 2.1 eV and the shoulder at 4.8 eV.

The energies of the identified transitions agree to
within &0.1 eU with the corresponding difference of
the eigenvalues, calculated with Chodorow's" potential.
Sand-structure calculations based on potentials dif-
ferent from that of Chodorow deviate from experiment
by as much as 1.5 eU. Table VIII compares the energies
of the experimentally observed transitions with pre-
dictions of different calculations. "'44' 44 There are
other experimental results which agree most closely
with the result of the E(k) calculation based on
Chodorow's potential, the most important of which is
the area of the neck, measured with the de Haas —van
Alphen effect. The experimental numbers which were
re-examined recently" " agree with the calcula-
tion"'4 4s to within 11%. For calculations with other

4~ J. S. Faulkner, H. L. Davis, and H. %. Joy, Phys. Rev. 161,
656 (1967).

4g H. L. Davis, J. S. Faulkner, and H. W. Joy, Phys. Rev. 167
601. (1968).

44 E. C. Snow and J. T. Waber, Phys. Rev. 157, 570 (1967).
45 J. P. Jan and M. Templeton, Phys. Rev. 161, 556 (1967).
4'W. J. O' Sullivan and J. W. Schriber, Cryogenics 7, 118

(1967).

TABLE VIII. Energies of observed transitions in eV.

Energy Experiment
Self-

Chodorowa l-dependentb Watson consistentd

Zz —L3~
X4' —X&

Li —Zg

2.1 +0.1
4.0 ~0.1
4.15+0.1

2.1
4.0
4.0

2.3
4 7
5.15

1.6
3.1
3.9

3.2
5.5

a References 13 and 14.
& References 13.
& References 42 and 43.
d Table II of Ref. 44.

potentials one might not get contact of the Fermi sur-
face with the L111jface of the BZ at all. 4'

Thus, the experimental evidence for the superiority
of the band structure calculated with Chodorow's
potential is overwhelming. However, there is no
theoretical formalism known today which tells us that
we have to choose just this potential. For example, a
self-consistent augmented-plane-wave calculation as
the one reported by Snow and Waber44 will agree with
the experimental results once the exchange term is
properly adjusted, but there is no theoretical justihca-
tion for such an adjustment.

Zallen47 measured the change of the reflectance with
volume applying hydrostatic pressure directly to the
crystal. His results are also listed in Table VI. He
could quote only a lower limit for the deformation
potential of the 2.1-edge. Our method is much Inore
sensitive here because the large slope of the edge pro-
duces a large A&2 even for the small deformation poten-
tial. The two experiments are of comparable accuracy
in terms of energy shifts for the 4.3-eV edge. The
modulation experiment lost part of its advantage here
because the slope is smaller and the slope of the back.-
ground unknown. The results of the two measurements
agree within the experimental error.

Objections might be raised against the procedure
used here to calculate the deformation potentials. In
particular, one ought to construct the tight-binding
functions d from resonance functions rather than from
atomic orbitals, as discussed by Heine. " However,
this would have little effect on the d-sp overlap ba, be-
cause the largest contribution to this integral comes
from regions where the resonance function and the
atomic d function are identical (the maximum of the
integrand lies at 0.53 of the nearest-neighbor distance).
The calculated strain coeKcients of the tight-binding
integrals a, sr, B (Table V) are higher than predicted
by Heine's theory, which would give RB(lnP)/BR= —5
(P= a, sr, B), but their influence on the deformation po-
tentials is small. Furthermore, it is not clear how the
theory of Heine has to be modi6ed if one abandons the
muffin-tin approach, i.e., for overlapping potentials.

Two other calculations of the hydrostatic deforma-
tion potentials are known. 4'4' Both are listed in

4'R. Zallen, in Colloquium orl the Optical Properties amd the
Electronic Structure of Metals artd A/toys, Paris 1965, edited by
F. Abeles (North-Holland Publishing Co., Amsterdam, 1966),
p. 164."R. Jacobs (private communication),
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Table V. The agreement between the measured values
and the ones calculated by Davis ek u/. "would probably
improve if Chodorow's potential were used instead of
the one derived from the wave functions given by
Watson. 4 The strain coefFicients of Eq and E~ given
in Ref. 43 are listed in Table VII.

