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2 (trit+ tr22) 2 (tr12 tr21)

2 (tris trsl) 2 (trtl+ tr22) 0 ~ (4 ib)
0 0 30-33.

Then the conductivity related to experiment is

aBL —BL
0-~= Tet,. BL a;II;L

0 0
where

t'ai= 2 [(trit/cr22) + (t222/ctll)

&'—= (~»)'(~») '"(~.2)
'"

C '= t12cr3(c222) eT/C

S=—3m.

(48a)

(48b)

(48c)

(48d)

(48e)

SUMMARY

The foregoing example illustrates the ease with which
one may write the total conductivity tensor for a Fermi

surface consisting of a set of ellipsoids syrrnnetrically
placed about the direction of the magnetic 6eld. lt
should be clear, however, that even for a set of ellipsoids
having no symmetry with respect to the direction of the
magnetic 6eld one may follow the above recipe to
determine the total conductivity. One need only write
the a. tensors describing the various ellipsoids in a
connnon coordinate system chosen such that the
magnetic 6eld is along the 3 axis. The rest of the
problem is simply to perform the indicated tensor
multiplications and then to add up the individual
conductivities. Corresponding expressions for c", R",
and sr" are Obtained in an ObViOuS manner )See Eq.
(26)j. One may choose to represent the spherical
geometry solutions in an approximation different from
that of the Sondheimer-Wilson theory, ' but the method
of obtaining the ellipsoidal geometry solutions remains
the same.
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The anomalous skin eff'ect for specular electron scattering at the metal surface is studied, permitting the
impinging plane wave to have an arbitrary angle of incidence. It is shown that the expressions for the surface
impedance for a non-normal angle of incidence obtained by Reuter and Sondheimer as a generalization from
their work at normal incidence are correct for S polarization but incorrect for P polarization. The correct
surface impedance for P polarization leads to an additional absorption peak in the frequency range
10 co~(co&co„, where co„ is the free-electron plasma frequency. This additional absorption, particularly
pronounced for long electron lifetimes, is investigated in detail. One important conclusion drawn from this
work is that, in general, optical experiments performed at non-normal angles of incidence cannot be analyzed
in terms of a single complex frequency-dependent dielectric function. In the frequency range of the additional
P absorption, two such dielectric functions are needed, one function for describing P polarization and a dif-
ferent function for describing S polarization.

I. INTRODUCTION

l
'HE theory by which the anomalous skin effect

was incorporated into the general theory of the
optical properties of metals was developed in detail by
Reuter and Sondheimer' and Dingle' for both specular
and diGuse electron scattering at the metal surface.
This work, utilizing the Boltzmann equation, treated
the case of a plane wave incident normally on the metal
surface, although conclusions were drawn concerning
also the eGect of non-normal incidence. A quantum-
mechanical treatment of the anomalous skin eGect at
normal incidence with specular reQection was given by

*Work performed in the Ames Laboratory of the U. S. Atomic
Energy Commission. Contribution No. 2269.

'G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 (1948).'R. B. Dingle, Physica 19, 311 (1953).

Mattis and Bardeen'; their result for the surface im-
pedance was in agreement with that of Reuter and
Sondheimer.

A recent study of the classical optical properties of
an electron gas by the present authors4 indicated that
interesting absorption structure can occur at non-
normal angles of incidence, structure that possesses no
counterpart at normal incidence. This fact, together
with the appearance of the striking results of optical
studies performed by Mayer and his co-workers' on the
alkali metals at large angles of incidence, suggested to
us that a reexamination of the theory of the anomalous

'D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).
4 K. L. Kliewer and R. Fuchs, Phys. Rev. 153, 498 (196/).

H. Mayer and B. Hietel, in Optical Properties and Electronic
Structure of Metats and Alloys, edited by F. Abeles (North-Holland
Publishing Co., Amsterdam, 1966), p. 47, and references cited
therein.
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INCIDENT

FIG. 1. Orientation of the semi-infinite metal showing the
electric Geld of the incident wave for I' polarization, E~, and for
S polarization, R8. The angle of incidence is given by 8.

skin effect at non-norxnal incidence was warranted.
This reexamination begins in the present paper with a
discussion, based upon the Boltzmann equation, of the
case of specular electron reQection.

A careful study of Refs. 1 and 2 suggests that there
remain no unanswered questions for the case of specular
reQection; that is, that the conclusions drawn for non-
normal incidence from the detailed calculation at normal
incidence are valid and complete. However, there are
two points that indicate that this may not be the case.
The Grst of these concerns the technique used by Reuter
and Sondheimer to obtain the surface impedance for
normal incidence. At normal incidence, V E=0 within
the metal, where E is the electric field. Thus there occur
no charge Quctuations within the metal, since the elec-
tric Geld is always parallel to the surface. If, however,
one permits V EWO, then, when there exists an electric-
Geld component perpendicular to the surface, as will be
the case for non-normal incidence with E-polarized
Gelds, there can occur a charge imbalance penetrating
the metal. The interaction of the electrons with this
charge Quctuation would then be an additional absorp-
tion mechanism. As is true for similar situations where
moving charged particles interact with self-generated
longitudinal Gelds, we expect that the energy absorp-
tion in this case would be characterized by the imaginary
part of et(q, to) ', where eg(tl, to) is the nonlocal longi-
tudinal dielectric constant of the system. The Grst point
we wish to make here is that, when generalizing norinal
incidence results to non-normal incidence, one is going
from a case where charge Quctuations do not exist to a
case where they do. Since the mathematical description
of these distinctly different physical situations must
reQect the difference, it would appear that a possibly
important absorption mechanism could be overlooked
or treated incorrectly when making arguments based
upon normal incidence conclusions.

Now, a reader familiar with the effects of an electric
Geld normal to the surface of a metal might at this
point counter with the argument that the screening
distance for a charge imbalance of the sort discussed

above should be the Fermi-Thomas screening distance
hsT given by Xs T=vs/(V3&o„), where ws is the Fermi
velocity and to„ the plasma frequency. Since )tFT&1 A,
this would lead one to conclude that the screening is so
effective that only very minor effects could be associated
with the presence of the charge Quctuations. However,
the utilization of P pT as a measure of the screening length
is valid only for frequencies such that eve(& 1, where 7.

is the effective electron lifetime. For higher frequencies,
ter))1, the longitudinal dielectric constant et(tI, to) is
much more involved than it is in the low-frequency
limit Lsee Eq. (2.47) below), and the simple screening
concept breaks down. The above argument does in-
dicate, though, that any important effects associated
with the presence of the charge fluctuations will occur
for frequencies where cov-»1.

The second, though related, point concerns the struct-
ure of the scattering term in the Boltzmann equation.
When charge Quctuations are present, the relaxation
of the perturbed distribution toward "equilibrium"
will be to the local state of charge imbalance and not
to the uniform distribution. ' Thus a simple relaxation
time approximation for the scattering term will not be
adequate. These effects will be incorporated into the
theory developed below. It should be emphasized that
these points affect the calculation only when non-normal
incidence is involved, and thus our results will reduce to
those of Reuter and Sondheimer' for normal incidence.

The geometry used for the calculation is shown in
Fig. 1. The metal is considered to be semi-inGnite with
the surface an x-y plane at @=0;the positive s direction
is into the metal. When discussing P(S) polarization
the incident electric field will be that denoted Ep(Es)
in Fig. 1.

A detailed solution, using the appropriate Boltzmann
equation, for the surface impedance in the case of I'
polarization is given in Sec. II. This derivation in-
cludes a calculation of the longitudina1 and transverse
dielectric functions valid for the problem at hand. An
alternative treatment of the problem based upon a
general dielectric-constant tensor is given in Sec. III
for both S and P polarization. The results are discussed
in Sec. IV.

