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from the zero of e1 as much as it does at room tempera-
ture. Hence there is no net change in the energy location
of the ELF peak for this alloy. For the remaining alloys
there is a shift to lower energy of the zero of e& as well as
an increase in e2 near the plasma energy; both of these
tend to shift the ELF peak to a lower energy.

APPENDIX

We attempt to assess the accuracy of our measure-
ments. We estimate that the reflectance R can be
measured to 2sr% at room temperature and 3s% at
4.4'K, while transmittance T errors are 3srand 4%,
respectively, over the central one-half of our wavelength
range. These errors are expected to be systematic and
should be nearly the same at all wavelengths for any one
film. Calculations w'ere made of the changes in R and T
produced by changes in m and k. From these we conclude
that the largest single error in k arises from the 2-', %
error in d, the film thickness. This error is constant for

any one film and may even be about the same for all
films. The errors in d and T make k accurate to about
4s%. (The observed maximum deviation of a value of
k at any wavelength from the average for 10 Ag films
was 6%.) The calculations show that the relative error
in e is approximately 10 times the relative error in R
over the central half of our wavelength range. Thus e
should be uncertain to about 25%, but the maximum
single deviation from the average for nine Ag films was
10% for photon energies below 4.0 eV. The errors in ts

diminish upon alloying and for the 4.2%-In alloy, the
relative errors in R and e are about equal. The actual
systematic errors may not have been as large as pre-
dicted because our results agree well with those of Ref.
38, measured by quite a diferent technique. Above 4.0
eV the accuracy suffers greatly because of the form of
the equations for e and k in terms of R and T. Of 10 Ag
films, only one, that used for Fig. 1, gave data above
4.0 eV in agreement with those of Ref. 39. Hence the
data on alloys can be trusted only below about 4 eV.
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A quantum-mechanical dissipation theory is applied to the problem of anharmonic vibrations of a crystal.
Equations for the anharmonic phonon creation and annihilation operators are obtained, from which may be
extracted damping-constant and frequency-shift expressions. These are compared with the results of other
techniques.
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' 'T is the purpose of this paper to demonstrate the

- application of a formal quantum-mechanical dis-
sipation theory for the harmonic oscillator' to the
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ing many different techniques. However, to approach
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it from a dissipation theory viewpoint utilizes the
attractive concept of a phonon undergoing decay as it
interacts with, and loses energy to, other phonons.

The final equation of motion, which is derived in
Sec. II LEq. (2.44)], shows that in addition to damping
there also exists a driving force which restores energy
to the mode. As suggested by Senitzky' the source of
this compensating effect is quantum-mechanical fluctu-
ations without which dissipation may not properly
(quantum mechanically) be treated. Just as in classical
dissipation problems, the driving forces are not con-
sidered when deducing damping properties of the sys-
tem; and if the aim of this paper is to calculate only
these, then concern for the fluctuations is pedantic.
But in Sec. III it is shown that their inclusion leads to
correct commutation relations for the phonon creation
and annihilation operators. The derivations of Sec. II
depend on such commutation relations and therefore
consideration of fluctuations is essential for consistency.

The application Senitzky envisaged was a radiation
field in a microwave cavity. Consequently, although
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its loss mechanism was unspecided, his theory when
applied to the anharmonic crystal Hamiltonian requires
certain modifications of them both. The alteration to
the crystal Hamiltonian constitutes an approximation
in that certain classes of terms are neglected, and this
will be referred to in a later section. The basis of
Senitzky's theory is the Hamiltonian

H =H...+Hi.„+nPI',

where the operators P and F refer to the oscillator and
loss-mechanism, respectively. The self-adjointness of
I' is a property employed in the derivation of the equa-
tion /Ref. 1, Eq. (21)j. Use of the slightly different
form,

H Hoeo+ Hi ore+ aX+aX (1 2)

D. COMPLEX DAMPQTTG CONSTANT

The Hamiltonian of the anharmonic crystal is

H =p hid„a„~akr+ Q p V(k,j„k,jm, kt jg)

in this treatment introduces a complication because the
X and X~, which incorporate coupling coeKcients, are
not self-adjoint.

As a further simplification of the crystal Hamiltonian
normally used, the fourth-order anharmonic terms
(four-operator products) will not be considered. Their
inclusion only increases the bookkeeping and adds
nothing to the underlying theme which is to apply the
loss-mechanism concept to anharmonicity.

In Sec. II, equations of motion for operators of the
anharmonic phonon are deduced and solved. The com-
mutation properties of these operators are investi-
gated in Sec.III, and Kramers-Kronig relations between
damping-constant and frequency-shift expressions are
presented in Sec. IV. Section V is an attempt to display
the theory and results of this paper in perspective with
the work of others in both anharmonic crystal and dissi-
pation fields.

where the prime signifies the exclusion of (k,j) from the
summations over (k;j;). The anharmonic terms ne-
glected are those (a) containing neither ak; nor ak,t,.
(b) containing either ak; and akrt together, or each more
than once. A similar reduced Hamiltonian was used
for the k= 0 transverse optic mode in the optical absorp-
tion theory of Born and Huang' and also of Maradudin
and %allis. ' The latter pair of authors qualitatively
justify the approximation but in a later paper' comment
on its rather arbitrary nature and employ the full
Hamiltonian.

