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from the zero of € as much as it does at room tempera-
ture. Hence there is no net change in the energy location
of the ELF peak for this alloy. For the remaining alloys
there is a shift to lower energy of the zero of ¢; as well as
an increase in e; near the plasma energy; both of these
tend to shift the ELF peak to a lower energy.

APPENDIX

We attempt to assess the accuracy of our measure-
ments. We estimate that the reflectance R can be
measured to 239, at room temperature and 319, at
4.4°K, while transmittance T errors are 3% and 49,
respectively, over the central one-half of our wavelength
range. These errors are expected to be systematic and
should be nearly the same at all wavelengths for any one
film. Calculations were made of the changes in R and T
produced by changes in # and k. From these we conclude
that the largest single error in % arises from the 219,
error in d, the film thickness. This error is constant for
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any one film and may even be about the same for all
films. The errors in d and T make & accurate to about
43%. (The observed maximum deviation of a value of
k at any wavelength from the average for 10 Ag films
was 6%.) The calculations show that the relative error
in # is approximately 10 times the relative error in R
over the central half of our wavelength range. Thus #
should be uncertain to about 25%, but the maximum
single deviation from the average for nine Ag films was
109, for photon energies below 4.0 eV. The errors in #
diminish upon alloying and for the 4.29,-In alloy, the
relative errors in R and » are about equal. The actual
systematic errors may not have been as large as pre-
dicted because our results agree well with those of Ref.
38, measured by quite a different technique. Above 4.0
eV the accuracy suffers greatly because of the form of
the equations for # and % in terms of R and 7. Of 10 Ag
films, only one, that used for Fig. 1, gave data above
4.0 eV in agreement with those of Ref. 39. Hence the
data on alloys can be trusted only below about 4 €V.
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A quantum-mechanical dissipation theory is applied to the problem of anharmonic vibrations of a crystal.
Equations for the anharmonic phonon creation and annihilation operators are obtained, from which may be
extracted damping-constant and frequency-shift expressions. These are compared with the results of other

techniques.

I. INTRODUCTION

T is the purpose of this paper to demonstrate the
application of a formal quantum-mechanical dis-
sipation theory for the harmonic oscillator! to the
problem of the anharmonic crystal. Anharmonicity has
received direct attention from many authors?~'2 employ-
ing many different techniques. However, to approach
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it from a dissipation theory viewpoint utilizes the
attractive concept of a phonon undergoing decay as it
interacts with, and loses energy to, other phonons.
The final equation of motion, which is derived in
Sec. IT [Eq. (2.44)], shows that in addition to damping
there also exists a driving force which restores energy
to the mode. As suggested by Senitzky! the source of
this compensating effect is quantum-mechanical fluctu-
ations without which dissipation may not properly
(quantum mechanically) be treated. Just as in classical
dissipation problems, the driving forces are not con-
sidered when deducing damping properties of the sys-
tem; and if the aim of this paper is to calculate only
these, then concern for the fluctuations is pedantic.
But in Sec. IIT it is shown that their inclusion leads to
correct commutation relations for the phonon creation
and annihilation operators. The derivations of Sec. II
depend on such commutation relations and therefore
consideration of fluctuations is essential for consistency.
The application Senitzky envisaged was a radiation
field in a microwave cavity. Consequently, although
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its loss mechanism was unspecified, his theory when
applied to the anharmonic crystal Hamiltonian requires
certain modifications of them both. The alteration to
the crystal Hamiltonian constitutes an approximation
in that certain classes of terms are neglected, and this
will be referred to in a later section. The basis of
Senitzky’s theory is the Hamiltonian

H=HosetHiooet+aPT y (11)

where the operators P and T refer to the oscillator and
loss-mechanism, respectively. The self-adjointness of
I' is a property employed in the derivation of the equa-
tion [Ref. 1, Eq. (21)]. Use of the slightly different
form,

H=Hosc+Hloss+dX+anT , (12)

in this treatment introduces a complication because the
X and X', which incorporate coupling coefficients, are
not self-adjoint.

As a further simplification of the crystal Hamiltonian
normally used, the fourth-order anharmonic terms
(four-operator products) will not be considered. Their
inclusion only increases the bookkeeping and adds
nothing to the underlying theme which is to apply the
loss-mechanism concept to anharmonicity.

In Sec. II, equations of motion for operators of the
anharmonic phonon are deduced and solved. The com-
mutation properties of these operators are investi-
gated in Sec. III, and Kramers-Kronig relations between
damping-constant and frequency-shift expressions are
presented in Sec. IV. Section V is an attempt to display
the theory and results of this paper in perspective with
the work of others in both anharmonic crystal and dissi-
pation fields.

II. COMPLEX DAMPING CONSTANT

The Hamiltonian of the anharmonic crystal is

H=3 hojoritari+ 2 2 V(kignkegsksjs)
g

kikok3 j17273

X (@i 1T+ Qeyjy) (@mtenin -+ Cigin) (a—ksiaLl" aksia) B VAY)

Anharmonic terms of order higher than third have been
omitted as well as the zero-point energy.