Using the de Haas —van Alphen effect, Templeton"
measured the change of the neck area with volume and
found B(in' )/Be=-s(4. 2&0.2). This information can
be used to approximately calculate the strain coeS.cient
of Es. It is determined by Eqs. (7) and (18), neglecting
the change of the effective mass of the I.s' —Q band.
The numerical value of B(lnE )s/Be listed in Table VII
is about 34%%uo lower than the one derived from the
optical experiments. The agreement will be closer if
the change of the effective mass is taken into account:
Decreasing the volume (e)0) decreases the d-sp inter-
action; the I.s' —Q band will get closer to the free-
electron parabola (Fig. 9). Thus, including the change
of the effective mass, the same change of the neck area
requires a larger value of

~
B(lnEs)/Be.

The hR/R signal measured with strained polycrystal-
line films' " shows some resemblance to the functional
dependence of the hydrostatic effect (Q»+2Q» in Fig.
7), probably with some admixture of the effect pro-
duced by trigonal shear strain (Q44). Indeed, one would
expect the AR/R signal measured with strained poly-
crystalline films to be a linear combination of the
functions Q,;, provided the signal is due to the change
of the reflectance of the material under study. The
function Qii —Qis is small for (."u and will therefore
contribute but slightly to DR/R measured with poly-
crystalline films. However, the function AR/R given
in Refs. 8 and 11 is not a simple linear combination of
Qii+2Q» and Q44. A positive function which increases
with energy has to be added to reproduce DR/R as
presented in Refs. 8 and 11.The maximum value of this
function is of the same order of magnitude as the maxi-
mum value in DR/R. We believe that this positive
function is identical with an error signal produced, e.g. ,
by the mechanical motion of the film. We also found
such an error signal, if present, to be strongly energy-
dependent. The functions Q,, presented here, which are
characteristic of electropolished single crystals have
zero values below 2 eV. The signal below 2 eV observed
using polycrystalline films " is probably due to the
error signal only.

The FS—&I.» transition was also identified in the
photoemission measurements of Berglund and Spicer."

"R.E. Watson, Phys. Rev. 119, 1934 (1960)."I. M. Templeton, Proc. Roy. Soc. (London) A292, 413
(1966).

The energy determined from this experiment is identical
with the one reported here. The authors introduced the
concept of nondirect transitions in the analysis of their
data, i.e., transitions which do not conserve k directly.
The term "indirect transitions" was avoided because
the authors wanted to include the possibility that pro-
cesses different from the usual phonon-assisted transi-
tions are important. The theoretical interpretation of
these nondirect. transitions is still under discussion (see,
e.g. , Refs. 51 and 52). Berglund and Spicer concluded
from their data that the optical absorption in Cu is
dominated by nondirect transitions except for a very
small contribution (below 10%) of the direct transi-
tions at 1.mentioned above.

It is evident from the results presented here that
direct transitions must be important. The structure in
8'~j.—IV~2 which we identified with the X;—+ X4'
transition may serve as an example. One might try to
explain it as caused by nondirect transitions starting
from various initial states to the same Q.nal state X4'.
The k degeneracy of X4' will be lifted by tetragonal shea, r
strain. This might cause the observed 8'~~ —8'~2. How-
ever, the selection rules for nondirect transitions will

generally differ from those for direct transitions. The
assumption )cV, )'= jcV„['= ~zlII, ~' might be adequate
for such an averaging process. In this case, there would
be no first-order change of e~ at all, i.e., O'I~ —H/ &2 would
be zero, in contrast to the experimental result reported
here.

The sign (X transition) as well as the magnitude
(I. transition) of the observed energy shift is consistent
with the selection rules for direct transitions. Thus the
nondirect transitions must have selection rules identical
to those for direct transitions in order to be compatible
with our measurements.

The photoemission measurements" on Cu can also
be explained if one assumes that the absorption above
2 eV is dominated by direct interband transitions. "It is
more natural to discuss the optical absorption in this
region in terms of direct transitions, because this pro-
cess is well established theoretically and accounts for
all details of the experiments persented in this paper.
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