Although the emphasis in the present paper is on the
basically free-electron properties of a metal, interband
effects can be included in a phenomenological fashion.
These interband effects wiH be considered in detail in a
following paper. '

II. THEORY: BOLTZMANN-EQUATION
APPROACH

Considering the magnetic permeability to be unity,
Maxwell's equation for the electric Geld E(r) can here

6 J. L. Warren and R. A. Ferreii, Phys. Rev. 117, 1252 (1960).' R. Fuchs and K. L. Kliewer (to be published).
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BE.(s)
V E(r)=I sq.z,(z)+

Bs
(2.2)

be written as'

V'E(r) —V(V. E(r))+(co'/c') (1+ers)E(r)
—
(4m in'/c') J(r), (2.1)

where it has been assumed that the time dependence of
all 6eld and current components is exp( —iojt). J(r) is
the current density, and c is the velocity of light. The
quantity c&z represents the phenomenological inclusion
of interband eGects in the theory; that is, Czar is the
(generally frequency-dependent) interband contribu-
tion to the dielectric response function. For simplicity,
we take e~p to be zero here but will indicate below where
it would reappear.

Since we are now interested in I' polarization, with
the electric Geld in the x-z plane as shown in Fig. 1,
we can write8

where

fk=fp+fi( ) "**

fp pe( j'k y)+ 1]
p=(t, r)-

(2.5)

p is the electronic chemical potential, and the as yet
undetermined function fi is proportional to the field.
If only the lowest-order terms in the Geld are retained,
(2.4) can be written

tion approximation in the scattering term on the right-
hand side of Eq. (2.4). This approximation is not
legitimate in the problem under consideration here for
the reasons discussed in the introduction. Relaxation to
the local distribution is included by writing the Boltz-
rnann equation in the form (2.4).

We now linearize Eq. (2.4) in a fashion consistent
with the exp(i@~—iojt) dependence of the electric field

by writing

where use has been made of the assumption that all Bfi(v,s) v, ) (Bfo)
fields and currents have a spatial dependence of the +&fr( js)=e E*+E* II

form Qs kB„

F(r) = F(s)e'&**.

All Geld and current components appearing below
without argument represent the s-dependent part of
these quantities. Using (2.2), Eq. (2.1) can be written
in component from as

I
+—g wkk fi(v', s), (2.6)

1
&
=—-+i(g.v.—oi)

d'E, o)' dE, 4xior-+—L',—ig, = — J',
c4 c

2.3a and the relaxation time, dependent only upon the energy
~ ~

~&, is deGned by
jj'pps ) dE

&c' l
'

ds

4m.ice-J
C2

(2.3b)
~kk' ~

r ey

To proceed further with these equations requires ex-
pressions for J, and t„which we now obtain from the
Boltzmann equation.

For free electrons and Geld wavelengths long com-
pared to the wavelength of an electron at the Fermi
surface, the Boltzmann equation can here be written':

8 k e———E(r t) Vkfk+v Vr fk Q'Wkk'(fk fk'), (2.4)
Bt k/

where fj, is the one-particle distribution function,
v= hk/m is the electron velocity, m is the electron mass,
and e is the magnitude of the electronic charge. In
addition it has been assumed that the scattering pro-
cesses are elastic so that the scattering transition rates
obey

~ kk' ~ k'k ~

It is obvious that we are not making the simple relaxa-

' Note that at this point the fact that V E/0 is used explicitly.' G. V. Chester, Proc. Phys. Soc. (London) Sl, 938 (1963).

where Ii(v) is an arbitrary function of v and G(s) is
introduced because of the self-consistency requirement
resulting from the presence of the last term of (2.6);
that is, G(s) must be so determined that

&Bfp
G(z) =Z Wk kfi(v', s).

&Bek
(2.8)

Consider now the electrons moving toward the sur-
face, those electrons which have e,&0. The distribu-
tion function fi' for such electrons must approach zero
as s-+~ and thus the corresponding value of F(v),

A formal solution of Eq. (2.6) is

t'Bfol *("
fi(v, s) =e ' ~(v)+el —

I I

—&.(e)+&*(e) le'&e
&Best p kv, )

1 Bfp)
+—

I
G(s)e&'ds, (2.7)

vjj BekJ p
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F~(v) is given by

I

*E,(s)+E.(s) Ie'd'F ()=—el
(Be),~

(2.1S)
3

) z ( ) vga(v, s)& ".
1 t'&fo

vg(8ek
G(s)e~'ds,

~ -t. (2.13.) ~ d (2 13b) -.The symmetry req«
'

hereas (2.13c) w"uations& wsu gested by Ma
of the prior two.

sug
e a consequence o

can
e seen below to b

fo the djstributj. pns, we canow equations fpr t e
pbt ain the cu«e t

from which

(~fol
f, (,,s) =.-&'I(

)I

(vx
dsI —E.+E

kv,

G()ends . (2»

l~e element in velocity pIf pne writes the vol~
'

th ]. integration can bespherical coordU ate,
the fact that"per prmef d immediately u» g

2'2'
(n)zA coszd =—

0cps"q~'
z"

Pz z

s) for electro»e distribution
& 0 depends upon them the surface v, & emoving away from

. Since we are hereinnature of the surrface scattering. in
'

n we have the condition
~ ~'d '

specular reflection, we av

( s 0) ft (viz vz)) vz~ s 01 &&z) &yp &z)

RIll Sp I=—b(,e-e~)
~fol)

(Bool
(2.16)

0

of the zero-order) ~

the g,th derivative
11-Bessel function with respec

npw t}lat

t'
dsI ——E.,+E, Ief "(v z=o) =

I

(Begs
ts immediate evalua-iener y, permi sim

s over themagni u e'td fth lo t.t' n of the integrals ov10
1 must be doneg P

for v, )0 (where fi mus
dd. Th ltt it 1h 'i n de . es

b evaluated in c ps
for the curren co

0

ds E.(s)E"(s—s)

expressions(2.7), this can also be written

ft"(v, z=0) =F"(v,
f zrzN

re (v
'

f F(v) associated with elec- J.(s) =re F"(v) is the value o v
r

' 0. We therefore 6nd
00

trons having v, &0. e

~&a — 0

1
E+E, Ie&'+— —ds G(s)e—&'

o vs

+i ds E,(s)E'(s—s)

ds G(s)E'(z —s) (2.17a)

Dehning now
&z 0

ds G(s)e&' . (2.12) (4 m'e'v')
~.()=i ds E,(s)E(s—s)

E.(s) =E*(-z),
E.(s) = -E,( s), —
G(z) =G(—z),

Kq. (2.12) can be written

(2.13a)

(2.13b)

(2.13c)

i ds E,(s)E'(s s)—
ds G(s)E(z—s), (2.17b)

ds G(s)e&' . (2.14)
&z

e ds E,+E, Ie&'—
(Be)z — tl

+—

ma nitude of the Fermi velocity.w er
dditi 1 k 1s. 2.17 an an aThe kernels in Eqs. ( .

d F. Emde, Tables of Fzzwoszols over Publica-
t . 19451, 4th ed. p. 149.t Inc. New York, Italons,
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iven byneeded below are give y (2 8) becomesc e uationthe self-consistency q

