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3(outom) 2(owe—ou) O
(f’t‘= —%(0’12—0'21) %(0’11""0‘22) 0 . (47b)
0 0 30’ 33
Then the conductivity related to experiment is
diH .;'L —HL 0
¢:=Nec| HL aH;L 0 , (48a)
0 0 b,H 1'L+ C;
where
ai=3[(a11/a@2)**+ (azo/a11)*], (48b)
bi= (az3)*(au) ™2 (a22) %, (48¢)
ci=azas(aze)ter/c, (48d)
N=3n. (48e)

SUMMARY

The foregoing example illustrates the ease with which
one may write the total conductivity tensor for a Fermi
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surface consisting of a set of ellipsoids symmetrically
placed about the direction of the magnetic field. It
should be clear, however, that even for a set of ellipsoids
having no symmetry with respect to the direction of the
magnetic field one may follow the above recipe to
determine the total conductivity. One need only write
the & tensors describing the various ellipsoids in a
common coordinate system chosen such that the
magnetic field is along the 3 axis. The rest of the
problem is simply to perform the indicated tensor
multiplications and then to add up the individual
conductivities. Corresponding expressions for &’, A",
and #” are obtained in an obvious manner [see Eq.
(26)]. One may choose to represent the spherical
geometry solutions in an approximation different from
that of the Sondheimer-Wilson theory,? but the method
of obtaining the ellipsoidal geometry solutions remains
the same.
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Anomalous Skin Effect for Specular Electron Scattering and Optical
Experiments at Non-Normal Angles of Incidence*
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The anomalous skin effect for specular electron scattering at the metal surface is studied, permitting the
impinging plane wave to have an arbitrary angle of incidence. It is shown that the expressions for the surface
impedance for a non-normal angle of incidence obtained by Reuter and Sondheimer as a generalization from
their work at normal incidence are correct for S polarization but incorrect for P polarization. The correct
surface impedance for P polarization leads to an additional absorption peak in the frequency range
102w, Zw ey, where w, is the free-electron plasma frequency. This additional absorption, particularly
pronounced for long electron lifetimes, is investigated in detail. One important conclusion drawn from this
work is that, in general, optical experiments performed at non-normal angles of incidence cannot be analyzed
in terms of a single complex frequency-dependent dielectric function. In the frequency range of the additional
P absorption, two such dielectric functions are needed, one function for describing P polarization and a dif-

ferent function for describing S polarization.

I. INTRODUCTION

HE theory by which the anomalous skin effect

was incorporated into the general theory of the
optical properties of metals was developed in detail by
Reuter and Sondheimer! and Dingle? for both specular
and diffuse electron scattering at the metal surface.
This work, utilizing the Boltzmann equation, treated
the case of a plane wave incident normally on the metal
surface, although conclusions were drawn concerning
also the effect of non-normal incidence. A quantum-
mechanical treatment of the anomalous skin effect at
normal incidence with specular reflection was given by

* Work performed in the Ames Laboratory of the U. S. Atomic
Energy Commission. Contribution No. 2269.

1G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 (1948).

2R. B. Dingle, Physica 19, 311 (1953).

Mattis and Bardeen®; their result for the surface im-
pedance was in agreement with that of Reuter and
Sondheimer.

A recent study of the classical optical properties of
an electron gas by the present authors? indicated that
interesting absorption structure can occur at non-
normal angles of incidence, structure that possesses no
counterpart at normal incidence. This fact, together
with the appearance of the striking results of optical
studies performed by Mayer and his co-workers® on the
alkali metals at large angles of incidence, suggested to
us that a reexamination of the theory of the anomalous

3D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).

¢ K. L. Kliewer and R. Fuchs, Phys. Rev. 153, 498 (1967).

5 H. Mayer and B. Hietel, in Optical Properties and Electronic
Structure of Metals and Alloys, edited by F. Abeles (North-Holland

Publishing Co., Amsterdam, 1966), p. 47, and references cited
therein,
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F16. 1. Orientation of the semi-infinite metal showing the
electric field of the incident wave for P polarization, Ep, and for
S polarization, Eg. The angle of incidence is given by 6.

skin effect at non-normal incidence was warranted.
This reexamination begins in the present paper with a
discussion, based upon the Boltzmann equation, of the
case of specular electron reflection.

A careful study of Refs. 1 and 2 suggests that there
remain no unanswered questions for the case of specular
reflection; that is, that the conclusions drawn for non-
normal incidence from the detailed calculation at normal
incidence are valid and complete. However, there are
two points that indicate that this may not be the case.
The first of these concerns the technique used by Reuter
and Sondheimer to obtain the surface impedance for
normal incidence. At normal incidence, V-E=0 within
the metal, where E is the electric field. Thus there occur
no charge fluctuations within the metal, since the elec-
tric field is always parallel to the surface. If, however,
one permits V-Es£0, then, when there exists an electric-
field component perpendicular to the surface, as will be
the case for non-normal incidence with P-polarized
fields, there can occur a charge imbalance penetrating
the metal. The interaction of the electrons with this
charge fluctuation would then be an additional absorp-
tion mechanism. As is true for similar situations where
moving charged particles interact with self-generated
longitudinal fields, we expect that the energy absorp-
tion in this case would be characterized by the imaginary
part of efq,w)"!, where e(qw) is the nonlocal longi-
tudinal dielectric constant of the system. The first point
we wish to make here is that, when generalizing normal
incidence results to non-normal incidence, one is going
from a case where charge fluctuations do not exist to a
case where they do. Since the mathematical description
of these distinctly different physical situations must
reflect the difference, it would appear that a possibly
important absorption mechanism could be overlooked
or treated incorrectly when making arguments based
upon normal incidence conclusions.

Now, a reader familiar with the effects of an electric
field normal to the surface of a metal might at this
point counter with the argument that the screening
distance for a charge imbalance of the sort discussed
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above should be the Fermi-Thomas screening distance
Arr given by Arpr=vr/(V3w,), where vr is the Fermi
velocity and w, the plasma frequency. Since AprZ1 A,
this would lead one to conclude that the screening is so
effective that only very minor effects could be associated
with the presence of the charge fluctuations. However,
the utilization of Apr as a measure of the screening length
is valid only for frequencies such that wr<'1, where 7
is the effective electron lifetime. For higher frequencies,
wr>>1, the longitudinal dielectric constant ef(q,w) is
much more involved than it is in the low-frequency
limit [see Eq. (2.47) below], and the simple screening
concept breaks down. The above argument does in-
dicate, though, that any important effects associated
with the presence of the charge fluctuations will occur
for frequencies where wr>>1.

The second, though related, point concerns the struct-
ure of the scattering term in the Boltzmann equation.
When charge fluctuations are present, the relaxation
of the perturbed distribution toward ‘“equilibrium”
will be to the local state of charge imbalance and not
to the uniform distribution.® Thus a simple relaxation
time approximation for the scattering term will not be
adequate. These effects will be incorporated into the
theory developed below. It should be emphasized that
these points affect the calculation only when non-normal
incidence is involved, and thus our results will reduce to
those of Reuter and Sondheimer! for normal incidence.

The geometry used for the calculation is shown in
Fig. 1. The metal is considered to be semi-infinite with
the surface an x-y plane at =0; the positive z direction
is into the metal. When discussing P(S) polarization
the incident electric field will be that denoted Ep(Eg)
in Fig. 1.