It is convenient at this stage to introduce the har-
monic-oscillator counterparts to the operators already
mentioned; that is, the operators characteristic of an
uncoupled oscillator/loss mechanism system. They are

akr0(t) = akto(0) exp( —uok;t),

ak t(t)=ak t(0) exp(t'tdk;t),

and their dependents are

Xi (t), XPt(t), Hi (t) .

(2.4)

(2.5)

By specifying that the interaction commences at t=o,
the following identities hold:

a .(0)—=a,'(0), a; (0)=—a;"(0),
Xk (0)=—Xkr'(0), Xkr'(0) —=Xkr"(0),
Hi(0) =HP(0) =Hio, say—.

(2.6)

The reduced Hamiltonian provides the starting point
for an analysis based on Senitzky's quantum dissipation
formalism.

It may be deduced from Eq. (2.2) that

In this equation, X» is given by

Xk,——3 p' g' pV(k j,ki ji,k2jp) ak„,ak»,
klk2 j192

+V(«j «i ji, —«2j2)a»rrak»2'

+V(kj, —k,ji, kmj2)akrjt ak jt

+V(kj, —kijr, —ku j~)ak„, ak„,tj, (2.3)

k,j klk2k3 iu'F 3

X (a—kijr +aktr't)(a —k»'r +akejr)(a —krjr +akrjt) (2 ~ 1)
&akr =4btakt+Xkr' r

Zgkz~ = —Gok~Gg~~ —Xg~. ,

(2 7)

(2 g)

Anharmonic terms of order higher than third have been
omitted as well as the zero-point energy.

Selecting those parts of H which represent (i) a given
mode (oscillator), (ii) all other modes (loss mechanism
reservoir of oscillators), and (iii) the interaction of (i)
with (ii) (coupling), a reduced Hamiltonian may be
defined as

Hred Hose+Hi+Hint titttkj akj akr'

+ 2 ~~krr'rakr jr k a+ titk Xat+rkXakk rj ~ (2.2)
kit gl

where the commutation relations used in their deriva-
tion are unitary transforms of analogous ones for the
uncoupled operators. In order to show that such trans-
forms exist it is only necessary to realize that the oper-
ators ak;(t), Xk;(t) and their adjoints have no explicit
time dependence. That is, the entire time dependence of
these operators is transferred to the state vector under
a unitary transformation from the Heisenberg picture
(in terms of which this paper is written) to the Schro-
dinger picture. The explicit time derivatives of the
Heisenberg operators then are zero, and hence unitary
time-evolution operators may be used to express the
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time development of the noncoupled (harmonic) the loss Hamiltonian equation of motion is

H~(h) = (i&) 'CH~, H.-~) (2.12)
akho(t) = U(t, o)akho(0) V(t,o),

and the coupled (anharmonic) phonon operator as

ak;(t) = V(t,0)ak;(0) V'(t, 0) .
Thus, from Eq. (2.6), the uncoupled and coupled oper-
ators are connected by the equation

a„(t)=W(t, 0)a»'(t) Wt(t, o),

with the unitary operator W(t, 0)= V(t,0)Ut(h, 0).
The integral forms of Eqs. (2.7) and (2.8) are

ak;(t) = ak,'(t)+ (ih)-'

X d4 Xk,'(4) exp/ —i(ok;(t—tg)), (2.10)

ak,s(t) = ak, "(t)—(ih) '

X dt's Xk, (t&) expLico»(t —t&)) . (2.11)

or in integral form

H((t) = Hho(t)+(ih) '
dt's

XLHl(hl){akj(hy)Xkj(hl)+akh (tl)Xkj (tl)}). (2.13)

Again, from Eq. (2.2) the loss operator equation of
motion is

Xk,'(t) = (ih)-'(Xk (t),H((t)). (2.14)

Substituting for H& from Eq. (2.13) and rewriting in

integral form, Eq. (2.14) becomes

X»'(h) =Xkf'(t)

+h-' dh| dt2 expL(i/h) (t—tg)HP)

X [Xkj (hl)&L{akj(h2)Xk j(4)+akj (h2)Xk j (t2) }
XH~(h2))) expL —(i/h)(t —4)H&'). (2.15)

Continuing the analysis for ak;(t) only, from Eq. (2.2) Using Eq. (2.15), Eq. (2.10) is then

as;(&) = akim(t)+ (ih)-' dt's Xkh" (tg) expL —icok, (t—tg))+ (ih') '
dt's dh2 dk3 expL —i(ok;(t —t&))

XexpL(i/h)(tq —t2)Hg')$Xk;~(t2), ({a,(t8)X»(t,)+ak;~(t, )Xk,s(t )},H (t ))) exp( —(i/h)(t~ —tg)Hp). (2.16)

The double commutator may be approximated by (i) assuming only slight disturbance of the loss mechanism so

that Xk; and X»t are replaced by Xkh' and Xkh't, respectively; and (ii) ignoring quantum-mechanical properties of

the loss mechanism in terms above second order. This allows removal of a~; and a~,~ from the commutators which are

then replaced by their expectation values times the unit operator. Senitzky discusses these modifications in detail.