Selecting those parts of H which represent (i) a given
mode (oscillator), (ii) all other modes (loss mechanism
reservoir of oscillators), and (iii) the interaction of (i)
with (ii) (coupling), a reduced Hamiltonian may be
defined as

Hrea= Hosot Hit+ Hiny= hwkjakjfakj
+ 2 ks By By B X i it Xt

k1,71

(2.2)
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In this equation, Xy; is given by

Xii=3 2" 2 [V (kj,Kij1,ks2) sy 0xsis

kike 12
+V(kj, kiji, —Kkoj2)au,j,@uyss’
+V(kj, —kij1, kajo)aw axeis
+V(kj, —kij1, —kejo)any ansn' ], (2.3)

where the prime signifies the exclusion of (k,7) from the
summations over (k;j;). The anharmonic terms ne-
glected are those (a) containing neither ax; nor ay;';
(b) containing either ax; and ay;' together, or each more
than once. A similar reduced Hamiltonian was used
for the k=0 transverse optic mode in the optical absorp-
tion theory of Born and Huang? and also of Maradudin
and Wallis.> The latter pair of authors qualitatively
justify the approximation but in a later paper® comment
on its rather arbitrary nature and employ the full
Hamiltonian.

It is convenient at this stage to introduce the har-
monic-oscillator counterparts to the operators already
mentioned; that is, the operators characteristic of an
uncoupled oscillator/loss mechanism system. They are

ax;°() = ax;°(0) exp(—iwijt)

, (2.4)
i (1) = 0x;°(0) exp(iast) ,
and their dependents are
X0, X0, HO®G). (2.5)

By specifying that the interaction commences at ¢=0,
the following identities hold:

a/(0)=0x°(0), 0k (0)=ax(0),
X1i(0)=X1°(0), Xi'(0)=X1,°7(0),
H,(0)=H0)=H,°, say.

(2.6)

The reduced Hamiltonian provides the starting point
for an analysis based on Senitzky’s quantum dissipation
formalism.

It may be deduced from Eq. (2.2) that

(2.7)
(2.8)

where the commutation relations used in their deriva-
tion are unitary transforms of analogous ones for the
uncoupled operators. In order to show that such trans-
forms exist it is only necessary to realize that the oper-
ators ax(#), Xi;({) and their adjoints have no explicit
time dependence. That is, the entire time dependence of
these operators is transferred to the state vector under
a unitary transformation from the Heisenberg picture
(in terms of which this paper is written) to the Schro-
dinger picture. The explicit time derivatives of the
Heisenberg operators then are zero, and hence unitary
time-evolution operators may be used to express the

il = Wi+ X'

itk = — Wi — X



642 A. H.

time development of the noncoupled (harmonic)
phonon operator as

a® ()= U(1,0)a,°(0)U'(2,0)
and the coupled (anharmonic) phonon operator as
axi(t) =V (£,0)ax;(0) V1(2,0).

Thus, from Eq. (2.6), the uncoupled and coupled oper-
ators are connected by the equation

ax; (1) =W (,0)ax OW*(4,0)

with the unitary operator W (£,0)=V(£,0)U*(2,0).
The integral forms of Egs. (2.7) and (2.8) are

axi(t) = ax°(O)+ (i) ™!

(2.9

X/ dty Xt (1) exp[—donj(t—#)], (2.10)
akj*(t) = aijT(t) - (lh)_l

X/ dty Xij(t) expliog(t—t)]. (2.11)

Continuing the analysis for ax;(f) only, from Eq. (2.2)
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the loss Hamiltonian equation of motion is
Hy(t)= ity [Hy,Hsni],

or in integral form

(2.12)

t

Hi(0) = HO@)+ (i) / dt;

X CH () {axi(t) Xxi(tr)+Faxi () XiiT (1)} 1. (2.13)

Again, from Eq. (2.2) the loss operator equation of
motion is

X' (1)) = 1)~ [ X' (8), Hu(2) ] (2.14)

Substituting for H; from Eq. (2.13) and rewriting in
integral form, Eq. (2.14) becomes

Xiit () = Xui%1(2)
i / o f it expl/ )~ 1))

X [ X" (02),[{ 0 (1) X i (t2) + @ (12) X (£2) }
X Hy(ts) ]] exp[— (i/h) (t— t) H\"].
Using Eq. (2.15), Eq. (2.10) is then

(2.15)

t ot t1 -t2
axi(t) = ax () (7)1 / dty X% (t1) exp[—doon;(t—t1) ]+ (@A%™ ] dh / dis / dt3 exp[—iwwi(t—t) ]
0 0 0 0

X exp[[ 5/ ) (ti—t2) HO N[ X s (82), [ { ani(ts) X wi(ts) + st (45) Xues (1) }, Hi(ts) 1] exp[ — (3/ 1) (la—t2) H L], (2.16)

The double commutator may be approximated by (i) assuming only slight disturbance of the loss mechanism so
that Xy; and Xy, are replaced by Xy, and X%, respectively; and (ii) ignoring quantum-mechanical properties of
the loss mechanism in terms above second order. This allows removal of @x; and ax;" from the commutators which are
then replaced by their expectation values times the unit operator. Senitzky discusses these modifications in detail.