A detailed solution, using the appropriate Boltzmann
equation, for the surface impedance in the case of P
polarization is given in Sec. II. This derivation in-
cludes a calculation of the longitudinal and transverse
dielectric functions valid for the problem at hand. An
alternative treatment of the problem based upon a
general dielectric-constant tensor is given in Sec. III
for both .S and P polarization. The results are discussed
in Sec. IV.

Although the emphasis in the present paper is on the
basically free-electron properties of a metal, interband
effects can be included in a phenomenological fashion.
These interband effects will be considered in detail in a
following paper.”

II. THEORY: BOLTZMANN-EQUATION
APPROACH

Considering the magnetic permeability to be unity,
Maxwell’s equation for the electric field E(r) can here

¢ J. L. Warren and R. A. Ferrell, Phys. Rev. 117, 1252 (1960).
7R. Fuchs and K. L. Kliewer (to be published).
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be written as?

VZE(r) — V(V - E(r))+ (w?/c2) (14 1) E(x)
= —(4riw/c)I(r), (2.1)

where it has been assumed that the time dependence of
all field and current components is exp(—iwt). J(r) is
the current density, and ¢ is the velocity of light. The
quantity ep represents the phenomenological inclusion
of interband effects in the theory; that is, e is the
(generally frequency-dependent) interband contribu-
tion to the dielectric response function. For simplicity,
we take ep to be zero here but will indicate below where
it would reappear.

Since we are now interested in P polarization, with
the electric field in the x-z plane as shown in Fig. 1,

we can write8
e qz ,

where use has been made of the assumption that all
fields and currents have a spatial dependence of the
form

oE,

v~E<.:>=(iq,Ex<z)+ 2.2)

F(r) = F(3)eie==,

All field and current components appearing below
without argument represent the z-dependent part of
these quantities. Using (2.2), Eq. (2.1) can be written
in component from as

AP2E, w? dE, 4riw
+—Er—iq—=——/J, (2.32)
dz?  c? dz c?
and
w? dE, 4riw
<——gz2)E.—iq, =——1/,. (2.3b)
c? dz c?

To proceed further with these equations requires ex-
pressions for J, and J,, which we now obtain from the
Boltzmann equation.

For free electrons and field wavelengths long com-
pared to the wavelength of an electron at the Fermi
surface, the Boltzmann equation can here be written?®:

afk €
~——=E,t) Vifit v Vefi=—2 Wi (fi— fr), (2.4)
a h K

where fi is the one-particle distribution function,
v=7k/m is the electron velocity, m is the electron mass,
and e is the magnitude of the electronic charge. In
addition it has been assumed that the scattering pro-
cesses are elastic so that the scattering transition rates
obey

Wy =Wyri.
It is obvious that we are not making the simple relaxa-

8 Note that at this point the fact that V- E5£0 is used explicitly.
9 G. V. Chester, Proc. Phys. Soc. (London) 81, 938 (1963).
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tion approximation in the scattering term on the right-
hand side of Eq. (2.4). This approximation is not
legitimate in the problem under consideration here for
the reasons discussed in the introduction. Relaxation to
the local distribution is included by writing the Boltz-
mann equation in the form (2.4).

We now linearize Eq. (2.4) in a fashion consistent
with the exp(ig.x—iwt) dependence of the electric field
by writing

Ju= fot filvys)eiesmeit, (2.5)
where
fo-: [eﬂ(6r/t)+ 1]—1 ,
B= (kB T)_l )
u is the electronic chemical potential, and the as yet
undetermined function f; is proportional to the field.

If only the lowest-order terms in the field are retained,
(2.4) can be written

9 fl(v,z)+ £fi(v.2)= e(EEx'l-E,)(é:f_o)

dz 2 €L

4

1
+—2 Wi f1(v',3),  (2.6)
v, K

where

£= i[l—{—i(gx‘vr‘w)] )

VT

and the relaxation time, dependent only upon the energy
€, is defined by

1

=Z Wi .
‘r(ek) k’

A formal solution of Eq. (2.6) is

fi(v,2)= —fz{F(v)+e(if—°> / z (v—zEz(s)+Ez(S))efsds

€L V2

1/70f0\ 1
+—(—Lf—)/ G(s)ef‘ds} , (@27
Ve 6€k 0

where F(v) is an arbitrary function of v and G(3) is
introduced because of the self-consistency requirement
resulting from the presence of the last term of (2.6);
that is, G(z) must be so determined that

(%I?)G(Z) = zk:l Wk:kfl(v’,z) . (28)

Consider now the electrons moving toward the sur-
face, those electrons which have »,<0. The distribu-
tion function fy’ for such electrons must approach zero
as 3— and thus the corresponding value of F(v),
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F'(v), is given by

6]’0 ® (Vg
F'(v)= —e(—) / (—E,(s)-l—E,(s))e“ds
dex/ Jo Uz
1/9f0\ r*
——(—f) / G(s)etds,
Vz afk 0
from which follows

afo * Vg
) { - e/ ds(——Ez-l-Ez)ef"
Jer, z V2

-—-1— /°° G(s)efsds} . (29
VzJz

s =ee

The distribution function fi”(v,2) for electrons
moving away from the surface (2,>>0) depends upon the
nature of the surface scattering. Since we are herein
considering specular reflection, we have the condition

fll,(vm Uy, Vzy 8= 0) = fll(vz) Uy, — 0z 8= 0) )

and so

a ® z
fi''(v,z=0)= (3{_0) { — f ds(—:—Ezﬁ—Ez)e_E”
k 0 2
1 )
—l——-/ G(s)e—f"ds} . (2.10)
VzJo

From (2.7), this can also be written
fi'(v,3=0)=F"(v), (2.11)

where F”'(v) is the value of F(v) associated with elec-
trons having v,>0. We therefore find

af[) ® Vz
)I:—- e/ ds(——E,;—{—Ez)e—f“
Jde, 0 Vs

z - 1 )
+e/ ds(v—Ez—{—E,)ef’—l——/ ds G(s)e™%e
0 v

Vs z2J0

=t

1 z
+__ / ds G(S)GEB:I . (2.12)
Vz Jo

Defining now
E(z)=E(—3), (2.13a)
E.(z)=—E,(—3), (2.13b)
G(2)=G(—>2), (2.13¢)

Eq. (2.12) can be written

6f0 # Ve
fi'(v,2)= e_fz( )[e / ds(—E,,—i—Ez)ef”
aék — Vz

+i_ /_ w ds G(s)ees]. (2.14)
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The symmetry requirements (2.13a) and (2.13b) are
suggested by Maxwell’s equations, whereas (2.13c) will
be seen below to be a consequence of the prior two.

Having now equations for the distributions, we can
obtain the current

J(z)= —IZe(—’Z)3 f vfi(v,2)d%.