E"(z-s)=
~/2

", , tangiz-si)d8 sin'8 tan8JO g z = ds E (s)E'(z—s)G(z) = ds s

E'(z-s) =

Xe &~' z~, (2.18a)

m/2

—s e~(dg sin'8JO'{q, tan8(z —s))e
2~0 —oo

ds E,(s)E(z s)—

s — . 2.19)ds G(s)E(z s). —

E'(z s)=—

s)s

—g(s—z)ang s—z))e-dg sin'8J0 {q,tan

s) z (2.18b)

s/2 .tang
i
z-s

f )d8 sin8 tan8JO g, a

Xe &' (2.18c)

2~0~ -e)

iven in Eqs. (2.18c),
2 3 and (2.17)-(2.19)(. ),

consistent witare clearly it

s to solveeous equations o
'hJ, i bE (23) t

b (2 1/b). ( 3b) 'th J, gi y
utio an rno

. Th d6rier transforms. u
fi ld componenttransform for the e

s'/2

tangos-sf)d8 sing cos8J0{q,

Xe ~'e-&i'-'i (2.18d)

B(q.)= dz E(z)e-'&*', (2.20a)

m/2

d8 singJO{q, tang(—z—s) je—z(z—z)

w' h
'

verse transform g'iven bywith the invers

g ezzzzE(z) =— dq, B(q, e'&* .
2' co

(2.20b)

E(z s)=—
0

3./2

dg singJo{q tan8 s—z e—

s) z (2.18e)

dg tangJ, {q.tang~—ang z—si)

Similarly, . we write

g(q)=

J(q.)=

dz G(z)e "**,

dz J(z)e-'&",

(2.21)

(2.22)

d for the kernels,an,Xe- i-'i, (2.18f)

'
ns denote deriva-esont eh Bessel functions ep

tives wi rth respect to t e arg
k(q, )= dz E(z)e '"'. (2.23)

and use the

i e elow to becorrect on w"The self-consistency
ll and hencerelatively small, a

at the Fermih
'

e for electrons an laxation time
kernels shou":.n,l.e integr

n el 8 defined inh
'

dconfused wit e
'

not be con

de endent of the Mige e
h

kk'

integration e

d'E~
ds e's —'&"=—g, 8—

ds

dE.(0+)

.13b) indicates the exLs-

th F
The s~~met y req

e of a discontinuity in, = so
dE,/dz Ls gtven bytransform of

z "*'= 2E,(0+)+iqz/zz ~-ds e '~"=—
ds

(2.24b)

r q
' 2.13a), theree ull ementf the syrrLmetry r q
'

Because o
is a

/
''

zthe our'F ier transform
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Using Eqs. (2.24), the Fourier transform of Eq. (2.3a) where the mean free path l is defined by l—=vro. Using
becomes this expression for g, our equations for 8, and 8, become

( (o' dE„(0+)
B,

~

—g,2+—+g,g,B,+ —2 +2ig.E.(0+)
C2 ds

4Ã$
j,. (2.25)

C2

B, —g,'+—+~ k"+
c' 2l[1—(k/2l)]

+Bz gzgz+ilr —k +
2l[1—(k/2i)]

Since

188
vXR= ——

C Bk
(2.26)

2$GO

H„(0+), (2.34a)
C

we have

dE, (0+) 2i(v
+2ig~, (0+)= — a„(0+), (2.27)

and Eq. (2.25) can be written

B g.g,+iz —k'+ +B, —g'+-
2l[1—(k/2l)]

+z —k- =0. (2.34b)
2l[1—(k/2l)]

GO 2ZG) 4m'
gg 8,— —H„O = — j,. 228

C C C2

Writing the Fourier transform J, using Eq. (2.17a) we
have finally, for the Fourier transform of (2.3a),

Writing Eq. (2.34a) as

22'
B,T„+B,T„= H„(0+),

and Eq. (2.34b) as

(2.35a)

B,i

—g, '+—+g,g B, H„(0+)—
C2

Z—B,k"+i h, k'+ gk', (2.29)—
ev

with

we 6nd

B,T„+B.T..=0,

h~ 2ZGl Tzg

H„(0+) c T, T„—T„T„

(2.35b)

(2.36)

K= —16~2iygc2p2~/c2k3
To facilitate comparison with the derivation of Sec. III,

(2 30) we write

In like manner, the Fourier transform of Eq. (2.3b) is
found to be

( ~
t

- . , 1 - and
B.

~

—g.'+—~+g.g.B.= Ir. B,k+iB.k' gk, —(—2.31)

T*.= —g.'+ (~'/c') ~zz,

T = —g 2+(a&2/c2)ezz|

Tzz= Tzz=gzgz+(~ /c ) 6zz ~

(2.37a)

(2.37b)

(2.37c)

e»= (1/g ){«gz +&tgz ), (2.38a)
ie e 1

g = B.k' — B.-k+ —gk.
2Tp 2Tp 2Tp'v

(2.38b)e„=(1/g') {«g, '+ e(g,'),(2.32)

and

while the Fourier transform of the self-consistency Using Eqs. (A1) of Appendix A, one can show that
condition, Eq. (2.19), is given by

The Fourier-transformed kernels are evaluated in
Appendix A.

Equation (2.32) can be solved directly for g, the
result being

~**=(«—~z)g*g./g', (2.38c)

where g is defined by Eq. (A2). The transverse and
longitudinal dielectric constants, t.~ and e~, are given by

e

g = {iB,k' —B,k)
2TO

1——k
2E

(2.33)
ic2z i 1 1

ez ——1+ ——+— 1+ ln
oPg gl' 2 (gl')'

1+igl'

1—ill'
(2.39)
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and

2iroc'al' t' 1+igl'
e~ =1+,, I

gl'+ pi ln
cc(gl')' k 1—igl'

(
1+igi' )

gl+-', i ln l, (2.40)
1 i—gl' 1

with l' defined by Eq. (A3).
Using Eqs. (2.37) and (2.38) in Eq. (2.36), we obtain

the result

and

1 3iQ 1
ci= 1—-

p(p+*» v )pe
1 1+ib'Q q

X lb'Q —»
1—ib'Q &

1 1+ib'Q
l OQ ——ln . (2.47)

1—ib'Q

8~ 2$M gg gs

H„(0+ ) cg' (cc'/c') ei (cps/c') e,—g'
(2.41)

Several comments about these nonlocal dielectric
functions are in order. In the limit Q ~ 0, both reduce
to the "ordinary" dielectric constant

The surface impedance" for I' polarization, Z~', defined
by e(M) = 1—1/Q(Q+iy) . (2.48)

Zr ' I:,(0+)/H——„(0+), e~ is the same function obtained by Reuter and Sond-
heimer and, indeed, if we consider normal incidence,
for which Q, =O, our Eq. (2.44) for the surface im-
pedance is the sam. e as that obtained by Reuter and
Sondheimer for the case of specular reAection. The pres-
ence of the longitudinal dielectric function is a mani-
festation of the fact that a E-polarized wave incident
non-normally on the metal has a Geld component per-
pendicular to the surface, giving rise to charge Quctua-
tions to which the system responds via the longitudinal
dielectric function. These effects, of course, vanish for
normal incidence. If we had made the relaxation-time
approximation in the Boltzmann equation or, equival-
ently considered G(s) in Eq. (2.7) to be zero, the result
(2.44) would have the same structure but with e~ re-
placed by e, where

is then given by the inverse Fourier transform of (2.41)
evaluated at @=0, or

1 22CO "diaz g'
Z~' ——— + . (2.42)

2s c g (cps/cs) e/ (cps/cs) eg
—gs

Transforming to a set of dimensionless variables deGned
by

(2.43a)Q=cc/co»

Q.=g*c/~. ,

Qg = ggc/M9& 1

'y = 1/co~To 1

b = (s/c)(1/v),
b'= b/(1 iQ/7), —

(2.43b)

(2.43c)
and

(2.43d)

(2.43e)

(2.43f)
1 3

O'Q ——ln
Q(Q+iy) (O'Q)' 2i

1+ib'Q

1—ib'Q—
(2.49)

where ~r = (4s.lVe'/m) '" is the free-electron plasma fre-
quency (X is the electron density), Eq. (2.42) becomes Finally, it should be noted that had we retained. the

phenomenological term era in Eq. (2.1) representing
interband effects, it would simply be added to the ex-
pressions for the dielectric function; that is, the leading"1"in Eqs. (2.39), (2.40), and (2.46)-(2.49) would be
replaced by (1+e»).