Then Eq. (2.16) may be written (approximately) as

ak, (t)=akh'(t)+(ih) ' dt& Xk,'t(t&) exp) —is», (t—t&))+(ih') ' dt& dh& dts exp) —i~»(t —tl))

Here

X {(LX "(h ) LX"(t )» '(h )))) .(h )+(LX."(h ),LX."(t ) H"(t )))) .'(h ) I (2 17)

(operator) = (Z) ' P (r
~
op.

~
r) exp( —Z„/h T), (2.18)

where
Z=g exp( —E„/hT),

and the expectation value is taken with respect to the loss mechanism. That is, r refers to a state of the reservoir of

harmonic oscillators corresponding to the normal modes of the crystal other than the (kj) mode.

Matrix elements of the uncoupled loss mechanism are defined by

(r
~
Xk,'(t)

~
s) = (r

~
X»0(0)

( s) exp( —ice„,t) =X„,exp( —m„,t) (2.19)

(r ~Xkhot(t)
~
s) =Xt„,exp(ilo„,t), (2.20)
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where

(o„=(E,—E,)/h.

From Eqs. (2.19) and (2.20) may be derived the equations

&~ I
[X»ot(t2), [X»0(ta),&~'(t~)]

I ~)=2 h~-(exp[i~-(t2 —ta)]
I

X'-
I
'+exp[ —i~-«2 —t~)]IX- I

'&

where

and

(» i
[X»0'(t2), [X»0'(ts),BP(tg)]] i r) = 2 g hcv, .X'„,X'„cosra„,(tg —tg) .

(2.22)

(2.23)

It is shown in Appendix A that for general (kj),

Then Eq. (2.17) becomes

X~„,x~„.—=0. (2.24)

a»(t) = a&P(t)+(ih) ' dt& X»'t (t&) exp[ —ia», (t—t&)]+(ih'Z) ' dt& dt2 dt3 a.;(ta)

)&P cv„exp( —E„/hT) exp[—ice»(t —tq)]( IXt«l' exp[i&"(t-" ta)]+ IX-
I

' exp[—iso„(ta—ts)]) . (2.25)

By changing the order of integration and evaluating the time integrals over t& and t2, the last term of Eq. (2.25)
may be rewritten

L((og;,t) = —(i O'Z) dta ag, (ta) P exp( —E„/kT)

exp[i~„,(t—t3)]—exp[ —ia&~, (t—ta)] 1—exp[—ice~, (t—t3)]

(X — + —
' iX'„f'

~rs+~kj

exp[—ia&„,(t—t3)]—exp[—i~»(t —ts)] 1—exp[—ia&gj(t ts)]+ iX„,i' . (2.26)
&rs

Assuming energy levels of the phonon reservoir to be closely spaced, the summations may be approximated by
integrals

P -+ dE„g(E„) dE, q(E,.), (2.27)

where p(E) is the density of reservoir (loss-mechanism) energy states. If
~

Xt„,
~

' and.
~
X„,(

' are also replaced by the
real functions Xt'(E„E,) and X'(E„,E,) obtained by averaging the former pair over all states r and s lying in small
intervals about E, and E„respectively, then it is shown in Appendix B(1) that

Hence Eq. (2.26) is now given by

Xt'(E„,E,)=X'(E„E,) . —

1.(a g, ,t) = (ih'Z) '
dt's a»(tx) F(cog;, t—tg),

(2.28)

(2.29)

where

F(co,7)= dE„g(E„) dE, rt(E,) exp( —E,/kT)

exp( —icur) —exp(i~„.r) exp( —i&us) —exp( —i&a„,~)
Xt'(E„E,) . (2.30)

CO
—

Cggg
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n the formThe double integral is re e ne
(2.40)I

with

/( ~M') P —i7rti(M™

d Lax14 emnploy a slm
fre uency

th Senitzky an .
h „e11ders th

o .
one which ere ~tion « t"" '"' „,„t.me-indepinteg«(2

29) is simplyence, Eq.+ hdcd AQGD dE~~ ) 2.31) H

dt& a»(ti) exp[ —jMkj t —i, . 1L(Mk, )t) = —pkj dti ak,
E= 2(1~~+E~) ail Co = M„~=M„Mq.