If one writes the volume element in velocity space in
spherical coordinates, the azimuthal integration can be
performed immediately using the fact that!®

(2.15)

2w 2
/ cos™peid osedp=—J(M(4),
0 "

where Jo™(4) is the nth derivative of the zero-order
Bessel function with respect to its argument. Recalling

now that
a3
(—-f—o)’z— 8(e—er),
13

(2.16)

where ep is the Fermi energy, permits immediate evalua-
tion of the integrals over the magnitude of the velocity.
The integrals over the polar angle must be done
separately for »,>0 (where fi"” must be used) and
2,<0 (where fi’ is needed). These latter integrals can-
not, at this point, be evaluated in closed form, so our
expressions for the current components are

J.()= (4’"’;”) {— [ ds ()K" (s—s)

+i/°° ds E.(s)K'(z—s)

i _,
-|-; /— °<>ds G(K (z—s)} (2.17a)

and

7.(5)= (4”"::2”2) { /~ ds E(5)R (5—5)

—I—i/w ds E,(s)K'(z—s)

L G(s)K(z—s)} , (2.17b)

€V J —w

where now » is the magnitude of the Fermi velocity.
The kernels in Egs. (2.17) and an additional kernel

10 E. Jahnke and F. Emde, Tables of Functions (Dover Publica-
tions, Inc., New York, 1945), 4th ed., p. 149.
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needed below are given by
/2
K''(z—s) =/ d0 sin%6 tan6J,"{g. tanf|z—s|}
0
Xenl=—el = (2,18a)
/2
K'(z—s) =f d6 sin?0Jy'{q, tanf(z—s)}e 1=,
0
2>
/2
= —/ do sin20J '{q. tanf(s—z)} (=) |
0

s>z (2.18b)

/2
K’(z-—s)=/ d sinf tanbJ ('{q, tanb|z—s|}
0

Xenle=sl - (2.18¢)
5 /2
K(z—s)=/ d6 sinf cosJ o{g. tand|z-s|}
0
el (2.18d)

/2
K(z—s)= —/ d0 sindJ o{q. tanf(z—s)}e 19 |
0
2>
/2
=/ d0 sindJ o{g, tanf(s—2)}e 12 |
0
s>z (2.18e)
/2
K(z—s)=/ d6 tan6Jo{q, tanf|z—s|}
0

Xel=sl | (2.18f)

where the primes on the Bessel functions denote deriva-
tives with respect to the arguments, and

secf/ 1
77=_—(_——' 10)) )
? To0
with 7o the relaxation time for electrons at the Fermi
surface. The integration angle in these kernels should
not be confused with the incident angle 6 defined in
Fig. 1.
If we now assume that the transition probabilities

Wy are independent of the angle between k and k’,!
and use the integration techniques discussed above,

11 The self-consistency correction will be seen below to be
relatively small, and hence this approximation is indeed valid.
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the self-consistency equation (2.8) becomes

G(z)=§f— i ds EA(s)K'(z—s)

T0 J —»

-—2—6— i ds E.(s)K (z—5)

T0J -

1
+
TV
The kernels K’, K, and K are given in Egs. (2.18¢c),
(2.18¢), and (2.18f). Equations (2.3) and (2.17)-(2.19)
are clearly consistent with the symmetry requirements
(2.13).

We now have three simultaneous equations to solve
for the field components: Eq. (2.3a) with J, given by
(2.17a), Eq. (2.3b) with J, given by (2.17b), and Eq.
(2.19). The solution can be most easily obtained utiliz-
ing Fourier transforms. Thus we define the Fourier
transform for the field components

/w ds G(s)K(z—s). (2.19)

00

8(g.)= | dz E(z)eie=2, (2.20a)
with the inverse transform given by
1 00
E(z)=— / dg.8(g.)et . (2.20b)
2 J
Similarly, we write
2(g)=| dzG(z)e =2, (2.21)
ilga)= / dz J(z)e~ie2, (2.22)
and, for the kernels,
k(g.)= dz K (z)e—te=, (2.23)

—0

Because of the symmetry requirement (2.13a), there
is a discontinuity in the derivative dE,/ds at 3=0, and
the Fourier transform of d*E,/d.? is given by

© diE; dE.(0+)
/ do——e = —q 28— 2—
—o a2 dz

. (2.242)

The symmetry requirement (2.13b) indicates the exis-
tence of a discontinuity in E, at 2=0, so the Fourier
transform of dE,/dz is given by

© JE,
/ d—eitr= —2F,(0+)+ig.8,.  (2.24b)

dz
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Using Egs. (2.24), the Fourier transform of Eq. (2.3a)
becomes

w? dE.(0+)
c 2

driw
= — ]1_

9

2

(2.25)

Since
10H
¢ 0t

(2.26)

we have

dEL(0+) 2w
— 4 2iq, B, (04) = ——H,(0+),
Cc

dz

(2.27)

and Eq. (2.25) can be written

2 4diw

w 21w .
8x<~qz2+—>+ngxé’z———I-Iy(O—{—)=———-]z. (2.28)
c? c c?

Writing the Fourier transform 7, using Eq. (2.17a) we
have finally, for the Fourier transform of (2.3a),

2

12 2iw
é)a:('_q:2+_2)+gzgz‘gz——Hy(O+)
C c

7
=K { - g;k"—'—igzk'-'——g]y ; (229)
ey

with

k= — 167 2im2e2%e b (2.30)
In like manner, the Fourier transform of Eq. (2.3b) is
found to be
w? - 1 _
&(—q}-l———z)—l-q,gzgz:x{é’zk—l—ié’zk'—-—gk , (2.31)
¢ v

[4

while the Fourier transform of the self-consistency
condition, Eq. (2.19), is given by
e _ e _ 1
g=—08k'——8. k+—3gk.
v

To 2To 2T0

(2.32)

The Fourier-transformed kernels are evaluated in
Appendix A.

Equation (2.32) can be solved directly for g, the
result being

e 1
g=—{i8.k'— 8.k / { 1——k}, (2.33)
27‘0 } 21
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where the mean free path [ is defined by /=vr,. Using
this expression for g, our equations for §, and &, become

ZZ[1-—IE ;/21)]}]
Kk
+21[1—(k/2l)]H

w2
&[—g22+—+x { Kt
62
+ gzl:gzq:c_l'ilf { —F

21w
=—H,(04), (2.34a)
c

and

Kk’ w?
gz[q.zgz"l'ik { - k,+’_“‘_"_—"_—} ]"i' gz[—‘q:cz—l——
A1—(4)20)] &

_ k?
+x { —k—-————} ]= 0. (2.34b)
21— (k/21)]
Writing Eq. (2.34a) as
2w
8zTa:x+ ngxz=_Hy(O+) y (2.35&)
c
and Eq. (2.34b) as
8.T..+8.T..=0, (2.35b)
we find
8. 2w T2
=— {——————————} . (2.36)
Hu(0+) € ool 2e—T 2T 20

To facilitate comparison with the derivation of Sec. I1I,
we write

Tro=—q2+ (02/c) ez, (2.37a)
Toe= —q2+ (w2/c%) sz, (2.37b)

and
Toe=T2s=qug:+ (w?/c?) €zz. (2.37¢)

Using Egs. (A1) of Appendix A, one can show that

€zo= 1/ €q >+ g2}, (2.38a)
€22~ (1/92) { €q.+ GIQZQ} , (2.38b)

and
€2:=(e1— €1)0:9:/G" (2.38¢c)

where ¢ is defined by Eq. (A2). The transverse and
longitudinal dielectric constants, ¢; and ¢, are given by

i i 1 1 14-igl!
e,=1+—[—-+—(1+ )m{ H (2.39)
wigl g 2\ (g l1—igr
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and
24t oc2kl 1+iql
=1+ [(gl'—l—%iln{ })/
w(gl')? 1—iql

1
<gl+ 1iln { "

+igl!
})] (2.40)
—iql’
with I’ defined by Eq. (A3).