An expression for Za', the surface impedance for S
polarization could clearly be determined in much the
same manner as that used above to calculate Z~'. How-
ever, in Sec. III a more adroit scheme is presented for
the determination of the surface impedance and a dis-
cussion of Z~' will be deferred to that point.

2iQ "dQ Q' Q'
Z~'= +, (2.44)

o Q' - Q«sQ« —Q'-
where

(2.45)2 — 2 2

and we have used the fact that the integrand is even
in Q,. In terms of the variables of Eqs. (2.43), the
dielectric constants are

III. THEORY: DIELECTRIC-CONSTANT
APPROACH

(2.46)

1 3
6g= 1

Q(Q+iy) 2 (O'Q)'

f(b'Q)'+1) 1+ib'Q
X — ln O'Q-

2i 1 ib'Q—
"The surface impedance is defined by Zr =(4m/c)(H„/H„).

However, in the case of optical properties the important quan-
tity is (c/kr)Zz. Thus, to avoid useless repetition of factors
c (/)4, swe call H /H„ the surface impedance but denote it by

Z~' to remind the reader that the de6nition is not the normal
one. A similar convention will be used below for S polarization
with Zs' =— Lp (0+)/H~(0+). —

In the calculation of the surface impedance at non-
normal incidence presented in Sec. II, the Boltzmann
equation was used to solve for the current J in terms of
the field E in the presence of a boundary. An alternative
procedure will be used in this section to derive the sqr-
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Similarly, the Fourier transform of Eq. (3.2b) is

g—,'8,+g,g,8 + (co'/c') 5),=0 . (3.5)

and 8 are related by the dielectric function

«e(q ~):

FIG. 2. The original and rotated coordinate systems
for obtaining the dielectric tensor.

n;=g «;;8;. (3.6)

face impedance for both P and S polarizations. The
relationship between J and E for the metal is expressed
at the outset in terms of a nonlocal dielectric-response
function, de6ned for an in6nite medium. The eGect of
the metal surface is then taken into account by solving
Maxwell's equations using appropriate boundary condi-
tions. It is still necssary to 6nd the dielectric function
from the Boltzmann equation or by any other method
desired; however, this can now be done for an infinite
medium rather than a 6nite medium, significantly
reducing the mathematical complexity.

P Polarization

S, =e)8. (3.7a)

X), =e)b, . (3.7b)

Thus the dielectric function is a diagonal tensor in the
x', s' coordinate system:

(., Ol

0 «(i
(3.8)

To express e;; in terms of e& and e~, the transverse and
longitudinal dielectric functions, we introduce a co-
ordinate system x', z', rotated by the angle p about the

y axis as shown in Fig. 2. Placing the s axis along the
direction of q, we have

(3.9)
where

e' can be expressed in the x, s coordinate system by
We begin with Maxwell's equations in the form (2.3), mak;ng the tra„sformat, on

and include the current density J in a displacement field
D by the relation e=S '~ S,

D =E+ (4s i/««) J.
Equations (2.3) then become

(3 1)
(cos p —sin p)s=l
(sin y cos pl

(3.10)

d'E~ dE, cv'

ig +—D=O—
s' ps c'

dEg co

g'E. ig— + —D.=0. —
dS C

(3.2a) with siny=g, /g, cosy=g, /g, and g= (g,'+g,2)'". The
result is that e„, e„, e„, and e, are as given by Eqs.
(2.38).

Using the relations S,= «„8,+«„8, and S,= «„8,
(3.2b) +«„8„wecan solve Eqs. (3.4) and (3.5) for 8,/H„(0+).

We 6nd

These equations are valid for s&0, that is, inside the
metal. We now imagine that the metal 6lls all space,
extending the domain of s from —~ to +~. The fact
that electrons are reflected specularly is taken into
account by imposing the syinmetry requirements E,(s)
=Z.(—s), Z, (s) = —Z.(—s), D.(s) =D.(—s), and D.(s)
= —D,(—s), as in Eqs. (2.13). The Fourier transform
of Eq. (3.2a) is

«0' dE, (0+)
g.'8 +g@.8.+—S.= 2— 2ig~. (0—+), (3.3)

C dS

where we have used Eq. (2.20a) as the definition of the
transform from E(s) to 8(g,) and from D(s) to $(g,).
The terms on the right-hand side of Eq. (3.3) originate
from discontinuities in dE,/ds and E, at s=O. Using
Eq. (2.27), Eq. (3.3) can be written

—g,'8 +g,g,8,+(&u'/c')S = (2ico/c)H„(0+). (3.4)

8 2i(o

H, (0+) c T„T„—T„T„)
(3.11)

GO tg CO—1 g, +—«tg
kc' g' c'

(3.13a)

GO GO

Tgg= 1 gz + «lgs
C2 g2 C2

(3.13b)

GO

(«i—«,)+1 g,g, . (3.13c)
-C g

where
T; =( «'«c/')«; g'8;+g—,g (3.12)

Equations (3.11) and (3.12) are identical to Eqs. (2.36)
and (2.37). If the expressions (2.38) for «;; are inserted
into (3.12), we find
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Thus Eq. (3.11) finally becomes

Mo gg g
2

H„(0+) eg' (po'/e') et (co'/es) e,—g'
(3.14)

(i—to/e)H, Eq. (3.18) follows immediately. Since the
electric Geld is perpendicular to q for 5 polarization,

S„=et8„. (3.19)

Using Eq. (3.19), we solve Eq. (3.18) for h„/H, (0+):
The inverse Fourier transform of Eq. (3.14) evaluated
at @=0gives

E (0+) 2iQ "dQ. Q
' Q.'

Zt '= = + (3.15)
H„(0+) sr p Q' 0'et 0 e Q

in terms of the dimensionless variables defined in
Eqs. (2.43). Equation (3.15) is the same as Eq. (2.44);
however, e& and ~& are as yet unspecified. This result
therefore has a general validity independent of the
particular model used for obtaining && and e&. The only
requirement is that et(ti, to) and et(tbto) exist." In the
present context, the appropriate value of e~ is that of
Eq. (2.46), whereas ei is correctly given by (2.47). How-

ever, were the relaxation to the perturbed state not
to be considered, et would be given by e„, Eq. (2.49)."

S Polarization

The only nonvanishing fields are now E„,B„and II,.
The y component of Eq. (3.2) is

H.(0+)

21'

e (to'/e')e —g'
(3.20)

E„(0+) 2sQ " dQ,
~S =

H, (0+) pr p 0'et —Q'
(3.21)

where the dimensionless variables defined in Eqs. (2.43)
have again been introduced. The appropriate expression
for et is that of Eq. (2.46).