E . q2.30) becomesThus Eq. where

Pkj= —(ihZ) '
Qcd [1 exp( hM /k 7 8(M)1

F.——,'AM')dco' dL' g(L~'+-, hMF(M~r) = hdM

where

Xexp[—(E+-,' hco')/k T

"I": — co' —-',
' M', r), (2.33)

exp( —iMr) —exp(iso'r)

~ fexp( —iM r) —exp( —no r
( co', r)—. (2.34)

(2.35)

F(M,r) = —h
~ 0

dM'[1 —exp( —hco'/k T)]
XB(M')f(M' r) (2 36)

M —M

~ 4

identity deduced insin . 0 (2.32), and the iden i yUsing Eqs. (2.30),
A endix B(2) that

') =—Xt'(E—AM', E),Xt'(E, E Aco' =——
Eq. (2.33) may be simp

'
im li6ed to

M - —M') —5(Mkj+M )jco - '—co — ' cd ~ (2.42)

ak, (t) = ak,'(t)

+(ih) ' dti Xkj t(ti) exp[ iMkj(t

(2.43)dti ak, (ti) exp[—iMk;(t —tikj

ion this becomesas a differential equationExpressed as a i ere

ak;;— a =(iA)-Qkj+$(Mkj—zt9k j akj=

xact solution is thenThe e

a . t =akjo(0) exp[—i(cok;—i k,akj t =akj

(2.44)

+(ih) ' dti Xkj"(ti

x[t( „
~ Cdk 111 Eq. (2. ).cok.

' . 25) the final fOrm Ofb tituting for I. o)k;

the integral equation
'

tit 8(M') is given byHere the real quantity

8(M') = dE g(E+ hcd') rt(E)

Xexp( —E/kT)Xt'(E+ hM', E) .

n in the formIf Kq.. i236) is rewritten
'

(2.37)

x —i(cd„—ipk;) (t—ti)j.x i Mk,—'—; ti . (2.45)—
thea

&

akj (t)=ak "(o)-p['( .-;+@.,*)t

t

Xe p[

e uation is, takingus creation operator equa ionT e aogo s crea io
d oint of Eq. (2.4

F(M, 7.)= h exp( —i&or dM' [1—exp( —hco'/kT) jB co'
—(ih) ' dt, Xk,'(ti)

— ') ) 1—exp[i(M+M') ]1 exp[i(M—co' r —— M

07—Q)

~ ~

e uivalently Mr))1), it is=t—ti) large or equivathen for r(= t i-b"approximate y

e
' ' * (t—ti) g. (2.46)Xexp[i(Mkj+iPkj i

- and fre-constantthe damping
mediately

Sy inspection,
hift6k, of the(lcj)t moquencys i

deduced as

1„=ReP„=~(hZ)-'
F(co,r) = h exp( —icor dM' [1—exp( —hco'/kT) jB co'

0

( — ') —~(+ ')j,X[(
uaetum 7 heo~y of Ecdi-%. He&tier, lb Q

"S, for instance,
ation (Ox ora

' f d University Press,

de' 1.—exp—1—exp( —hco'/kT)]B co'

X[~(Mk —M') —&(Mk +M )3

Rev. 160, 290 (1967), paper V."'M. .Lax, Phys. Rev.
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6» l——mP»= (hZ) '

and
~»' =—~»+ ~»'. (3.4)

X d(o' [1—exp( —her'/hT))B(o)'

evaluated using ap-the uantity is eva
'h h fS IIonsistent wit osproximations co

(~'—~') ~ (~»+~')~-

5= [1—exp( —21'»t)).

3.1 follows.(2.48) Hence Eq. (3.

(3.5)

with those ofimations consisten wpp o
eni z ed then, since e

th 'b' "u'tf m the regions'=~~;, t e ation comes rom
slmpllf v:

-KRON'IG RELATIONSIV. KRAMERS

is he*is related to t ein~ constant P~, is
ism

The complex damp
the loss mechanisen's function for eretarded Gre

G (r) according tooperators,

I'gt= s.(hZ) —' d(v' [1—exp( —h(o'/h T))

=n-(hZ) '

XB(~')5(»,—~')

dao' [1—exp( —hra'/hT))

XB(co')8((o»—
o& ), 2.49) = —sh 2

dr exp( —iaa, 7)

X ([X„at(r),X»a(O)))

d ~ exp( —i(ug, r)G,*(r), (4.1)

)
—'[1—exp( —Ace»/h T))B((u»,r„= (hZ -»—exp—

and similarly

where

and

" r),X»'(O))) (4.2)

&,=(hZ) ' [1—exp( —her'/h T))
de

(&aj 4& )z

ti(r) =1, r&O
=0, ~&0. (4.3)

[~»(t),~»'(t)) =1 (3.1)

its I'd't ay be established byy its validity may
unitar ra

ec ok f
' .H-.-.-"

of th th o d
arrnonic phonons.

roxirna-t t o ss yo
p p

de 'ved from t p-e o erator expres
'

(2.45) and ( .(2 46). The technrque use

u s i
'