Then Eq. (2.16) may be written (approximately) as

akj(t)=akj°(t)+(ih)'1/ dty ijo*(h) exp[—iwk,-(t—tl)]—l- (ih3)_’1 / dtlf dtz/ di3 exp[~iwkj(t~tl)]
] 0 0 0

X A Xk (12), [ X2(ts) Hi(t) T DD asej (1) [ X s (12), [ X" (85), Hi (t5) T Daws (13) } .+ (2.17)
Here

{operator)=(Z)~1Y" {r|op.|r) exp(— E./kT), (2.18)

where
Z=Y exp(—E,/kT),

and the expectation value is taken with respect to the loss mechanism. That is, 7 refers to a state of the reservoir of
harmonic oscillators corresponding to the normal modes of the crystal other than the (kj) mode.
Matrix elements of the uncoupled loss mechanism are defined by

(]| Xi®(@®) | )= {r| Xic;°(0) | 5) exp(—iwst) =X 15 exp(—iwysl) (2.19)

and

(r| X1 (@) | s)= X1, exp(icorst) , (2.20)
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where
w,s=(E,—E,)/%.

From Egs. (2.19) and (2.20) may be derived the equations
<7’| [Xk.‘fOT(t2))[Xk.‘io(t3),Hlo(t3)] [ 7>= Z hwra{exp[iwrs(h_ 1‘3)] [XTrs] 2+€Xp[*‘ iwrs(l2— t3)] Ierl 2} ) (2-21)

where
IXTTSI 2=XfrsXsr7 Ierl 2=XTSXT8T7 (2'22)

and

<rl [ijof(h)7[inOT(t3):Hlo(t3)]:| [ 7’) =2 Z hwrsXTrsXTsr cosw,s(tz—— ta) . (223)

It is shown in Appendix A that for general (kj),
Xt Xt,=0. (2.24)
Then Eq. (2.17) becomes
t t t1 t2
dkj(l)=dkj0(i)+(ih)~1/ diy ijOT (h) eXp[——iwkj(t—h):]-{- (ih2Z)_1/ dh/ dlz/ dis dkj(t:;)
0 0 0 0

XX wrs exp(—E,/kT) exp[ —iwxi(t—1t) W | X' |? explios(ta—ts) ]+ | X o |2 exp[—iwrs(le— 1) ]} . (2.25)

By changing the order of integration and evaluating the time integrals over £ and #, the last term of Eq. (2.25)
may be rewritten

L(wws )= — (6722)" /

0

t

dts ax;(ts) 2 exp(— E,/kT)

><< {exP[in(t——ls)]—exp[—iwkj(t—ta)]+1——exp[*iwkj(t—ts)]} X

Wrs Tk Wy

, {exp[_.iw”(z—t,o,)]——exp[—iwkj(t—13)]+1_eXP|:_i“’kf(t—t3)]} ]erIZ)' (2.26)

Wyrs™ Wkj Wk j

Assuming energy levels of the phonon reservoir to be closely spaced, the summations may be approximated by
integrals

0

s [ a8, (&) / dE, n(E.), (2.27)

0

where 7(E) is the density of reservoir (loss-mechanism) energy states. If | X*,,|> and | X, |2 are also replaced by the
real functions X'%(E,,E,) and X2(E,,E,) obtained by averaging the former pair over all states r and s lying in small
intervals about E, and E,, respectively, then it is shown in Appendix B(1) that

Xt(E, E)=X*E,E,). (2.28)
Hence Eq. (2.26) is now given by

t

L(wkj,t)= (ih2Z)*1/ dty akj(h)F(wkj, 1—11) , (229)
0
where

Flo,r)= / dE, 7(E,) / dE, 7(E) exp(— Ey/kT)

{ exp(—iwr) —exp(iw,s7) exp(—iwr)—exp(—iw,s7)

}XTZ(E,,E,) . (2.30)

wtw,s W—Wrs
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The double integral is redefined in the form

/ dEr/- dEs=/ hdw’/ dE
0 0 0 ho’
0 %
+/ hdw’/ dE=/hdw’/dE, (2.31)
—o0 —3hw’

(2.32)

in which
E=YE,+E,)
Thus Eq. (2.30) becomes

and o' =w,s=w,—ws.