Re6ectance

For completeness, we shall present expressions for the
reQectance in terms of the surface impedance. The fields

associated with the incident and reflected waves for I'
polarization are of the following form:

=gre'Lsze+gne Ikgz (3.22a)

The inverse Fourier transform of Eq. (3.20) evalua«d
at @=0gives

—V.'Ew+ —Do =o, (3.16)
E,= (k„/k, )( gre's *+atte—"**), (3.22b)

H„= —(co/k~)(are'""+gite 's~*), (3.22c)

where Eq. (3.1) has again been used to introduce the
displacement D. The Fourier transform of Eq. (3.16) is

co' dE„(0+)—(V.'+V.')@o+—&v =2
C

(3.17)

oi

GO 21M—q'8„+—5)„=— H,(0+) .
C C

(3.18)

In arriving at Eq. (3.17), we have taken E„(s)=E„(—s)
so that the discontinuity in dE„/ds gives the term on
the right. From the Maxwell equation (2.26) or dE„/ds

"Equations (3.15) and (3.21) below are applicable rigorously
only to a microscopically uniform system such as a free-electron
gas. Actual metals and insulators are microscopically nonuniform
due to the presence of a periodic potential and can be characterized
only by more general dielectric functions of the form (qe+6,
g+6', co), where 6 and 6' are reciprocal lattice vectors. See L.
J.Sham and J.M. Ziman, Solid State Phys. 15, 221 (I963).

'4Derivations of expressions for e~(q,co), ci(q,cv), and ~ (q,cy),
using the Boltzmann equation for a free-electron gas of infinite
extent, have been presented by several authors. For example,
Warren and Ferrell (Ref. 6) give expressions for the complex con-
ductivities o& and ot )their Eqs. (20) and {24)g, from which the
dielectric constants e~ and et can be obtained using e=1+4oto/ca.
In C. Kittel, Qstarttlsrt Theory of Sollfs John Wiley gr Sons, Inc. ,
New York, 1963), Chap. 17, o& is given by Eq. (23), o by Eq.
(22), while o', dined by Eq. (33), is the longitudinal conductivity
~g if c, is written as co/q. Therefore, the methods of Sec. II need
not be employed to determine the dielectric constants.

where az and ag are unknown amplitudes for the in-
cident and reflected waves, k.= (po/c) cos8 and k,= (co/e)

)&sin8, 8 being the angle of incidence as indicated in
Fig. 1. These equations hoM in the vacuum, for @&0.
The Maxwell equations ik+,+dE,/dh=0 and ik~„

i(to/e)E, hav—e been used to obtain Eqs. (3.22b)
and (3.22c) from Eq. (3.22a). Solving Eqs. (3.22b) and

(3.22c) for the amplitude ratio air/ar in terms of E,(D—)/
H„(0—), we find the expression for the reflectance,

att ' cos8—E.(0—)/H„(0 —) '
(3 23)

gr cos8+E,(0—)/H„(0 —)

From the continuity of E, and H„, E,(0—)/H„(0 —)
=E,(0+)/H„(0+) =Zt '. Therefore,

cos8—Z~
Rg=

cos8+Zp
(3.24)

Since the x component of the wave vector is the same
inside and outside the material, q, =k, =(to/e) sin8 or

Q,= 0 sin8, where Q =g,c/co„and 0=co/to„are the
dimensionless quantities appearing in Eq. (3.15).

The fields associated with the incident and reRected
waves for 5 polarization are

(3.25a)

(3.25b)

E grelkgz+ age tkzz

II =(ck /to)( ae""+a e '"*)— —
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FIG. 3. Classical (dashed
lines) and anomalous (solid
lines) calculations of the fre-
quency dependence of the
absorptance for 8=0, with
y=10 'and 10 '. For y=10 ',
the classical and anomalous
values cannot be distinguished
with this scale.
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3x 10

I
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e(M) COS8 (e(M) Sln 8)
(3.30)g p(~&)—

e(ol) cos8+(e(ol) —sin'8)'I'
all ' 1+1E„(0—)/H (0—)jcos8 '

Rs= —= (3.26)
ar 1—

1 E„(0—)/H, (0—)]cos8 (e(co)—sin'8) 'Is —cos8 '
~s'"'=

(e(ol) —Sill'8)'~'+ COS8
(3.31)or

1—Zq' cos8 '
(3.27)88-

1+Zs' cos8 Since we are here considering free-electron effects, the
dielectric constant e(&v) for the classical calculation is
that given by Eq. (2.48) .

In all cases the absorptance 2 is given by A = j.—E,
where R is the appropriate reQectance.

The general expressions (3.15) and (3.21) for the
surface impedances Z~' and Z~' can be evaluated in the
classical limit (that is, neglecting nonlocal eBects) by
setting e,=e&=e(ol), a function only of the frequency.
The integration over Q, can then be done exactly and
we 6nd

IV. RESULTS AND DISCUSSION

Since we are herein investigating effects associated
with the essentially free electrons, we consider Czar to be
zero. Thus there are in the present formalism two
quantities characteristic of the metal under considera-
tion: one is the Fermi velocity and the other is the elec-
tron lifetime. Since the electron lifetime will depend on

Zl l"l = (e(ol) —sin'8)'~'/e(ol) (3.2S)

ZB"'&= (e(ol) —Sin'8) 'I' (3.29)

Therefore, the classical expressions for the reQectance

where the Maxwell equation H, =i(c/~)dE„/ds has are
been used to obtain Eq. (3.25b) from (3.25a). H, is also
present, but need not be considered. The reQectance is

Io

3x I 0

3x IO

Fra. 4. Classical (dashed
lines) and anomalous (solid
lines) calculations of the f're-

quency dependence of the
absorptance for 8=0, with
y=10 4 and 10 '.
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lo

Fro. S. Classical (dashed
lines) and anomalous (solid
lines) calculations of the fre-
quency dependence of the ab-
sorptance for 8=75, S pol-
arization, and y = 10 ' and
10 '. For y=10 ', the classical
and anomalous values cannot
be distinguished with this
scale.

3x 10

IO

3xlO
Z=IO

y=lO'

IO
IO 3x I 0

l

IO

l

-3
3xl0

l

-2
IO

Q

l

-2
3x IO

I

IO

l

-1
$ x lo IO

2iQ " dQ,
ZN )

s Q'e( —Q,'
(4.1)

with e& given by (2.46) with Q= Q, . Shown also are the

the specific conditions involved in a given experiment,
we will illustrate its effect in the theory by considering
a range of y" from 10 ' (short lifetime) to 10 ' (long
lifetime). We have selected for illustration the value
ss =0.85 X10 cm/sec characteristic of potassium. "

To indicate the type of absorptance structure as-
sociated with the anomalous skin effect at normal in-
cidence, we show in Figs. 3 and 4 the absorptance as
obtained from the normal-incidence limit of either Eq.
(3.24) or (3.27). In this case Z~' and Zs' are both given
by the normal-incidence limit, or

classical values of the absorptance. Clearly evident in
these figures is the peak due to the anomalous skin
effect for 0 10 '. The difference between the anomalous
and the classical calculations is very small for p= 10 ',
but becomes large as y decreases to 10 '. It should be
noted that essentially all of the anomalous effects
occur for 0&0.1.