. 2.45 and (2.46), the commutatorSubstituting Eqs. (2.45) an

III. COMMUTATIO5 PROPERTIES

nic honon operators haveIn Sec. I th a a mo p
b ssumed to satis y t e cornbeen assu

the Fourier transform
e el ted b

inar parts o t e o
theof the retar e rd d Green's function ar

Kramer s-Kronig relations

00

I'(~») =—

dco )
CO

—
GOg~ p

~(~')
de

OJ —
Gag~ p

(4 4)

ER METHODSV COMPARISON WITH OTHER

le deduces this proper yert from theZ barev "for examp e e
's function in thefth t ddoanalyticity o t e r

upper-half complex plane.

is

where

S=h ' exp( —2I'k;t)

X
0

dt2 [X„'i(tg), Xgt"(t2))

gag; (t),ag; —— — 5'(t)) = exp( —2F~;t)+5, (3.2)

tical absorption in po a yar cr stalsI treatment of opn a

e pressio s or t
th %=0 ho o moquency shift for t e

~ ~

definition

= 2N) —'"Z(krak, +kg)
XC(kj,k,j„l,j;), (5.1)

[WM III Eqs. (31a) anand 31b)), maytheir equations

Xexp[—(I'g,+i(og, t ti)l-
t—t )) (3.3)Xexp[ —(I'» ia»— 71 71 (1960) /EnglishUs . Fiz. Nauk"D. N. Zubarev, Usp.

transl. : Soviet Phys. —Usp.
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be rewritten

IC(0j,k&j&,ksjs) I'
I'p&'= Q Q ~(kt+ks) (est+ s)bf~ p—p$ Gls],

8g»&2 ju'2 ~(0j) I to(k& j&) I~(k,js)

Pz
I
C (oj,k,j„k,j,) I' (~,+s)

dp, —— P P A(k~+ks)
Sg»&2 ju'2 ~(0j) I~(kt jt) I~(ks js) (~—~t—~s)~

(5.2)

(5 3)

In obtaining this result, the full Hamiltonian
I Eq. (2.1)]was used to generate an equation of motion for the phonon

creation and annihilation operators I WM III, Eqs. (11a) and (11b)]. These operator equations are virtually
identical to Eqs. (2.7) and (2.8) (above) which were generated by the reduced Hamiltonian, Eq. (2.2). The Eqs.
(2./) and (2.8) differ only in that terms with operators of the same (kj) as that for which the equation of motion is
written, are excluded from the summation t'i.e., as described after Eq. (2.3)].

It is not surprising, then, that direct evaluation of Eq. (2.17) should yield (after a great amount of tedious
manipulation involving the use of Wick s theorem to evaluate thermal averages of six-operator products)

xh
I
c (—kj, kt jt, ksjs) I'E' Q' &(—k+kt+ks) f —(~t+ns+1)5(~+~t+~s)+(nt+ns+1)5(~+~t —~s)

16E»&2 ~'i~2 tp(k j)pp(kt jt)pp(ks js)
(+1 02)5(~ ~1+~2)+(+1 '+R)5(~+ppl ~2)) (5 4)

h
I c(—kj, kt jt, ks js) I'P' P' a(—k+k,+ k,)

16g»&2 iU'2 pp(k j)a&(k&j&)a&(ks jQ)

sst+ns+1 nt+es+1 S] S2

This result immediately degenerates into the WM III
Eq. (31) by setting k—=0 and restricting cp) 0, the con-
ditions for optical absorption processes. Maradudin and
Fein, ~ when considering the scattering of neutrons by
anharmonic crystals, also obtain Eqs. (5.4) and (5.5)
but with the addition to Eq. (5.4) of a fourth-order term
of magnitude comparable to the third-order contribution.

Wallis and Maradudin, ' employ an equation-of-motion
technique in which terms generated by iteration are
classified according to diagrams of successively higher
order. The complex dielectric susceptibility tensor
deduced by Kubo formalism then gives damping-
constant and frequency-shift expressions.

On the other hand Maradudin and Fein (and
Cowley~), use a diagrammatic Green's-function ap-
proach to evaluate the Fourier transform of a time-
relaxed displacement-displacement correlation function.
A Dyson equation for the phonon propagator is ob-
tained and approximate solution to lowest order yields
the damping constant and frequency shift LM. and F.,
Eqs (55)]

Thompson and Pathak use a truncated equation
of motion for the same Green's function as Maradudin
and Fein; Viswanathan and Watanabe' use tempera-
ture-dependent perturbation theory and Van-Hove's
discussion of inner displacements; Ishikawa" uses a
canonical transformation; and Wallace" uses an
iterated equation of motion (rencrmalization) for the
phonon operators. All obtain, e6ectively, the expres-
sions of Maradudin and Fein I M. and F., Eqs. (5.5)].