F(w,r)=/h(z’w’/dE n(E+3ho)n(E—$hw')

Xexp[— (E+3h")/kT]
XX (F+ih', E—Lhe!) f(o',r), (2.33)
where

Jo,m)=

exp(—iwr)—exp(iw’r)
wtw’

exp(—iwr)—exp(—iw'r)
- , = _f(_wl;"') .
w—w
Using Eqgs. (2.30), (2.32), and the identity deduced in
Appendix B(2) that

(2.34)

Xt(E, E—h')=X"(E—#o', E),  (2.35)
Eq. (2.33) may be simplified to
Flo,r)=— / de'[1—exp(— i /ET)]
v 0
XB(o) flw'r). (2.36)
Here the real quantity B(w’) is given by
B6)= [ d a(E b
" Xexp(—EAT)X(E+h!, E). (2.37)

If Eq. (2.36) is rewritten in the form

F(w,7) =1 exp(—iwr) / dw’ [1—exp(— ' /RT)]B(w’)

1—exp[i(w—w)7] 1—exp[ilwtw)r]
X{ - , (2.38)

wto’

w—w

then for r(=t—1#) large (or equivalently wr>>1), it is
approximated by!?

F(w,7)=h exp(—iwT) / do’ [1—exp(—#w'/kT) ]B(w’)
X[Ew—o)— Hoto')],

13 See, for instance, W. Heitler, 7he Quantum Theory of Radi-
ation (Oxford University Press, New York, 1954), 3rd ed.

(2.39)
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with

EHwtw)=1/(wtwo) p—ird(wtw’). (2.40)

Both Senitzky and Lax'* employ a similar approxima-
tion to this one, which here renders the frequency
integral time-independent.

Hence, Eq. (2.29) is simply
¢

L(wjt) = —,Bkj/ dly axi(t) exp[—iwg(t—1)], (2.41)

0
where
Buy=—(ihZ)™ f de' [1—exp(—ho'/kT)B()]

0

X [#wrj— ") — Eloxj+w’)].

Substituting for L(wx;) in Eq. (2.25), the final form of
the integral equation is

axi(1) = ax;*(1)

(2.42)

t

+ (ih)—l / dh ijm(h) exp[~1?wk]-(t—-t1):]

t

'—-ﬁkj/ dhy akj(h) exp[—iwkj(t—h):]. (2.43)

Expressed as a differential equation this becomes

dij 1w~ 1Bk a= (i) 71X, °1(1) . (2.44)
The exact solution is then
k(1) = ax;°(0) exp[ —i(wi;—iBx;)t ]
t
(i) / dy X" (t)
1]
X exp[ — i (wi;— 1Bij) {— 1) ].  (2.45)

The analogous creation operator equation is, taking
the adjoint of Eq. (2.45),

ax;'(0) = @i (0) expli(w;+Bxi*)L]
t

—(1h)_1/ dhy ijn(h)

Xexpli(wwi+1Bx*) (t—11)].

By inspection, the damping constant T'y; and fre-
quency shift Ay; of the (kj)th mode may be immediately
deduced as

T'yj=ReByj=m(hZ)*

(2.46)

©

X | do’ [1—exp(—hw'/kT)]B(w’)
o X [8(wrj— ") —8(wii+w)]  (2.47)
M. Lax, Phys. Rev. 160, 290 (1967), paper V.
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and

Ayy=ImBy;= (hZ)™

X/ do' [1—exp(— hw'/kT)]B(w’)

1 1
x[ — ] (2.48)
(wj—)p  (wij+o)p

Note that if approximations consistent with those of
Senitzky are employed, then, since the main contribu-
tion comes from the region '~ wy;, the above equations
simplify:

Ty=n(hZ)~! /

0

0

do’ [1—exp(—hw'/kT)]
X B(w')8(wi;—w')

]

=x(hZ)™ / do' [1—exp(—h'/kT)]

X B(0)d(wr— '), (2.49)
or
Ty~ (hZ)[1— exp(—ion;/kT) 1B(wyj)
and similarly
» 1— —hw'/kT
A= () f e ALl
— (wkj—w')p

III. COMMUTATION PROPERTIES

In Sec. II, the anharmonic phonon operators have
been assumed to satisfy the commutation relation

Laxi(t),a" () ]=1.

As originally stated its validity may be established by
considering a unitary transformation of the correspond-
ing one for harmonic phonons. However, as a check of
the internal consistency of the theory and approxima-
tions used in this paper, the commutation relation is also
derived from the operator expressions given by Egs.
(2.45) and (2.46). The technique used is similar to that
of Senitzky.

Substituting Eqgs. (2.45) and (2.46), the commutator
is

3.1)

Lawi(®),ax' () ]= exp(—2Tyt)+S, (3.2)
where
S=1#"2exp(—2T;t)
X/ dty f 1 dla [ X% (1), Xx%(t2) ]
X exp[ — (T'ij+ién;) (1—11) ]
Xexp[— (Txj—idw) ((—12)]  (3.3)
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and
(34)

nj= g+ D

In Appendix C, the quantity .S is evaluated using ap-
proximations consistent with those of Sec. II:

S= [1 - BXP(— Zijt)] .
Hence Eq. (3.1) follows.