A comparison of the anomalous and classical calcula-
tions of the absorptance for an angle of incidence of
75' and S polarization is shown in Figs. 5 and 6. These
curves are very similar to those for normal incidence,
the anomalous skin effect giving rise to a marked peak
for 0 10 ' and low y. The only significant difference
for 0=75' is the absence of the abrupt rise in absorp-
tance near Q=1. This abrupt rise occurs for Q 1/cos8
or near 0 1 for 0=0 and near 0 3.9 for 9=75'. Thus

3xlo

IO

Fro. 6. Classical (dashed
lines) and anomalous (solid
lines) calculations of the fre- A

quency dependence of the
absorptance for 8= 75', S
polarization, and y=10 4 and
10 5.
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"Note that y = (co„ra) '. See Eq. (2.43).
C. Kittel, Introdmctioe to Solid State Physics (John Wiley 8z Sons, Inc. , New York, 1966), 3rd ed. , p. 208. This free-electron

value is valid here since the eGective electron mass is equal to the actual electron mass for potassium. See Ref. 5.
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Fio. 7. Classical (dashed
lines) and anomalous (solid
lines) calculations of the fre-
quency dependence of the
absorptance for g= 75', P
polarization, and y= 10~ and
10—3
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in the curves for 75' this rise is removed to the right
and oB the scale. Note once again that essentially all
anomalous effects occur for. 0&0.1.

The anomalous and classical absorptance calcula-
tions for E polarization and t)= 75' are shown in Figs. 7
and 8. Here, one sees the "usual" anomalous peak.
near 0~10 ' but in addition there exists an important
absorption peak in the range O.i &0&1.0. The existence
of this latter peak is, as shown in Fig. 8, not predicted
by the non-normal-incidence generalization given by
Reuter and Sondheimer, where, as discussed above, con-

clusions were drawn based upon a situation where

& E=O.'r This fact, together with the results shown
in Figs. 5 and 6 indicating no analogous peak for 5
polarization, indicates that this additional absorption
is due to the presence of charge fluctuations within the
metal, an eGect which we have allowed for in the present
calculation. "

To further assess the nature and consequences of this
additional absorption, we have done the following cal-
culation. Much optical data in the "free-electron" regime
is anajysed using the classical dielectric constant of
Eq. (2.48). Hence it would be of interest to know the
effective value of y needed in a classical calculation to

3 xlo

IO

3xlo

IO-4—

3xlo

Fro. 8. Classical (dashed
lines) and anomalous (solid
lines) calculations of the fre-
quency dependence of the
absorptance for 0=75', P
polarization, and y=10 4 and
10 ~. The dotted line shows
the absorptance obtained for
y =10 4 using the surface
impedance given by Reuter
and Sondheimer (see Appendix
3). The dotted line coincides
with the solid line (the
anomalous absorptance} at low
frequencies and with the dashed
line (the classical absorptance)
at high frequencies.
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IO
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"In Appendix 3 is presented a discussion of the Reuter and Sondheimer conclusions for non-normal incidence.' If ~„rather than e& is used in Eq. (3.15) when evaluating the surface impedance for P polarization, the absorption changes by
&0.1'%%u&j. Hence no further mention of e„will be made.
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Fn. 9. The frequency depend-
ence of y, ff/y for 8=0.
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reproduce the absorptance curves of Figs. 3—8. These
eft'ective values of p were determined by using e from
Eq. (2.48) in Eqs. (3.30) and (3.31) and adjusting p
until the reflectance agreed with that obtained from
the anomalous calculations.

The frequency dependence of 7,« thereby determined
divided by the ized p of the anomalous calculation is
shown in Fig. 9 for 8=0. If there were no anomalous
eGects, all curves would be independent of 0, and

ff/y would have the value 1.0. For 7 = 10—', there
occurs only a small increase above 1.0 for 0 10'. How-
ever, with decreasing y the significant additional absorp-
tion associated with the anomalous skin effect produces
a marked peak for 0 10 '. For 5 polarization and an
arbitrary value of the angle of incidence, the values of

y, rf/y are identical to those for 8=0 indicating that
ff is a meaningful quantity.
Using the absorptance values of Figs. 2 and 8, curves

of y, fr/y for I' polarization have been calculated and

are shown in Fig. 10. When 0&10—', the values of

y, rq/y are again identical to those for 5 polarization and

arbitrary 8. However, the higher-frequency absorption
structure for P polarization gives rise to signiicant
peaks in y,«near 0 0.4 when y&10 '. For y=10-',
there is only a small increase above 1.0, the maximum
value of y, fq/y being 1.02 for 0 0.40. It is interesting
to note that if we write y,rr=y+hy, the maximum
value of dp in the frequency region above 0.1 for
8= 25' is roughly 2&(10 ', independent of the value of

Qo

IOO

lo—

FIG. 10. The frequency de-
pendence of y,g~/y for 8=75'
and P polarization.
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1+sin'8/Zs'~"&]'
(4 2)

and indicate that e(co) is given by

,(„) LZ I(ci)Z 1(ciij-i (4.3)
'9%e have only considered 8=75' above. Other angles are

mentioned below.
"This statement does not imply that such a dielectric constant

determined by the p, ff analysis can characterize the system com-
pletely. For when there exists an anomalous skin effect, even if
y, ff can be chosen so as to reproduce the correct reflectance, the
phase of the reQected wave would not, in general, be given cor-
rectly by the classical analysis.

Once again we point out that the results given above
are for potassium. Since potassium has a small Fermi
velocity compared with most metals, all of the anomal-
ous structure will be greater for most other materials
than that discussed above. For example, the Fermi velo-
city for gold is 1.34&(10'cm/sec and since Ay, as defined
in the previous paragraph, scales approximately linearly
with the Fermi velocity, hp for gold has a maximum
value of roughly 3.2&&10 4 for 0= /5', the maximum
occuring when 0 0.4.

The most striking conclusion from the results dis-
cussed above is that, for the case o$ non-normal in-
cidence, "the assumptioe that there exists a single, corri,

ptex, freguency depend-dertt dkelectric fuectiort e(oi) which
describes the metal classically is AzMHd. The fact that

ff for P polarization differs from that for S polariza-
tion when 10 '&0&1 means that two different fre-
quency-dependent dielectric constants are needed to
characterize the reflectance of the system, one for P
and one for S polarization. Thus analyzing optical
data in terms of a single dielectric constant in this fre-
quency range gives results which have questionable
meaning.

It should, however, be noted that significant dif-
ferences in the two dielectric functions occur only when
y& 10 '. When y = 10 ', the differences in the imaginary
parts of the dielectric functions as determined by the

ff analysis can be as large as 20%, while the difference
for y = 10 ' is less than 2%, these numbers being for the
case of potassium with 0= 75'. Also we saw above that
for 0&10 ' the values of y, ~g were independent of angle
or polarization. Thus if the frequency is suKciently low
or p is sufEciently large, there does exist a unique fre-
quency-dependent dielectric function by which the
reQectance of the system can be characterized. '0

One might object that analyzing the absorption data
in terms of y,~f is too rigid a requirement; that is, that
there may yet be an alternative dielectric function
e(&v), valid for the system, having a form differing sig-
nificantly from that of (2.48). That such is not, in
general, the case will be demonstrated now. If there
exists a dielectric function e(co), the classical values of
the surface impedance ZP'("& and Zq'("& are given by
Eqs. (3.28) and (3.29). These equations imply a
particular relationship between the surface impedances,

Z I (cl)

If, conversely, the true surface impedances ZP' and
Zs', as calculated by Eqs. (3.15) and (3.21), were to
obey the relationship

Zp
1+sin'8LZs'j'

(4.4)

in analogy to (4.2), a unique dielectric function could
be found. from

,(oi) = LZ, Zs $-i, (4.5)

as in Eq. (4.3). This dielectric function would then
characterize the metal completely, giving not only the
correct reQectances for both S and P polarization but
alamo the correct phases of the reQected waves. It will
be shown in Appendix 3 that ZP ' and Z8' do not, in
general, obey Eq. (4.4); this means that a unique e(&o)

does not exist. It is important to note that the relation-
ship (4.4) becomes invalid precisely where the new
absorption peak for P polarization associated with
charge Auctuations appears. Two different dielectric
functions ei (o~) and es(co), related to the actual surface
impedances Zp' and Zs' by equations of the form (3.28)
and (3.29), would therefore be needed to characterize
the metal. However, if y&10 ' or 0 is in the usual
anomalous region (0&10 '), Eq. (4.4) is satisfied and
a unique e(or) exists.