Using Egs. (2.37) and (2.38) in Eq. (2.36), we obtain
the result

g;p lel: 912 . Qz2
H,04) cgtl(w/e (@2/c)e—qg

The surface impedance!? for P polarization, Zp’, defined
by

] . (2.41)

ZPIIE1(0+)/H7(O+) )

is then given by the inverse Fourier transform of (2.41)
evaluated at 3=0, or

1 /2iw\ r* dg.[ g2 o2
Zp'=——<—)/ -—[ + ! ] . (2.42)
27\ ¢ /) @ L(0*/cNe (w?/c2)e—q?

Transforming to a set of dimensionless variables defined
by

Q=0w/w,, (2.43a)
Q2=qac/wp, (2.43b)
Q:=q.C/wy, (2.43c)
and
v=1/w,T0, (2.43d)
b=(v/c)(1/7), (2.43¢)
b'=5/(1—iQ/y), (2.43f)

where w,= (47Ne2/m)'/2 is the free-electron plasma fre-
quency (N is the electron density), Eq. (2.42) becomes

262 *dQ. Q2 Q.2
p=— l: :' s (2.44)
™ 0 Q2 Q?et Qzeg—QZ
where
Q*=02+027, (2.45)

and we have used the fact that the integrand is even
in Q.. In terms of the variables of Egs. (2.43), the
dielectric constants are

1 1 3 1
Y a@tin 2000y
(1 (140
X[ 2 ln{l—ib’Q —bQ:l (246)

12 The surface impedance is defined by Zp=(4r/c)(E./H,).
However, in the case of optical properties the important quan-
tity is (¢/4w)Zp. Thus, to avoid useless repetition of factors
(c/4r), we call E./H, the surface impedance but denote it by
Zp' to remind the reader that the definition is not the normal
one. A similar convention will be used below for .S polarization
with Zg'= —E, (0+)/H:(0+).
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and

1 / 3iQ\ 1
o@+i)\ v /@)

{(ro-gmfi5el)/

1 14-40'Q
(bQ——ln{ })] (2.47)
2 1—b'Q
Several comments about these nonlocal dielectric

functions are in order. In the limit Q — 0, both reduce
to the “ordinary’’ dielectric constant

(@) =1—1/Q(Q+y).

el=1

(2.48)

e: is the same function obtained by Reuter and Sond-
heimer and, indeed, if we consider normal incidence,
for which Q,=0, our Eq. (2.44) for the surface im-
pedance is the same as that obtained by Reuter and
Sondheimer for the case of specular reflection. The pres-
ence of the longitudinal dielectric function is a mani-
festation of the fact that a P-polarized wave incident
non-normally on the metal has a field component per-
pendicular to the surface, giving rise to charge fluctua-
tions to which the system responds via the longitudinal
dielectric function. These effects, of course, vanish for
normal incidence. If we had made the relaxation-time
approximation in the Boltzmann equation or, equival-
ently considered G(z) in Eq. (2.7) to be zero, the result
(2.44) would have the same structure but with ¢; re-
placed by ew, where

1 3 1 1+ib’Q}
w=1—— — O——1 . (249
QQ+iy) (b’Q)‘*I: ¢ 2% n{l-—-ib’Q ] (249)

Finally, it should be noted that had we retained the
phenomenological term ep in Eq. (2.1) representing
interband effects, it would simply be added to the ex-
pressions for the dielectric function; that is, the leading
“1” in Egs. (2.39), (2.40), and (2.46)-(2.49) would be
replaced by (1+es).

An expression for Zg', the surface impedance for .S
polarization could clearly be determined in much the
same manner as that used above to calculate Zp’. How-
ever, in Sec. IIT a more adroit scheme is presented for
the determination of the surface impedance and a dis-
cussion of Z g’ will be deferred to that point.

III. THEORY: DIELECTRIC-CONSTANT
APPROACH

In the calculation of the surface impedance at non-
normal incidence presented in Sec. II, the Boltzmann
equation was used to solve for the current J in terms of
the field E in the presence of a boundary. An alternative
procedure will be used in this section to derive the sur-
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Fi1c. 2. The original and rotated coordinate systems
for obtaining the dielectric tensor.

face impedance for both P and S polarizations. The
relationship between J and E for the metal is expressed
at the outset in terms of a nonlocal dielectric-response
function, defined for an infinite medium. The effect of
the metal surface is then taken into account by solving
Maxwell’s equations using appropriate boundary condi-
tions. It is still necssary to find the dielectric function
from the Boltzmann equation or by any other method
desired; however, this can now be done for an infinite
medium rather than a finite medium, significantly
reducing the mathematical complexity.

P Polarization

We begin with Maxwell’s equations in the form (2.3),
and include the current density J in a displacement field
D by the relation

D=E+(47i/w)]. 3.1)
Equations (2.3) then become
d*E, dE, w?
— gt —D,=0 (3.2a)
dz? dz ¢
and
dE,; o?
—q2E,—ig—+—D,=0. (3.2b)
dz ¢

These equations are valid for 2>0, that is, inside the
metal. We now imagine that the metal fills all space,
extending the domain of z from — to - . The fact
that electrons are reflected specularly is taken into
account by imposing the symmetry requirements E,(z)
= E,(—3), E3)= — E,(—2), Do(3)= D,(—3), and D.(z)
=—D,(—3), as in Egs. (2.13). The Fourier transform
of Eq. (3.2a) is

w? dE.(0+)
028k g bt D= ——2ig L 0F), (53)
c b

where we have used Eq. (2.20a) as the definition of the
transform from E(z) to 8(g.) and from D(z) to D(g.).
The terms on the right-hand side of Eq. (3.3) originate
from discontinuities in dE,/dz and E, at z=0. Using
Eq. (2.27), Eq. (3.3) can be written

—:28:+0:9.8.4 (/) D= (2iw/c)H,(0+). (3.4)
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Similarly, the Fourier transform of Eq. (3.2b) is
—q.28.:+¢.q.8:+ (w*/c®)D,=0. (3.5)
® and & are related by the dielectric function
€ii(q,w):

D=2 €;;6;. (3.6)
7

To express €;; in terms of ¢; and ¢, the transverse and
longitudinal dielectric functions, we introduce a co-
ordinate system x’, 2/, rotated by the angle ¢ about the
y axis as shown in Fig. 2. Placing the 2’ axis along the
direction of q, we have

Dy = Etgxl (3.73.)
and

Dy=eby. (3.70)

Thus the dielectric function is a diagonal tensor in the
%', 2’ coordinate system:

€ 0
0 ¢

¢’ can be expressed in the x, z coordinate system by
making the transformation

e=S"1S,

cose —sing
(e ene)’
sing  cosg
with sing=g¢./q, cose=g¢./q, and g=/(g.>+q.2)'/2. The
result is that eq, €., €., and e, are as given by Egs.
(2.38).
Using the relations D,= €,.6,F €:.8. and D.=¢,.8,
~+ €..8., we can solve Egs. (3.4) and (3.5) for 8,/H ,(0+).
We find

(3.8

3.9
where

(3.10)

8. 2w < T..
H,AO“*")_ c T:cszz_ Tzszz

>, (3.11)

where

Tij=(w*/c*) eij—q*6:i+qig;- (3.12)
Equations (3.11) and (3.12) are identical to Egs. (2.36)
and (2.37). If the expressions (2.38) for e;; are inserted
into (3.12), we find

w? € w?

T rn= (— — 1)q:2+_—€lq;52 s (3.13a)
¢ g 2
w? € w?