The one-particle Green's function of all the above

methods has the general retarded form

G.( 0) = —0( )(I:~( )4(0)]). (5 6)

When the operators are dined as

A (r) =—a)„(r) and B(0)=—as,t(0),

the equations for the annihilation and creation oper-
ators I Eqs. (2.45) and (2.46)] allow Eq. (5.6) to be
rewritten

G„(r,0)= —ig(r) exp( —ippqzr) exp( I's,r),—(5.6')

with

~s~ = pp~~'+ ~s~

' V. M. Galitskii and A. B. Migdal, Zh. Eksperim. i Tear. Fiz.
34, 139 (1958) (English trsnsl. : Soviet Phys. —JETP 34, 96
(1958).

Comparison with the Green's-function work previously
cited and with the general results of, for example,
Qalitskii and Migdal" illustrates the equivalence of
their interpretation to that presented here. Damping
constants and frequency shifts apparent in the operator
equations are just those arising from the Green's
function.

The formalism of Sec. II, based as it is on that of
Senitzky, bears close resemblance to the noise theory of
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Callen and Welton ' and Bernard and Callen. ' Mori"
and Tani'0 continue the extension of noise theory and

Brownian motion into the domain of anharmonic

crystal vibrations. Equation (2.44) is identical to the

Langevin equation [Mori, Eq. (1.2)]. Mori's later

equation [Mori, Eq. (3.10)],

t

—A(t) —i"A(t)+ y(t —s)a(s)ds= f(t), (5.7)
dt 0

may be compared with a generalized form of Eq. (2.44)
in which the time approximation referred to above
Eq. (2.39) has not been utilized. Thus, without the
time approximation, Eq. (2.43) has the form

a(t) =a'(t)+ (ih)
—' dtt X"(tt) exp[ —ia&(t—tr)]+ (ihZ)

—' dtt a(t t) exp[ —ice(t —tt)]

1—exp[i(ro —ro')(t —tr)] 1—exp[i(co+co')(t —tr)
X d(o' [1—exp( —hto'/k T]B(a&') (5.8)

Therefore Eq. (2.44) becomes

—a(t)+i&oa(t) —(ih)
—'

dt

where

the moments of noise-source operators [the operators
Xj„(t) used in this paper] are determined in terms of
experimental damping coeKcients. That Lax's expres-
sions for the damping and frequency shift are equivalent
to the corresponding equations, Eqs. (2.4'7) and (2.48),

X dtt P(t —t&)a(t&) = (ih) 'X't(t), (5.9) is readily shown.
0 Lax derives the equation" [Lax, QIII, Eq. (5.23)],

y(t —t,)= —2Z-' de'[1—exp( —h(o'/k T)]

XB((o') since'(t —tr)

dt exp( —i&ot)

X((F,(—q, t) F (q 0))), (5 12)
= (ih) '([X"(t),X'(tt)]), (5.10) where

by Appendix C. Since it is shown in Appendix C that

(L (t), '(t)])=1, (5.11)

then, by inspection, the equation [Mori, Eq. (3.12)]
is similar to the above equation for P(t t&). To withi—n
delnitions of scalar products, then, Eq. (5.9) and Mori's
Eq. (3.10) are equivalent.

Tani employs Mori's results (leaving out the oper-
ator's randomly fluctuating part) to deduce the tempera-
ture dependence of lifetime expressions for soft, ferro-
electric modes.

Probably the analysis closest to that presented here
is given by Lax.""In the 6rst paper" particularly, the
concept of one lattice vibration interacting with a
reservoir of all other lattice vibrations through the
anharmonic coupling is developed along equation of
motion lines. Thermal averaging is made with respect
to the reservoir and, although providing an iteration
procedure, the theory given considers the reservoir as a
set of noninteracting modes. His second paper of
interest" is more general. An impedance-plus-noise-
source "black box" is substituted for the reservoir and

"H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
W'. Bernard and H. B. Callen, Rev. Mod. Phys. 31, 1017

(1959)."H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).
'0 K. Tani, Phys. Letters 25A, 400 (1967).
"M. Lax, J. Phys. Chem. Solids 25, 487 (1964), referred to as

QIII.
ms M. Lax, Phys. Rev. 145, 110 (1966), referred to as QIV.

F,(k, t)
—= [2co,(k)/A]' "Xg,'(t) (5.13)

F.(—k, t) —=[2',(k)/A]'"Xg, '"(t) .

Then Appendix D provides the equation

b. , .. .,( )o=o2ar, (q)(h„+ii'„) .

Substitution in Lax, QIII, Eq. (5.27) yields

(5.14)

(5.15)

~ '(q) =~ (q)+~+iv, (5.17)

then for small damping and frequency shift these
quantities are given by

(5.18)

(5.19)

and the results of both methods are equivalent.

VI. COHCLUSIO5

It has been shown that vibrations of the anharmonic
crystal may, under certain approximations, be treated
from a dissipation-theory viewpoint. The normal mode
phonons of harmonic theory were each thought of as a

~~"(q) =~2(q) —2~~(q)(~«+il'«), (5 16)

where ro, '(q) is the complex-shifted frequency for the

(q, t) mode. Setting
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system undergoing dissipative coupling to another
system, or reservoir, comprising all other phonons. The
major approximation was to neglect (a) those inter-
actions of the other phonons which specifically excluded
the one considered, and (b) interactions of identical
phonons.