(3.5)

IV. KRAMERS-KRONIG RELATIONS

The complex damping constant SBi;* is related to the
retarded Green’s function for the loss mechanism
operators, G.(7), according to (Appendix D)

Biei* =T (wij) — 1A (wxj)

dr exp(—iw;T)
' XL X (), X(0) )

=—h"2

0

=—ih? f dr exp(—iwi;7)G*(1), 4.1)
where
G *(r) = —10(r){[ X" (7),X,°(0) 1) (4.2)
and
(r)=1, >0
=0, 7<0. (4.3)

The real and imaginary parts of the Fourier transform
of the retarded Green’s function are related by the
Kramers-Kronig relations

1 T'(w)
Ae)=—— [ deo/ ——2—, 44
(o)==~ /_ R e
1 = A’
F(wkj)=—/ dw'-——l‘i—)—. (4.5)
T)w (&' —owr)p

Zubarev,'® for example, deduces this property from the
analyticity of the retarded Green’s function in the
upper-half complex plane.

V. COMPARISON WITH OTHER METHODS

In a treatment of optical absorption in polar crystals
Wallis and Maradudin® (to be referred to as WM III)
derive expressions for the damping constant and fre-
quency shift for the k=0 phonon mode. Employing the
definition
V(kjkijykajz) = (2N)"12A(k+ ki + ko)

X q’(kjykljlykzj'z) ’ (5‘1)

their equations [WM III Egs. (31a) and (31b)], may

#D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English
transl.: Soviet Phys.—Usp. 3, 320 (1960)].
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be rewritten
h |2(07,k171,k272) | 2
Toy=— ¥ 5 Alkitks) e )L, (5.2)
8N kiks jije w(Oj) Iw(kljl) lw(ijﬁ)
P2 (07, ki j1,ks72) | m+3)
M= T Al e (et (53)

@(07) |w(kyf1) |w(kegs) (@—wi— wz)P.

In obtaining this result, the full Hamiltonian [Eq. (2.1)] was used to generate an equation of motion for the phonon
creation and annihilation operators [WM III, Eqgs. (11a) and (11b)]. These operator equations are virtually
identical to Egs. (2.7) and (2.8) (above) which were generated by the reduced Hamiltonian, Eq. (2.2). The Eqs.
(2.7) and (2.8) differ only in that terms with operators of the same (k) as that for which the equation of motion is
written, are excluded from the summation [i.e., as described after Eq. (2.3)].

It is not surprising, then, that direct evaluation of Eq. (2.17) should yield (after a great amount of tedious

8NV ik jijz

manipulation involving the use of Wick’s theorem to evaluate thermal averages of six-operator products)

[ ®(—kj, kijs, ko o) 2

wh
Tyj=—- 2" 3" A(—k+ki+ k)

{ - ("1+%2+ 1)5(w+w1+w2)+ (%H—%z‘l‘ 1)5(w+w1—w2)

16NV kike jij2 w (kj)w(k1]1)w(k2]2)
- (%1— ng)a(w—wl—l—wz)-l— (%1— 1’!2)5(60‘,‘(1)1—(02)} 5 (5.4)
ro_ | ®(—kj, kij, kaj) |2
Ayj= >3 A(—k+ki+ks)
16NN kike jija w(kj)w(kljl)w(kgﬁ)
ni+ns41 m+na+1 ni1—mng ni—mnsg
{__ f -+ . (5.9
(wtwitw)p (0—wi—w)p (w—witw)pr (wtwi—ws)p
This result immediately degenerates into the WM III  methods has the general retarded form
Eq. (31) by setting k=0 and restricting w>0, the con-
ditions for optical absorption processes. Maradudin and GA(7,0)=—16(r){{A4(r),B(0)]). (5.6)

Fein,® when considering the scattering of neutrons by
anharmonic crystals, also obtain Egs. (5.4) and (5.5)
but with the addition to Eq. (5.4) of a fourth-order term
of magnitude comparable to the third-order contribution.

Wallis and Maradudin,®employ an equation-of-motion
technique in which terms generated by iteration are
classified according to diagrams of successively higher
order. The complex dielectric susceptibility tensor
deduced by Kubo formalism then gives damping-
constant and frequency-shift expressions.

On the other hand Maradudin and Fein (and
Cowley”), use a diagrammatic Green’s-function ap-
proach to evaluate the Fourier transform of a time-
relaxed displacement-displacement correlation function.
A Dyson equation for the phonon propagator is ob-
tained and approximate solution to lowest order yields
the damping constant and frequency shift [M. and F.,
Egs. (5.5)].

Thompson® and Pathak® use a truncated equation
of motion for the same Green’s function as Maradudin
and Fein; Viswanathan and Watanabe!® use tempera-
ture-dependent perturbation theory and Van-Hove’s
discussion of inner displacements; Ishikawal! uses a
canonical transformation; and Wallace!? uses an
iterated equation of motion (rencrmalization) for the
phonon operators. All obtain, effectively, the expres-
sions of Maradudin and Fein [M. and F., Egs. (5.5)].