To= (—— — l)ga{"-l-——ezgz2 , (3.13b)
¢ g 2

w?
Toe= Tzz=|:—~—(el- et)-f—l]qqu. (3.13¢)
g
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Thus Eq. (3.11) finally becomes

& 2’1,0.)[ g::z . Qz2
H,(04) cgl(@/ea (@¥/)e—g*

The inverse Fourier transform of Eq. (3.14) evaluated
at =0 gives

E.(0 212 °dQ. 0.2 o2
00 20 g0l
Ve Q%e,—(Q?

:l. (3.14)

CHO0+4) 7)o @

] (3.15)

in terms of the dimensionless variables defined in
Eqgs. (2.43). Equation (3.15) is the same as Eq. (2.44);
however, ¢ and ¢ are as yet unspecified. This result
therefore has a general validity independent of the
particular model used for obtaining ¢; and e;. The only
requirement is that e(q,w) and e(q,w) exist.® In the
present context, the appropriate value of e; is that of
Eq. (2.46), whereas ¢ is correctly given by (2.47). How-
ever, were the relaxation to the perturbed state not
to be considered, ¢; would be given by e,, Eq. (2.49).1

S Polarization

The only nonvanishing fields are now £, H,, and H..
The y component of Eq. (3.2) is

&°E, w?
—q.*Ey+—Dy=0,
dz? c?

(3.16)

where Eq. (3.1) has again been used to introduce the
displacement D. The Fourier transform of Eq. (3.16) is

w? dE,(0+)
—(g2+¢.) 8y —Dy=2——— = (3.17)
c? dz
or
w? 21w
._q2gy+__2g)y= ——H,(0+). (3.18)
c ¢

In arriving at Eq. (3.17), we have taken E,(z)=E,(—3)
so that the discontinuity in dE,/dz gives the term on
the right. From the Maxwell equation (2.26) or dE,/dz

13 Equations (3.15) and (3.21) below are applicable rigorously
only to a microscopically uniform system such as a free-electron
gas. Actual metals and insulators are microscopically nonuniform
due to the presence of a periodic potential and can be characterized
only by more general dielectric functions of the form e;(q+G,
q+G’, w), where G and G’ are reciprocal lattice vectors. See L.
J. Sham and J. M. Ziman, Solid State Phys. 15, 221 (1963).

14 Derivations of expressions for e(qw), e(qw), and e (q,w),
using the Boltzmann equation for a free-electron gas of infinite
extent, have been presented by several authors. For example,
Warren and Ferrell (Ref. 6) give expressions for the complex con-
ductivities o; and ¢; [their Egs. (20) and (24)], from which the
dielectric constants ¢; and € can be obtained using e=1-4wio/w.
In C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc.,
New York, 1963), Chap. 17, o, is given by Eq. (23), 0w by Eq.
(22), while o/, defined by Eq. (33), is the longitudinal conductivity
a1 if ¢, is written as w/g. Therefore, the methods of Sec. IT need
not be employed to determine the dielectric constants.
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= —(iw/c)H ;, Eq. (3.18) follows immediately. Since the
electric field is perpendicular to q for S polarization,

Dy=eby. (3.19)

Using Eq. (3.19), we solve Eq. (3.18) for 8,/H.(0+):
&y 21w 1

=—— (3.20)

H04+) ¢ (0¥/Dea—q

The inverse Fourier transform of Eq. (3.20) evaluated
at =0 gives
_ E0+) 22 [~ do.

=—— 3

H,(04) = Jo Qe—Q?

where the dimensionless variables defined in Eqgs. (2.43)
have again been introduced. The appropriate expression
for ¢ is that of Eq. (2.46).

(3.21)

Reflectance

For completeness, we shall present expressions for the
reflectance in terms of the surface impedance. The fields
associated with the incident and reflected waves for P
polarization are of the following form:

E,=arei*t=+qpeiks (3.22a)
Ey=(ko/k.)(—azetst-agei*+),  (3.22b)
Hy= —(w/k)(are*»+are= %), (3.22¢)

where ar and ar are unknown amplitudes for the in-
cident and reflected waves, k.= (w/c) cosf and k,=(w/c)
Xsind, 8 being the angle of incidence as indicated in
Fig. 1. These equations hold in the vacuum, for z<0.
The Maxwell equations ik, F,+dE,/dz=0 and ik.H,
= —i(w/c)E, have been used to obtain Egs. (3.22b)
and (3.22c) from Eq. (3.22a). Solving Egs. (3.22b) and
(3.22¢) for the amplitude ratio ar/erin terms of E,(0—)/
H,(0—), we find the expression for the reflectance,

cosf— E,(0—)/H,(0—)
cosf+E.(0—)/H,(0—)

From the continuity of E, and H,, E,(0—)/H,(0—)
= E,(0+)/H,(0+)=7Zp". Therefore,

2 2

ar

ar

Pp=

(3.23)

cosf—Zp'|?

cosf+Zp'

(3.24)

Since the x component of the wave vector is the same
inside and outside the material, g.= k.= (w/c) sinf or
Q.,=Qsing, where Q,=¢.c/w, and Q@=w/w, are the
dimensionless quantities appearing in Eq. (3.15).

The fields associated with the incident and reflected
waves for .S polarization are

E,= are'*+*+ gre—ikz s

H = (ck./w)(—aze?*=*+apet4=%) |

(3.25a)
(3.25b)
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102 quency dependence of the
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the classical and anomalous
values cannot be distinguished
3x1073 - with this scale.
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Q

where the Maxwell equation H,=i(¢c/w)dE,/ds has
been used to obtain Eq. (3.25b) from (3.25a). H., is also
present, but need not be considered. The reflectance is

1+4+[E,(0—)/H,(0—)] cosb

2 2

ag
Rg=|—| = (3.26)
ar 1—[E,(0—)/H ,(0—)] cosb
or
1—Z4 cosf|?
Rg=|——— (3.27)
14+Z5' cosd

The general expressions (3.15) and (3.21) for the
surface impedances Zp' and Z 5’ can be evaluated in the
classical limit (that is, neglecting nonlocal effects) by
setting e;= e;=¢(w), a function only of the frequency.
The integration over (), can then be done exactly and
we find

Zp= (o) —sint )/ ew)  (3.28)

and
Z 5D = (¢(w) —sin26)~1/2, (3.29)

Therefore, the classical expressions for the reflectance

-3

are
e(w) cosf— (e(w)—sin?6)1/2|?
Rp= (3.30)
e(w) cosf+ (e(w)—sin?0)1/?
and
e(w)—sin26)/2—cosf|?
Ry = () (3.31)
(e(w) —sin?0)'/+4-cosb

Since we are here considering free-electron effects, the
dielectric constant e(w) for the classical calculation is
that given by Eq. (2.48) .

In all cases the absorptance 4 is given by A=1—R,
where R is the appropriate reflectance.

IV. RESULTS AND DISCUSSION

Since we are herein investigating effects associated
with the essentially free electrons, we consider e to be
zero. Thus there are in the present formalism two
quantities characteristic of the metal under considera-
tion: one is the Fermi velocity and the other is the elec-
tron lifetime. Since the electron lifetime will depend on

10

axig?