By comparison with other theories, the results of
which identify closely with those presented here, it
appears that such a treatment is a valid one. However,
the complexity of the loss-mechanism system prevents
damping-constant and frequency-shift expressions de-
duced by this paper from being calculated numerically.
The diTiculty is that the density of total-energy states
for the reservoir of harmonic oscillators is not known
even approximately. A model more amenable to
Senitzky's analysis shouM have clearly dehned energy-
level densities whereby the energy integrals, which here
must remain unsolved, would be immediately evaluated.

X&Pt = 3 P' P' fU(—kj, k& j&, k2 j&)a~; 'a~; '+ V(—kj,
&1&2 ju'2
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APPENDIX A

Here we prove the identity

Xt„,X~,„-=O.

From'Eq. (2.20), it follows that

X'-X'-= (r I
X~ t(O)

I ~)&~
I
X»'t(0)

~
r), (A1)

where, by Eq. (2.3),

kl jl k2j2)ak j aR j

+V( kj, —k&j&, k—2j2)a&„,'ta»;, '+ V(—kj, —k~ j&, k2j 2)a~„,'ta—&„,'tj (A. 2)

Thus, the matrix element may be evaluated as

Xt„=3Q' P' Lg" D(n8, ,—n8 „)j(LBq qD(ng, ,—2—ng „)h(co„, +2cag) ng, ,"'( ng, 1),
I—V(—kj, kz jz, kzjz)

~1~2 j122 ~3j3

+ (1 8$,2)h(n~, ,—1 ~n„)h—(n2, 1n, 2, „)6(CO„+071+N2)ng, n2, 8 I'V( —kj, k&j&, k2 j2)j
+LSD' 2&(n, , ,—n, „)A(~„,)(n, , ,+1)U(—kj, k,j„—k, jg)

+(1 8$$)A—(n&, , 1 n—
&,„)D(n&,—,+1 n2, ,)&(~„.—+~& ~2)n&, ."'(n&,,+1)'~'U( —kj, k& j&, —k2j2)]

+Lb, 6(,,—n, ,)A( „). ,V(—kj, —k j, k j )

+(1 8],2)6(n~, ,+ 1—ni, „)D(n9,8 1 n2, „)6(CO„COJ+10 )(2ng, +1) Ã2, V( kj kljl k2 js)1

+t 8&,2&(n&„+n, ,„)&(ar„,—2~,)(n, , ,+1)'"(n&,,+2)"'U(—kj, —k, j&, —k,j,)
+(1 8/2)6(nfl, + 1 n, j,r)D(n2. +1 , n)2A—(~„. ~& ~2) (n&.+1)'",(n2„+1)'"V(—kj, —k& j&, —k, j2)$j . (A3)

In the above expression use is made of the identity

b&,2—=h(k, —kp) 6(j,—j2),
and n+&, represents the quantum-mechanical expectation value for the number of phonons in the (&k&,j&) mode
when the reservoir is in the state s with energy E,.

Interchanging r and s a similar expression may be deduced for Xt,„.
By inspection, the 8-functions enable the product expression to be evaulated:

Xt„,X"«= 9 Q' Q' ( t b&,pA(co„,+2&v&)n&, ,(n&, ,—1)V(—kj, k&, j&, k& j&)V(—kj,—k& j&, —k&j&)
&&2 iu

+2(1—b$2)a(~, .+~&+~2)n&,.n2, ,V(—kj, k&j&, k2j2) V(—kj, —k&j&, —k2j2)]

+ I 8&26(a)„,) (2n, , ,+1)' V( kj, —kp—j&, k& j&)V—kj, k&j&, —k&j&)

+2(1—
&g, 2)~((v„+cog—(v2)(n&, ,) V(—kj, k&j&, —k2j2) V(—kj, —kg j&, km j2)

+2(1—Bg,2)h(u)„,—co&+co2)(n~, ,+1)nm, ,V(—kj, —k~ j~, k2 j2)V(—kj, k~j~, —kg jm)]

+t h~pA((a„—2~~)(n~, ,+1)(n~,.+2)V(—kj, —k&j~, —k& j&)V(—kj, k~ jg, k~ j~)

+2(1—8,
, 2)a(co,.,—~,—co,)(n. ..+1)(n...+1)V(—kg, —kgyg, —kpg2) V(—kg, kgpl, kgg2)$). (A4)
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The anharmonic coeKcients are given by [Eq. (5.1)]
V(kj,kiji, kz jz) = (21') '"&(k+ki+kz)C(k j,ki jz,kz jz),

where C is a general force constant for the crystal. Since each term in Eq. (A4) contains a product of two 8 functions

which has the form
a(k+ ki+ k,)h(k —k,—kz),

it then follows that

for general (k,j).
Xt„xt„=Q

APPE]%DIX 8
(1) Here we prove the identity [Eq. (2.35)]

Xt'(E„,E,)=X'(E—„,E,) .
It is defined in Eq. (2.22) that

Xt„, is evaluated in Appendix A;

X„may be evaluated similarly; and their product is obtained in a form analogous to Eq. (A4).