The one-particle Green’s function of all the above

When the operators are defined as
A(r)=axi(r) and B(0)=a:'(0),

the equations for the annihilation and creation oper-
ators [Eqgs. (2.45) and (2.46)] allow Eq. (5.6) to be
rewritten

GT(T,O) = —10(7) eXp(—"i(:)ij) exp(— ij'r) B (56’)

with

(:)kj= wkj—i- Akj .

Comparison with the Green’s-function work previously
cited and with the general results of, for example,
Galitskil and Migdal'® illustrates the equivalence of
their interpretation to that presented here. Damping
constants and frequency shifts apparent in the operator
equations are just those arising from the Green’s
function.

The formalism of Sec. II, based as it is on that of
Senitzky, bears close resemblance to the noise theory of

16V, M. Galitskii and A. B. Migdal, Zh. Eksperim. i Teor. Fiz.
%4,51539 (1958) [English transl.: Soviet Phys.—JETP 34, 96
1958).
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Callen and Welton,'” and Bernard and Callen.!® Mori?
and Tani?® continue the extension of noise theory and
Brownian motion into the domain of anharmonic
crystal vibrations. Equation (2.44) is identical to the
Langevin equation [Mori, Eq. (1.2)]. Mori’s later
equation [Mori, Eq. (3.10)7],
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d t
AW —i6A @)+ / S(—)A(s)ds= 1), (5.7)
dt 0

may be compared with a generalized form of Eq. (2.44)
in which the time approximation referred to above
Eq. (2.39) has not been utilized. Thus, without the
time approximation, Eq. (2.43) has the form

a(t)=a®(t)+ (ih) / dty XO(ty) exp[—iw(t—t) H+ (i42)~ / dty aty) exp[—iw(i—h)]

0

Therefore Eq. (2.44) becomes

d

—a(t)+iwa(t)— (ih)!

dt ,

% / it $(t—tDa(t) = ((R)-X0(D), (5.9)

where

ot—t)=—2Z"1

0

do'[1—exp(— 7' /ET) ]
’ X B(w’) sinw’(f—#1)
= (@)~ [X(9),X(t) D),
by Appendix C. Since it is shown in Appendix C that

(La(®),d'() D=1, (5.11)

then, by inspection, the equation [Mori, Eq. (3.12)]
is similar to the above equation for ¢(¢—#;). To within
definitions of scalar products, then, Eq. (5.9) and Mori’s
Eq. (3.10) are equivalent.

Tani employs Mori’s results (leaving out the oper-
ator’s randomly fluctuating part) to deduce the tempera-
ture dependence of lifetime expressions for soft, ferro-
electric modes.

Probably the analysis closest to that presented here
is given by Lax.2!:22 In the first paper?! particularly, the
concept of one lattice vibration interacting with a
reservoir of all other lattice vibrations through the
anharmonic coupling is developed along equation of
motion lines. Thermal averaging is made with respect
to the reservoir and, although providing an iteration
procedure, the theory given considers the reservoir as a
set of noninteracting modes. His second paper of
interest?? is more general. An impedance-plus-noise-
source “black box” is substituted for the reservoir and

17H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

18 W, Bernard and H. B. Callen, Rev. Mod. Phys. 31, 1017
(1?55%% Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).

20 K. Tani, Phys. Letters 25A, 400 (1967).

21 M. Lax, ] Phys. Chem. Solids 25, 487 (1964), referred to as

QIIL.
22 M. Lax, Phys. Rev. 145, 110 (1966), referred to as QIV.

(5.10)

% /0 de’ [1—exp(— hw’/kT]B(w’){

1—exp[i(w—o)(t—t1)] 1_eXpD(w+wl)(t_tl)}, (5.8)

w—w' wtw’

the moments of noise-source operators [the operators
Xy;(f) used in this paper] are determined in terms of
experimental damping coefficients. That Lax’s expres-
sions for the damping and frequency shift are equivalent
to the corresponding equations, Eqs. (2.47) and (2.48),
is readily shown.

Lax derives the equation? [Lax, QIII, Eq. (5.23)],

0

bo—q; t,qw)=| dt exp(—iwt)
X((Fs(—q,t),Fg(q,O)», (512)
where
Fo(kt)=[2w,(k)/A ]2 Xx."(?) (5.13)
and
Fo(—k)=[2w,(k) /22X " (¥). (5.14)
Then Appendix D provides the equation
bt—q; 1,0(@) =20/(q) (Aqit+iTqs) - (5.15)
Substitution in Lax, QIII, Eq. (5.27) yields
wH(q) =w(q)—20(q)(Ag+ilq),  (5.16)

where w,/(q) is the complex-shifted frequency for the
(9,¢) mode. Setting

o/ (@) = w,q)+ 0+, (5.17)

then for small damping and frequency shift these
quantities are given by

(5.18)
(5.19)

v=—Tq,
5_%———Aqt,

and the results of both methods are equivalent.