10

Fic. 4. Classical (dashed
lines) and anomalous (solid
lines) calculations of the fre-
quency dependence of the
absorptance for 6=0, with
vy=10"* and 1075,

6! 3x0" i10°
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Frc. 5. Classical (dashed
lines) and anomalous (solid
lines) calculations of the fre-
quency dependence of the ab- 3l —
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the specific conditions involved in a given experiment,
we will illustrate its effect in the theory by considering
a range of v %5 from 10~2 (short lifetime) to 10~5 (long
lifetime). We have selected for illustration the value
2p=0.85X 108 cm/sec characteristic of potassium.16
To indicate the type of absorptance structure as-
sociated with the anomalous skin effect at normal in-
cidence, we show in Figs. 3 and 4 the absorptance as
obtained from the normal-incidence limit of either Eq.
(3.24) or (3.27). In this case Zp’' and Zg' are both given
by the normal-incidence limit, or
2iQ r*  dQ,
N=— [ —,
m 0 QZE¢—Q22

(4.1)

with ¢; given by (2.46) with Q=(Q.. Shown also are the

classical values of the absorptance. Clearly evident in
these figures is the peak due to the anomalous skin
effect for @~10~3. The difference between the anomalous
and the classical calculations is very small for y=10"2,
but becomes large as v decreases to 107°. It should be
noted that essentially all of the anomalous effects
occur for 2<0.1.

A comparison of the anomalous and classical calcula-
tions of the absorptance for an angle of incidence of
75° and .S polarization is shown in Figs. 5 and 6. These
curves are very similar to those for normal incidence,
the anomalous skin effect giving rise to a marked peak
for @~10—% and low 4. The only significant difference
for 6=175° is the absence of the abrupt rise in absorp-
tance near Q= 1. This abrupt rise occurs for @~1/cosf
or near @~1 for §=0 and near Q~3.9 for §="75°. Thus

3x10°?

Fic. 6. Classical (dashed
lines) and anomalous (solid
lines) calculations of the fre- A
quency dependence of the
absorptance for 6=75° S
polzz_’.rization, and y=10"* and
1078,

56 | ]

16 axig? 10

16 Note that y= (wpr0) ™. See Eq. (2.43).

2 | (o]

36> 10 310 10

Q

16 C, Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1966), 3rd ed., p. 208. This free-electron
value is valid here since the effective electron mass is equal to the actual electron mass for potassium. See Ref. 5.
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F1c. 7. Classical (dashed
lines) and anomalous (solid
lines) calculations of the fre-
quency dependence of the
absorptance for 60=75°, P
polarization, and y=10"2 and
1073,

3x10 162
Q

) 3x0° 4 163 3

in the curves for 75° this rise is removed to the right
and off the scale. Note once again that essentially all
anomalous effects occur for ©2<0.1.

The anomalous and classical absorptance calcula-
tions for P polarization and §=75° are shown in Figs. 7
and 8. Here, one sees the ‘“‘usual” anomalous peak
near 2~1073 but in addition there exists an important
absorption peak in the range 0.1 525 1.0. The existence
of this latter peak is, as shown in Fig. 8, not predicted
by the non-normal-incidence generalization given by
Reuter and Sondheimer, where, as discussed above, con-
clusions were drawn based upon a situation where

-2

30162

v-E=0." This fact, together with the results shown
in Figs. 5 and 6 indicating no analogous peak for S
polarization, indicates that this additional absorption
is due to the presence of charge fluctuations within the
metal, an effect which we have allowed for in the present
calculation.!®

To further assess the nature and consequences of this
additional absorption, we have done the following cal-
culation. Much optical data in the “free-electron” regime
is analysed using the classical dielectric constant of
Eq. (2.48). Hence it would be of interest to know the
effective value of v needed in a classical calculation to

-5 1 1 | ] ]

F16. 8. Classical (dashed
lines) and anomalous (solid
lines) calculations of the fre-
quency dependence of the
absorptance for 0=75°, P
polarization, and y=10"* and
1075, The dotted line shows
the absorptance obtained for
vy=10" wusing the surface
impedance given by Reuter
and Sondheimer (see Appendix
B). The dotted line coincides
with the solid line (the
anomalous absorptance) at low
frequencies and with the dashed
line (the classical absorptance)
at high frequencies.

I | h

0 3x6? 163 3x16° 162

Q

3xI0

2 6" 3x6" 10

17In Appendix B is presented a discussion of the Reuter and Sondheimer conclusions for non-normal incidence.
18Tf e, rather than ¢ is used in Eq. (3.15) when evaluating the surface impedance for P polarization, the absorption changes by

£0.1%,. Hence no further mention of e, will be made.
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reproduce the absorptance curves of Figs. 3-8. These
effective values of ¥ were determined by using e from
Eq. (2.48) in Egs. (3.30) and (3.31) and adjusting v
until the reflectance agreed with that obtained from
the anomalous calculations.

The frequency dependence of v.s: thereby determined
divided by the fixed v of the anomalous calculation is
shown in Fig. 9 for §=0. If there were no anomalous
effects, all curves would be independent of 2, and
veti/v would have the value 1.0. For y=10"2, there
occurs only a small increase above 1.0 for 2~10% How-
ever, with decreasing v the significant additional absorp-
tion associated with the anomalous skin effect produces
a marked peak for 2~1073. For .S polarization and an
arbitrary value of the angle of incidence, the values of

vett/y are identical to those for =0 indicating that
et is a meaningful quantity.

Using the absorptance values of Figs. 7 and 8, curves
of vet/v for P polarization have been calculated and
are shown in Fig. 10. When 251072, the values of
et/ are again identical to those for S polarization and
arbitrary 9. However, the higher-frequency absorption
structure for P polarization gives rise to significant
peaks in yes near @~0.4 when vy <1073, For y=107%,
there is only a small increase above 1.0, the maximum
value of v.s:/v being ~1.02 for @~0.40. It is interesting
to note that if we write vess=7-+Ay, the maximum
value of Ay in the frequency region above 0.1 for
6="75° is roughly 2X 10~ independent of the value of

100 T T

Fic. 10. The frequency de-
pendence of vyess/y for =75°

YEFF
and P polarization. 4

0.3

¢ 3x107%

10

3xi0" 10
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Once again we point out that the results given above
are for potassium. Since potassium has a small Fermi
velocity compared with most metals, all of the anomal-
ous structure will be greater for most other materials
than that discussed above. For example, the Fermi velo-
city for gold is 1.34 X 10%cm/sec and since Ay, as defined
in the previous paragraph, scales approximately linearly
with the Fermi velocity, Ay for gold has a maximum
value of roughly 3.2X107* for §=75° the maximum
occuring when Q~0.4.

The most striking conclusion from the results dis-
cussed above is that, for the case of non-normal in-
cidence,® the assumption that there exists a single, com-
plex, frequency-dependent dielectric function e(w) which
describes the metal classically is invalid. The fact that
Yets for P polarization differs from that for S polariza-
tion when 1020251 means that two different fre-
quency-dependent dielectric constants are needed to
characterize the reflectance of the system, one for P
and one for S polarization. Thus analyzing optical
data in terms of a single dielectric constant in this fre-
quency range gives results which have questionable
meaning.