It is also of interest to examine one of the standard
methods of analysis of optical data at non-normal angles
of incidence, the method used by Mayer and co-
workers. ' In this method, a plane polarized beam of
light is incident at some angle 0 (75' is much used) with
the beam polarized at an angle of 45' with respect to
the plane defined by the incident direction and the
norm, al to the metal surface, i.e., midway between P
and 5 polarization. Using a system of polarizers the
complex reQectance amplitudes are then measured for
both S and P polarization. Assuming that a single com-
plex dielectric function then exists, it is obtained from
the expression"

1—s ' sin40
esP(Q) —e sP+ie sP +sin't) (4.6)

1+s cos't)

~' D. J. Price, Proc. Phys. Soc. (London) 58, 704 (i946).

where s=ri*/rs, rs(rs) being the complex reflection
amplitude for E,(S) polarization. There is clearly no
particular form implied for the dielectric constant in
this type of analysis.

We shall show below that if the present theory is
used to calculate the ratio s= rt/rs, which is then in-
serted into Eq. (4.6) to obtain e the value of e

found in this way does not yield the actual reflectance
(or absorptance) for either 5 or I' polarization. That is,
if es~ is used in Eqs. (3.30) and (3.31) to recalculate
&he absorptance, the result in the range 10 '&0&1 is
too large for P polarization and much too large for S
polarization when y&10 '. Thus, even though ~ has
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been constructed so as to give the correct ratio rp/rs
or Ifp/Rs, the separate values of Rp and Es (or 2 p
and 2 s) are incorrect. Only when y& 10 ' or 1&Q& 10-'
d.oes the use of Eq. (4.6) become reasonable.

The conclusions of the preceding paragraph can be
arrived at by considering the imaginary part of the
dielectric constant, e&, or the associated conductivity,
0 8p, related to &gap by

Ioo—

30—

IO

j I

V=IO 5

~ sp= (fo/4fr) essp. (4 7)

The conductivity 0 qp can be compared with r,ff which
is found in the following Inanner: Taking e(fo) to be
given by (2.48)& y is replaced by y,«. The associated
dielectric constant is

e"'(Q) = et'"(Q)+iese'f(Q) = 1 1/—Q(Q+iy. ff), (4.8)

and the conductivity is

O
b

I

b

03—

OI

GO M&

0 eff= &2

4fr 4fr Q'+y, ffs
(4.9)

0,03—'.

with fo„ the plasma frequency defined in (2.43)."The
two values of O-,ff calculated in this way, one for S and
the other the P polarization, are those values which will
yield the correct absorption classically. In comparing
0-qp and o,ff, it is convenient to plot the quantities
(fr sp frol)/fr I and (o' ff o'oI)/o' I where

Ofol ———-- l''.
'

OI oa
f I I . l l

0.3 0 4 OI5 0 6 0.7 0,8
Q

Flo. 11. Values of (a,ff—o,l)/o, l for f polarization are given
by the solid lines. Values of (0sP 001)/a. I a're giv'en by'the dashed
lines. (fr, ff o,l)/o, l for 8—polarization and p =10 ' is given by the
dotted line.

Gdy

0'01=
4fr Q'+y'

The solid lines in Fig. 11 are the values of (o,ff fral)/001
for P polarization. The only curve shown for 5 polariza-
tion is the dotted line for y= 10 '. For higher values of
y, the values of (o,ff—o,l)/o, l for S polarization are
approxixnately two orders of magnitude below the
values for P polarization at 0 0.1 and are decreasing
rapidly as Q increases. The values of (o.sp —o,l)/o. l are
given by the dashed lines in Fig. 11.This figure shows
that the value of ~ p or the conductivity 0 gp derived
from Eqs. (4.6) and (4.7) cannot characterize the
system completely. While this type of analysis yields
values of the conductivity which have the right form
but the wrong magnitude for P polarization, the result-
ant values of the conductivity are meaningless for S
polarization. Thus we would conclude that since 0-~p
is somewhat greater than a-,ff for P polarization and
much greater than ~,ff for S polarization, the absorp-
tance calculated from esp or o sp would be too large
for P polarization and much too large for S polariza-
tion. This indicates again that two distinct frequency-
dielectric functions are needed in general, one each for
P and S polarization.

N'othing has been said above concerning the values
for e&~P. In the frequency range where two dielectric
functions are needed the values of ~~ p and ~~"' are

"For potassium, cv„=6.61&&10"sec '. See Ref. 5.

essentially the same. Thus the comparison of 0-»
and e,« in Fig. 11, involving only the imaginary parts
of the dielectric constants, is justified.

To this point, we have discussed only the cases of
8=0 and e= /5'. To indicate the angular dependence of
the anomalous P absorption in the range 0.1&0&1,we
have shown in Fig. 12 curves of the P absorptance
minus the dassical absorptance for y= 10 4 and various
values of 0. From these curves it is clear that, as ex-
pected, the anomalous effect decreases as 8 decreases,
but important effects occur still for 0= 30'. The decrease
from 8=75' to 0=85' is really a consequence of the
quantity plotted. For if (A —A, I)/A, I were plotted, the
85' curve would peak above the others.

Much has been said above concerning the point that,
in the frequency range 10 '+ 0+ 1, two dielectric func-
tions are needed to characterize the system for non-
normal angles of incidence. Yet we have only considered
the case of specular reRection of the electrons at the
surface. Is it not possible that if the electron scattering
is disuse rather than specular these particular anoma-
lous effects will vanish. Possibly, yes, but, in our estima-
tion, highly unlikely. Indeed, an unpublished calcula-
tion by the present authors suggests that these effects
might well be considerably enhanced. This calculation
involved a generalization of the Holstein model" to
include a Rnite lifetime and an arbitrary angle of in-

II T. Holstein, Phys. Rev. 88, 1427 (1952).
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Fxo. I2. The angular dependence of the anomalous absorptance
A minus the classical absorptance A, ~ for y= 10 4.

cidence. Now the principle assumption of Holstein was
that in the high-frequency range of interest here
(0 0.1), the electric field inside the metal can be ap-
proximated by its classical value. This assumption
eliminates any charge Quctuations in the metal since
the classical field has V E=O. Thus we expect, and
6nd, no absorption peaks in this frequency range for
either polarization. However, making an analysis as
discussed above, we do obtain a value of y, ff —7+1,1
)&10 ' for both P and S polarization at 8=75' when
the metal under consideration is potassium. This, then,
is the background value from which any anomalous
peaks associated with the charge Quctuation must
emerge. Since the background (the value of y,ff for 5
polarization) in the case of specular reflection cor-
responds to p.«=p, we see immediately that the
absorptance will be significantly higher for the case of
diffuse scattering. If the peaks associated with the
charge Quctuation scale even roughly as for specular
reQection, the anomalous effect in this frequency range
for diffuse reQection would be considerably larger than
for specular reQection. A calculation for the case of
diffuse reQection has been completed; the results will

be reported elsewhere.
Detailed comments concerning experimental results

will be deferred until the analysis for diffuse reQection
is presented. However, several comments will be made
concerning the experiments of Mayer and co-workers'
on K and Na and those of Hodgson" on Na, work done
at e= 75' and analyzed via Eq. (4.6). The excess absorp-
tion (absorption above the classical or Drude value)
obtained in the 'present calculation is lower than that
found by these workers at frequencies below the inter-

"J.N. Hodgson, J. Phys. Chem. Solids 24, 1213 (1963).

band edge. Based strictly upon the results for specular
reQection we would then say that the results of Hodgson
and of Mayer and co-workers for Na at temperatures
of 100' and 20'C and for K at 85' and 20'C, even though
based upon an equation which in principle is invalid,
should be approximately valid since they correspond
to p 3)(10 '. However, the results of Mayer and co-
workers for K and Na at a temperature of —183'C are
suspect since for this case y 10 '. In particular, the
apparent dip of the conductivity below the classical
value, about which much has been said, " cannot be
considered significant at this point. It is quite possible
that if these exPeriments were redone at another angle of
incidence, the results would be significantly diferent.