VI. CONCLUSION

It has been shown that vibrations of the anharmonic
crystal may, under certain approximations, be treated
from a dissipation-theory viewpoint. The normal mode
phonons of harmonic theory were each thought of as a
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system undergoing dissipative coupling to another
system, or reservoir, comprising all other phonons. The
major approximation was to neglect (a) those inter-
actions of the other phonons which specifically excluded
the one considered, and (b) interactions of identical
phonons.

By comparison with other theories, the results of
which identify closely with those presented here, it
appears that such a treatment is a valid one. However,
the complexity of the loss-mechanism system prevents
damping-constant and frequency-shift expressions de-
duced by this paper from being calculated numerically.
The difficulty is that the density of total-energy states
for the reservoir of harmonic oscillators is not known
even approximately. A model more amenable to
Senitzky’s analysis should have clearly defined energy-
level densities whereby the energy integrals, which here
must remain unsolved, would be immediately evaluated.
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APPENDIX A
Here we prove the identity
Xt Xt,=0.
From Eq. (2.20), it follows that
Xt XY= (| X2 (0) [ s)(s| X2T(0) | ),
where, by Eq. (2.3),

(A1)

X" =3 22" 22" [V(—ky, kij1, ks 72)@x1ir°0ssis+ V(= ki 7, ka1, — ks 72) @iy, g™
+V(=kj, —kij1, ke 72)ax5, %050+ V(—kj, —kij1, =Ko o)t axssn]  (A2)

kike j1j2
=X_x°.

Thus, the matrix element may be evaluated as

Xte=32" 2 [II” Alns,s—ns,.) Y [01,2A(m1,6—2—11,) Alwrs+201)m1,642(01,5— 1) V2V (— k7, ks j1, ki f1)

kike jij2  k3j3

+(1—01,2)A(n1,s— 1—n1,,) A(ng,e—1—ns,) Awrstwit-wo) 1, 219,12V (— k 7, Ky j1, kog2) ]
+[BI,ZA(nl,s_'nl,r>A(wrs)(n1,s+1)V(_kj7 kljly "kljl)
+(1—51,2)A(ﬂ1,s— 1"'”1,7)A(n2,s+1_nZ,r)A(wrs+w1—wZ)nl,sllz(WZ,s"l‘1)112V("kj, kljl, —kzjz)]

+[51,2A (ﬂl.s_ ”1,1‘)A(wrs)nl,sv(_kj; - kljl) kljl)

(1= 81,2) (1, 1= 11,) A(n2,6— 1= 12,) A(wrs— wrF2) (01,6 1) 20, 2V (— k j, —kj, —kzja)]
001,04 001,5771,) Alwrs— 2001) (1,6+1)2(n1,0+2) 2V (= k j, —kaf1, —kujn)
+(1_61,2)A(n1,8+1_nl,r)A(n2,s+1”‘712.7‘)A(wrs_wl—w2)(nl,x+ 1)1/2(7L2,3+1)1/2V(—kj, _kljb —k2]2)]} . (AS)

In the above expression use is made of the identity

81,0=A(li— ko) A(j1— o) ,

and 7.1,, represents the quantum-mechanical expectation value for the number of phonons in the (4=ky, ;) mode

when the reservoir is in the state s with energy E,.

Interchanging # and s a similar expression may be deduced for X*,,.
By inspection, the §-functions enable the product expression to be evaulated:

X Xtr=9 3 307 {[81,0A(@rs201)11,5(n1,0— 1)V (=K, ks, 1, k) V(—kg,—kajr, —kazr)
+2(1—61,2) Alwrstwitwe)na,sne,s V(—kj, kij1, keja) V(—kj, —kij1, —kaj2)]
+[01.2A(wrs) 211,64+ 1)2V(=kyj, —kij1, kij) V—kj7, kij, —kuj1)
+2(1—61,2) A(wrstwi—ws) (1,0) V(=k7, ki1, —ko o) V(—kj, —kij1, ko)
+2(1—81,2) Alwrs—w1Fwg) (1,6 Vg,V (— kg, —kuj, kojo) V(—kj, kiji, —koja)]
+[01,28(wrs—201) (121,s+ 1) (21,+2) V(—~kj, —kuj1, —kij1) V(=kj, kg, kajn)
F2(1— 81,2) Alwre—r— ) (21,5+ 1) (st DV (=K, —Kujn, — o) V(= K5, kujn, kejo) 1} (A4)

kike jij2
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The anharmonic coefficients are given by [Eq. (5.1)]
V (kj kg, ko o) = (2N )~12A(k+ kit ko) (k7 ki1, ke j2)

where ® is a general force constant for the crystal. Since each term in Eq. (A4) contains a product of two é functions
which has the form
Ak+ki+ ko) A(k— ki — ko) ,
it then follows that
XTTSX Tsr‘_‘ 0
for general (k,7).

APPENDIX B
(1) Here we prove the identity [Eq. (2.35)]

XT2(ET;E8)EX2(ET;ES) .
It is defined in Eq. (2.22) that _ L L
]Xf”[ 2=X*rs(XTTs)*=XT,3Xs,.