It should, however, be noted that significant dif-
ferences in the two dielectric functions occur only when
1S 1073 When y= 103, the differences in the imaginary
parts of the dielectric functions as determined by the
et analysis can be as large as 209, while the difference
for y=10"2is less than 29, these numbers being for the
case of potassium with 6=75°. Also we saw above that
for 51072 the values of . were independent of angle
or polarization. Thus if the frequency is sufficiently low
or v is sufficiently large, there does exist a unique fre-
quency-dependent dielectric function by which the
reflectance of the system can be characterized.?¢

One might object that analyzing the absorption data
in terms of e is too rigid a requirement; that is, that
there may yet be an alternative dielectric function
e(w), valid for the system, having a form differing sig-
nificantly from that of (2.48). That such is not, in
general, the case will be demonstrated now. If there
exists a dielectric function e(w), the classical values of
the surface impedance Zp' D and Zs'(eD are given by
Egs. (3.28) and (3.29). These equations imply a
particular relationship between the surface impedances,

Zs'(cl)

AN I — (4.2)
1+sin20[ Z 'V
and indicate that ¢(w) is given by
E(w)=[ZP/(°1)ZS,(°l):|_1. (43)

19 We have only considered §=75° above. Other angles are
mentioned below.

20 This statement does not imply that such a dielectric constant
determined by the v.ss analysis can characterize the system com-
pletely. For when there exists an anomalous skin effect, even if
Yets can be chosen so as to reproduce the correct reflectance, the
phase of the reflected wave would not, in general, be given cor-
rectly by the classical analysis.
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If, conversely, the true surface impedances Zp' and
Zg', as calculated by Egs. (3.15) and (3.21), were to
obey the relationship

Zs
Zp=—— (4.4)
14-sin?0[ Z¢']?

in analogy to (4.2), a unique dielectric function could
be foune from

e(w)= [ZP'Z s']_l ’ (4.5)

as in Eq. (4.3). This dielectric function would then
characterize the metal completely, giving not only the
correct reflectances for both .S and P polarization but
also the correct phases of the reflected waves. It will
be shown in Appendix B that Zp’ and Zs' do not, in
general, obey Eq. (4.4); this means that a unique (w)
does not exist. It is important to note that the relation-
ship (4.4) becomes invalid precisely where the new
absorption peak for P polarization associated with
charge fluctuations appears. Two different dielectric
functions ep(w) and eg(w), related to the actual surface
impedances Zp" and Z s’ by equations of the form (3.28)
and (3.29), would therefore be needed to characterize
the metal. However, if y210~2 or Q is in the usual
anomalous region (251072), Eq. (4.4) is satisfied and
a unique e(w) exists.

It is also of interest to examine one of the standard
methods of analysis of optical data at non-normal angles
of incidence, the method used by Mayer and co-
workers.® In this method, a plane polarized beam of
light is incident at some angle 6 (75° is much used) with
the beam polarized at an angle of 45° with respect to
the plane defined by the incident direction and the
normal to the metal surface, i.e.,, midway between P
and S polarization. Using a system of polarizers the
complex reflectance amplitudes are then measured for
both .S and P polarization. Assuming that a single com-
plex dielectric function then exists, it is obtained from
the expression?!

1—s5\2 sind
) ~+sin20, (4.6)

SP(Q) = &P+ je;,SP= (..__
14s

where s=7p/rg, 7p(rs) being the complex reflection
amplitude for P(S) polarization. There is clearly no
particular form implied for the dielectric constant in
this type of analysis.

We shall show below that if the present theory is
used to calculate the ratio s=7p/rg, which is then in-
serted into Eq. (4.6) to obtain €SP, the value of 57
found in this way does not yield the actual reflectance
(or absorptance) for either S or P polarization. That is,
if eSF is used in Egs. (3.30) and (3.31) to recalculate
the absorptance, the result in the range 1025Q51 is
too large for P polarization and much too large for S
polarization when y< 1073, Thus, even though 37 has

cos?f

# D, J. Price, Proc. Phys. Soc. (London) 58, 704 (1946).
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been constructed so as to give the correct ratio rp/7s
or Rp/Rg, the separate values of Rp and Rg (or 4p
and 4 g) are incorrect. Only when y>10~20or 150251072
does the use of Eq. (4.6) become reasonable.

The conclusions of the preceding paragraph can be
arrived at by considering the imaginary part of the
dielectric constant, €57, or the associated conductivity,
o sp, related to €57 by

o sp=(w/4m) ST, 4.7

The conductivity o g can be compared with g, which
is found in the following manner: Taking e(w) to be
given by (2.48), v is replaced by verr. The associated
dielectric constant is

1(Q) = e1o11(R)+ie(Q) = 1— 1/ Q@+ iverr), (48)
and the conductivity is
w VYeft
O'eﬁ:"_é‘f“:—p (4.9)

dr dr Qdyed

with w, the plasma frequency defined in (2.43).22 The
two values of o¢¢s calculated in this way, one for S and
the other the P polarization, are those values which will
yield the correct absorption classically. In comparing
osp and oes, it is convenient to plot the quantities
(08p—0a1)/0et and (oes—0e1)/oe1, Where

wp Y
Tel=—""

4 Q-2 ’

The solid lines in Fig. 11 are the values of (cet—0e1)/001
for P polarization. The only curve shown for .S polariza-
tion is the dotted line for y=10-". For higher values of
v, the values of (ceti—0c1)/oa for S polarization are
approximately two orders of magnitude below the
values for P polarization at 2~0.1 and are decreasing
rapidly as @ increases. The values of (¢ sp—0¢1)/o1 are
given by the dashed lines in Fig. 11. This figure shows
that the value of €SP or the conductivity ¢gp derived
from Egs. (4.6) and (4.7) cannot characterize the
system completely. While this type of analysis yields
values of the conductivity which have the right form
but the wrong magnitude for P polarization, the result-
ant values of the conductivity are meaningless for S
polarization. Thus we would conclude that since ogp
is somewhat greater than oe: for P polarization and
much greater than o for S polarization, the absorp-
tance calculated from €57 or ogp would be too large
for P polarization and much too large for S polariza-
tion. This indicates again that two distinct frequency-
dielectric functions are needed in general, one each for
P and S polarization.

Nothing has been said above concerning the values
for 57, In the frequency range where two dielectric
functions are needed the values of &SP and e are

22 For potassium, w,=6.61X10% sec™’. See Ref. 5.
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Fic. 11. Values of (deti—001)/oc1 for P polarization are given
by the solid lines. Values of (¢sp—0a1) /0.1 are given by the dashed
lines. (gett—0a)/oa for S polarization and y=1075 is given by the
dotted line.

essentially the same. Thus the comparison of osp
and e in Fig. 11, involving only the imaginary parts
of the dielectric constants, is justified.

To this point, we have discussed only the cases of
6=0 and 6="75°. To indicate the angular dependence of
the anomalous P absorption in the range 0.1<Q<1, we
have shown in Fig. 12 curves of the P absorptance
minus the classical absorptance for y=10"* and various
values of 8. From these curves it is clear that, as ex-
pected, the anomalous effect decreases as 6 decreases,
but important effects occur still for = 30°. The decrease
from 6=75° to §=85° is really a consequence of the
quantity plotted. For if (4—A4¢)/4 a1 were plotted, the
85° curve would peak above the others.