We would like to stress that if optical experiments in
the frequency range 10 '& 0&1 are to be done at non-
normal angles of incidence, the experimenter should
present the reQectance data for 5 and P polarization
separately. In particular, analyses based upon equations
like (4.6) should be avoided for pure metals except
perhaps in the region of interband absorption, where the
effective values of p are sufficiently high that no in-
consistencies can occur.

Finally, we wish to make several comments concern-
ing the validity of the present calculation. The work of
Chester' indicates that the Boltzmann equation used in
Sec. II is valid (i) when the wave vector k is small com-
pared to the Fermi wave vector kf and (ii) when the
frequency of is small compared to /ehf, e+ being the
Fermi energy. The first condition is apparently well-
satished in the present calculation since, although the
surface impedance integrals over Q, run from zero to
infinity, less than 0.2% of the contribution to these
integrals comes from Q,)kf;/k„, where ks is the plasma
wave vector, and less than 0.1% from Q.&2ks/k„.
Thus, any changes in the dielectric functions neces-
sitated by the fact that the wave vector is not small
compared to k& should produce only a minor effect.
However, if there occurs very pronounced high-wave-
vector structure in the "correct" dielectric functions
which our present expressions do not possess, the sur-
face impedances calculated herein could be in error.
Such a possibility is being investigated.

Much of the "new" absorptance for P polarization
occurs in a frequency range where condition (ii) above
is not satisfied, i.e., ef ef/h. This does not appear to
be a problem, though, as can be seen from the following
argument. The derivation of Sec. III, which is not de-
pendent upon the Boltzmann equation, indicates that
the form of the surface impedances as obtained in
Sec. II is valid, and thus any difhculty with the present
calculation must be associated with the expressions for
ef and ef (or e ). But, when r~ao, our expressions
for the dielectric functions are the long-wavelength
-limit of the Lindhard dielectric functions, and thus in-
volve a wave-vector limitation but not a frequency

~ J. C. Phillips, Solid State Phys. 18, 56 (1966). See p. 137.



ANOMALOUS SKIN EFFECT AND OPTICAL EXPERIMENTS 623

limitation. The wave-vector limitation has been dis-
cussed above and does not appear to be a problem. Thus
we conclude that the present results are valid.

A 6nal bit of evidence concerning the validity of the
use of the present dielectric functions is the insensitivity
of the results to the replacexnent of e& by e„.These func-
tions are quite different in structure but the replacement
of one by the other produces a negligible difference in
the surface impedances (see Ref. 18).

1Vote added in proof It h. as been pointed out to us by
Dr. R. H. Ritchie that a terse derivation of the expres-
sions (3.15) and (3.21) for the surface impedances at
non-normal angles of incidence appears in V. P. Silin
and E. P. Fetisov, Zh. Eksperim. i Teor. Fiz. 41, 159
(1961) LEnglish transl. : Soviet Phys. —JETP 14, 115
(1962)j. These authors, however, were concerned pri-
Inarily with the application of these expressions to
classical and relativistic plasmas and do not indicate
that they imply the existence of an additional absorp-
tion peak.

It should be noted, in addition, that J. G. Collins

I Appl. Sci. Res. Sec. 8 7, 1 (1958)) showed that two
frequency-dependent dielectric functions are needed to
characterize optical experiments at non-normal angles
of incidence.
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APPENDIX A
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We are here interested in evaluating the I'ourier
transforms of the kernels of Eq. (2.18). Consider, as
an example, the transform of K(s—s) given by Eq.
(2.jge). We have
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APPENDIX B

The integral on s can be done using a table of Laplace

"See, for example, G. E. Robert and H. Kaufman, Table of
Laplace Transforms (W. B.Saunders Co., Philadelphia, 1966).

Reuter and Sondheimer (RS) have generalized their
calculation of the surface impedance at normal incidence
for specular reQection to the case of non-normal in-
cidence without allowing explicitly for charge Quctua-
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tions inside the metal. It is therefore of interest to
compare our exact results with those of RS.'

If we translate Eq. (60) in RS into our notation and
use the relationship

C
Z'=——Z=-

4m

4nia&l f(0)
c' y'(0)

' (81)

for the surface impedance Z as calculated by RS, we
6nd

2iQ " dQ,
Z/ —~S s

p 0'e]—
(82)

1+sin'8(Zs') '

2iQ " dQ,

o ~'e&—

2iQ " dQ,
1+»n28

~

. (84)
vr 0'e( —Q'i

The classical surface impedance Z~"" on the left-
hand side of Eq. (3.28) is now denoted by Zi ', a quantity
which, according to RS, is supposed to be the true sur-

where Zs' is the same quantity defined by Eq. (3.21).
The prescription of RS to calculate the refIectance for
non-normal incidence is to replace the dielectric con-
stant e(co) in any classical equation by the quantity
sin28+(Z') '(or sin'8+(Zs') ') Therefore, the classical
equation (3.28) for Zi '&Ci' becomes

(Zs') '
r/
/a p

sin'8+(Z, q') '

face impedance for 8 polarization. Similarly, Eq. (3.29)
becomes

2iQ " dQ,
ZB =Zg =

o 0'

We can now insert Z~' and Zg' into the generally
valid equations (3.24) and (3.27) (in place of the correct
Zi' and Zs') to find the reflectances Ep and Rs and
absorptances A~ and A q.

Equation (85) shows that the surface impedance
Z8' for 5 polarization, as found by RS, is correct; the
same is true for the absorptance Ag. However, Eq.
(84), which gives the surface impedance for I' polariza-
tion, is clearly diferent from the correct equation
(3.15). Equations (84) and (3.24) have been used to
calculate the absorptance A~ for potassium, taking
8= 75' and p= 10 4. The result is shown by the dotted
line in Fig. 8. The absorptance agrees with the exact
result (solid line) at low frequencies in the "usuaV'
anomalous region, but at higher frequencies it drops
down to the classical value (dashed line) and completely
fails to reproduce the "new" peak centered at 0 0.4;
for this reason, we can attribute this peak to the pres-
ence of charge fluctuations. At higher frequencies (0& 1)
the classical, exact, and RS absorptances all agree.

Combining Eqs. (84) and (85), we find that Zs'
and Z&' are related by the expression

ZB
Zp (86)

1+sin'8(Zs')'

which, according to Eq. (4.4), is the condition for the
existence of a unique c(&o). In the region of the "new"
peak, where the RS and exact absorptances are diGerent,
Z~'AZg'. Therefore, the exact surface impedances Zp'
and Zs' do not satisfy Eq. (4.4), and a unique value of
c(co) does not exist.