Xt,, is evaluated in Appendix A;

X, may be evaluated similarly; and their product is obtained in a form analogous to Eq. (A4).
| X ]2=9 3/ 3 {61,248 (@rst201)m1,6(11,s— 1) V(— k7, kaj, kajr) V (kj, — ki1, —kij)
+2(1=61,2) A(wrstwrtwa)n,ene, sV (= kj, kiji, kojo) V(ks, —kij, —kagz)]
+ 81,28 (wre) 211,54+ 1)2V (= kj, — ki1, kejr) V (kj, kij1, —Kkuij1)
+2(1— 81,9) Alwrst-wr—ws)n,o (12,4 1)V (= kj, kujr, —kajo) V(kj, —kijs, kajo)
+2(1—81,2) A(wpe—w1Fws) (11,5 V)12,V (— K7, —k1j1, kajo) V (K7, K1j1, —ksgs2)]
+ 81,24 (w—201) (21,641) 1,6+ 2) V (=K, —kuj1, —kaj)) V (k7 kijpkagn)

kika ji72

+2(1—81,9) A(w—wi—w2) (721,54 1) (n2,s+1) V(—kyj, — k11, —koj2) V (kg kg1, kas) 1} -

It is defined in Eq. (2.22) that
IX”[ 2=X"8(X7‘8)*=anfsr:

and a treatment similar to the above yields an equation
differing only from Eq. (AS) in that #_;, and #n_s,
replace 71, and 7, respectively. In the discussion
following Eq. (2.27), X'*(E,,E,) and X*E,E,) are
defined as averages of | XT,,|? and | X |2 over all states
7 and s lying in small intervals about E, and E;, respec-
tively. This averaging allows the quantum-mechanical,
number-operator expectation values to be replaced by
their thermal averages

N_1,s—> Ne1,sy Mgl > Flg1s.
From the property of thermal averages that
Nk =i,
one immediately obtains
X1(E, Es)=X*(ErEy).
(2) Here we prove the identity

X(E,, E)=X"(E,E,).
Since
| Xt 2= | X2

(A5)

by definition, substitution in Eq. (2.28) yields Eq.
(2.35).

APPENDIX C
Here we prove the commutator [Eq. (3.1)],
Lawi(0),ax" () ]=1.
It is defined in Eq. (3.3) that

t t
S=#r"2exp(— 2Tt) / dty / dls [ijof(h),ijo(tz)]
0 0

XGXP[—“ (ij"}"[d’kj) (l—fl)] exp[— (Fk]‘—-i(;)kj)(l'—tg)] .

As is consistent with the steps following Eq. (2.16) in
the analysis, the commutator may be replaced by its
expectation value which may then be evaluated:

(X0 (02), X i 2(t2) ] — ([ X (1), X (12) 1)

0

=—2Z"" | do'[1—exp(— ' /RT)]
X B(w') sinw’ (fi—12) . (A6)
Defining
E=titb, n1=hL—1l, (AT)
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and
¢ t 1 t £ 2t 2t—¢
fonfo o [
0 0 2LJo —t ¢ —@t—8)
1
=§/d£/dﬂ: (A8)

then Eq. (3.3) may be rewritten as

S=(GhZ)? exp(—ZI‘kjt)/dE/dnf do’
0

X[ 1—exp(— ' /ET) 1B
X exp(Txj¢) exp(iax;n) sinw'n. (A9)

The 7 integrations have the form

+z
/ dn exp(iax;n) sinw'y
—z
'[sin(&k,»—w’ )x

=1

sin(axj+w’)x
o
=in[8(@xj— ") —8(ax;+)],
for x large. That is, when
£(=t;+1) and 2t— E(=2t—t— 1)
are both large, Eq. (A9) becomes [see the approxima-

- ’
Wgj—w

(A10)

0

/ dr exp(— o) (Xt (), X '(0)])
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tion preceding Eq. (2.39)]
S=n(hZ)~* exp(— 2Tz / " gt exp(Tusd)
0
X/w dw'[1—exp(— ' /kT)]
0
X B(@")[8(oxj—w")— (@) ]. (All)

If it is assumed that wy;~wy;, use of Eq. (2.47) enables
Eq. (A11) to be rewritten as

2t
S= T exp(—2Tys) / dt exp(Tyst)
0

(A12)
=1—exp(—2T%jt).

Then, by Eq. (3.2), it is immediately seen that
Laxi(9),axf () ]=1.
APPENDIX D
Here we prove the equation [Eq. (4.1)]

0

dr exp(—iwy;T)
X{[ X (7), Xx,°(0) 1)«

Commencing with Eq. (A6), the following steps yield
Eq. (4.1):

Bii* = Twj—ilg=— 1"

=—2hZ1 / dw' [1—exp(—hw'/kT)]B(w") / d7 exp(—iwy;7) sinw'r
0 (1]

—inz / do [1—exp(— i /RT) 1B(e)[£*(n—o') — E*(wi-a')]

= — W*Buc*.