~
X rs

~

'= 9 p' g' {pi &&(~rs+ 2o») nz „(nz„—1)V(—kj, ki ji, ki ji)V(kj, —ki ji, —kiji)
k1&2 iU'2

+2(1—biz) 6(zd„, +coz+zdz) nzsnz, ,U, ( kj, k—iji, kz jz) V(kj, —ki ji, —kz j&)]

+ [8z,z&(&o„)(2ni, .+1)'U(—kj, —ki ji, ki ji)V(kj, ki ji, —ki ji)

+2(1—bz, &)&(cors+cvi —~&)ni, s(n&, s+1)V(—kj, kiji, —k&j&)V(kj, —ki ji, kz jz)

+2(1—8z,&) A(cars —coi+co&) (ni, .+1)nz, s V(—kj, —kiji, k&j&)V(kj, ki ji, —kz j&)]

+[8z,&&(co—2o») (ni, s+1)(ni, s+ 2) U(—kj, —kiji, —ki ji) V(kj kiji ki ji)

+2(1—bi, &)h(ar —a»—co&)(nz, ,+1)(nz, ,+1)V(—kj, —ki ji, —kz jz) V(kj,kiji, k&jz)]). (AS)

It is defined in Eq. (2.22) that

I Xrs
~

Xrs(Xrs) XrsX sr s

and a treatment similar to the above yields an equation
differing only from Eq. (A5) in that n i, and n z, ,
replace ej,, and e~,„respectively. In the discussion
following Eq. (2.27), Xz'(E„,E,) and X'(E„,E,) are
de6ned as averages of

~

Xt„~ ' and
~
X„,(

' over all states
r and s lying in small intervals about E„and E„respec-
tively. This averaging allows the quantum-mechanical,
number-operator expectation values to be replaced by
their thermal averages

+—l, s ~ +—l, sy ++1,s ~ ++1,s ~

From the property of thermal averages that

one immediately obtains

Xt'(E„,E,)=X'(E„,E,) .

by definition, substitution in Kq. (2.28) yields Eq.
(2.35).

APPENDIX C

Here we prove the commutator [Eq. (3.1)],

[a~;(t),a~,t(t)]=1.
It is defined in Eq. (3.3) that

5= tz
' exp( —21"»t) dti dtz [Xgs'z(ti), X&to(tz)]

)&exp[—(I'q+i~q, )(t—ti)] exp[—(I'q, —icoq;)(t—tz)].

As is consistent with the steps following Eq. (2.16) in

the analysis, the commutator may be replaced by its
expectation value which may then be evaluated:

[X.s"(tz),X.s'(tz)] ~ &[X~ "(ti) X~s'(tz)]&

(2) Here we prove the identity

Xz'(E„E,)=Xz'(E„E,.) . —
Since

= —2ihZ '

Dining

do&'[1 —exp( —her'/k T)]

&& B(z0') sin&a'(ti —tz) . (A6)

/Xt, „/z= /X„, f' (= ti+ tz, zt = ti tz, —
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tion preceding
~ F . (2.39)j

(pZ)
—$ exp( 21kj)

p.t

d( exp(rk;5)
t

dt2
0

rewritten as(33) maybere

(AS)
2

d'ggg) 1 exp( 22k j )
0

&&[1—exp(
. , (A9)zMk j9)&& exp(rk, k)

p( ~'/k&) j
r)j (A11)~1)—5(Nk j+x&(') '""' "

d] exp(&k &)1„,exp( —21'k~')

„p( 2rk, ) ~

'
te]. seen thatEq. (3. ) '.2 't is immedia eyThen, bX

[ak;(&) &» '

(2 4p) enablesuse ofed that ~»-"""H it is as
ew, itten asEq (A11) to

u

s have the formThe q integrations av

dzt exp(i(ok, zZ(o ) slI10& tj

—M )x sm(cokj M ssin +»—~'

CO» —
CO

APPENDIX D

ve the equation q.E . (4.1)jHere we prove

L ( —~') —~(~»+~'~)j~ (A1O)
p s 1„,=171 dr exp( M)kjr)

&& ([&kP'(r) Pkz'(o) 3).

steps yieldA6 the following s pwith Eq. (ACommencing w'

Eq (41):

e. That is, whenfor x large.

6 and23 —$=
A see the approxima-are o . (A9) becomes [see t e aare both large, Eq. A

)([x "( )» '(o)j&dr exp( —zcok;r k, , 0

= —2iItZ —' d(a' [1—exp( —h(o'/kT) $8 co'
~ /-r S1Ilco 7dz- exp( —zcuk;r

=ikZ '
COg

'—07 Ng~ 07dko' [1—exp( —ho)'d~ —e —~'/uz') ja(~') [p(~kj—~—