Much has been said above concerning the point that,
in the frequency range 1072<5Q<1, two dielectric func-
tions are needed to characterize the system for non-
normal angles of incidence. Yet we have only considered
the case of specular reflection of the electrons at the
surface. Is it not possible that if the electron scattering
is diffuse rather than specular these particular anoma-
lous effects will vanish? Possibly, yes, but, in our estima-
tion, highly unlikely. Indeed, an unpublished calcula-
tion by the present authors suggests that these effects
might well be considerably enhanced. This calculation
involved a generalization of the Holstein model?® to
include a finite lifetime and an arbitrary angle of in-

% T, Holstein, Phys. Rev. 88, 1427 (1952).
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F1c. 12. The angular dependence of the anomalous absorptance
A minus the classical absorptance 4o for y=1074

cidence. Now the principle assumption of Holstein was
that in the high-frequency range of interest here
(2~0.1), the electric field inside the metal can be ap-
proximated by its classical value. This assumption
eliminates any charge fluctuations in the metal since
the classical field has V-E=0. Thus we expect, and
find, no absorption peaks in this frequency range for
either polarization. However, making an analysis as
discussed above, we do obtain a value of yer=7vy-+1.1
X 1073 for both P and S polarization at §=75° when
the metal under consideration is potassium. This, then,
is the background value from which any anomalous
peaks associated with the charge fluctuation must
emerge. Since the background (the value of e for S
polarization) in the case of specular reflection cor-
responds to 7Yei=7v, we see immediately that the
absorptance will be significantly higher for the case of
diffuse scattering. If the peaks associated with the
charge fluctuation scale even roughly as for specular
reflection, the anomalous effect in this frequency range
for diffuse reflection would be considerably larger than
for specular reflection. A calculation for the case of
diffuse reflection has been completed; the results will
be reported elsewhere.

Detailed comments concerning experimental results
will be deferred until the analysis for diffuse reflection
is presented. However, several comments will be made
concerning the experiments of Mayer and co-workers®
on K and Na and those of Hodgson? on Na, work done
at 6=75° and analyzed via Eq. (4.6). The excess absorp-
tion (absorption above the classical or Drude value)
obtained in the present calculation is lower than that
found by these workers at frequencies below the inter-

24 J, N. Hodgson, J. Phys. Chem. Solids 24, 1213 (1963).
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band edge. Based strictly upon the results for specular
reflection we would then say that the results of Hodgson
and of Mayer and co-workers for Na at temperatures
of 100° and 20°C and for K at 85° and 20°C, even though
based upon an equation which in principle is invalid,
should be approximately valid since they correspond
to y~3X1073. However, the results of Mayer and co-
workers for K and Na at a temperature of —183°C are
suspect since for this case y~10~% In particular, the
apparent dip of the conductivity below the classical
value, about which much has been said,? cannot be
considered significant at this point. It is quite possible
that if these experiments were redone at another angle of
incidence, the results would be significanily different.

We would like to stress that if optical experiments in
the frequency range 102521 are to be done at non-
normal angles of incidence, the experimenter should
present the reflectance data for .S and P polarization
separately. In particular, analyses based upon equations
like (4.6) should be avoided for pure metals except
perhaps in the region of interband absorption, where the
effective values of v are sufficiently high that no in-
consistencies can occur.

Finally, we wish to make several comments concern-
ing the validity of the present calculation. The work of
Chester® indicates that the Boltzmann equation used in
Sec. IT is valid (i) when the wave vector & is small com-
pared to the Fermi wave vector kr and (ii) when the
frequency w is small compared to er/%, er being the
Fermi energy. The first condition is apparently well-
satisfied in the present calculation since, although the
surface impedance integrals over Q, run from zero to
infinity, less than 0.29, of the contribution to these
integrals comes from Q.>kp/ky, where &, is the plasma
wave vector, and less than 0.19, from Q.>2kp/k,.
Thus, any changes in the dielectric functions neces-
sitated by the fact that the wave vector is not small
compared to kr should produce only a minor effect.
However, if there occurs very pronounced high-wave-
vector structure in the ‘“‘correct” dielectric functions
which our present expressions do not possess, the sur-
face impedances calculated herein could be in error.
Such a possibility is being investigated.

Much of the ‘“‘new” absorptance for P polarization
occurs in a frequency range where condition (ii) above
is not satisfied, i.e., w~er/%. This does not appear to
be a problem, though, as can be seen from the following
argument. The derivation of Sec. ITI, which is not de-
pendent upon the Boltzmann equation, indicates that
the form of the surface impedances as obtained in
Sec. II is valid, and thus any difficulty with the present
calculation must be associated with the expressions for
e and € (or e,). But, when r—o, our expressions
for the dielectric functions are the long-wavelength
limit of the Lindhard dielectric functions, and thus in-
volve a wave-vector limitation but not a frequency

% J. C. Phillips, Solid State Phys. 18, 56 (1966). See p. 157.
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limitation. The wave-vector limitation has been dis-
cussed above and does not appear to be a problem. Thus
we conclude that the present results are valid.

A final bit of evidence concerning the validity of the
use of the present dielectric functions is the insensitivity
of the results to the replacement of €; by e,. These func-
tions are quite different in structure but the replacement
of one by the other produces a negligible difference in
the surface impedances (see Ref. 18).

Note added in proof. It has been pointed out to us by
Dr. R. H. Ritchie that a terse derivation of the expres-
sions (3.15) and (3.21) for the surface impedances at
non-normal angles of incidence appears in V. P. Silin
and E. P. Fetisov, Zh. Eksperim. i Teor. Fiz. 41, 159
(1961) [English transl.: Soviet Phys.—JETP 14, 115
(1962)7. These authors, however, were concerned pri-
marily with the application of these expressions to
classical and relativistic plasmas and do not indicate
that they imply the existence of an additional absorp-
tion peak.

It should be noted, in addition, that J. G. Collins
[Appl. Sci. Res. Sec. B 7, 1 (1958)] showed that two
frequency-dependent dielectric functions are needed to
characterize optical experiments at non-normal angles
of incidence.
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APPENDIX A

We are here interested in evaluating the Fourier
transforms of the kernels of Eq. (2.18). Consider, as
an example, the transform of K(3—s) given by Eq.
(2.18¢). We have

00

E(g.)= | dzei=K(3)

—o0

0 /2
= / ey / d sinf Jo{g.z tanf}er
—o0 0

00 x/
— / eieedy /
0 [1]
/2
=2 / sinfdo /
0 0

The integral on z can be done using a table of Laplace

2

df sinf Jo{q.z tanf}e—*

00

dzsing.z Jo{ gz tanf}e=7°.

26 See, for example, G. E. Robert and H. Kaufman, Table of
Laplace Transforms (W. B. Saunders Co., Philadelphia, 1966).
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transforms?® from which we obtain
00
/ dz sing,2 Jo{q.2 tanf}e—7*
0

= (20" [{(n—ig.)*+ (- tang)?} =112
—{ (n+1ig=)*+ (g tang)*}=1/2].

Keeping in mind the fact that 5 is dependent upon 6,
the 6 integration can then be done with the result that

_ g4 1 1+-igl
k=—[2i—— 1n[ ]] , (Ate)
q* g’ U—agl
with
= (gz*+¢.")'? (A2)
and
l
I'= . (A3)
1—iwry
In the same fashion, we find
11 (2¢.2—q.2) 2 1
N L L
¢L (@) (')
1+igl
Xln{ }:I , (Ala)
1—iqlf
q2q.[ 31 1 1 1
)
¢ Lg’ Ugh® 2\ (g)
14-igl
Xln{ }] , (A1b)
1—iql/
q- 1 1+dgl’
k= —-—[2—{——— In[ }:l , (Alc)
q? g’ —igl

~ 1 (zgz2_QZ2) sz 1
k=—[ : z{ %gx“’(l+ )}
¢L g (gi)? (gt')?

141l
Xln{ }] , (A1d)
1—1gl’

(A1f)

APPENDIX B

Reuter and Sondheimer (RS) have generalized their
calculation of the surface impedance at normal incidence
for specular reflection to the case of non-normal in-
cidence without allowing explicitly for charge fluctua-
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tions inside the metal. It is therefore of interest to
compare our exact results with those of RS.!

If we translate Eq. (60) in RS into our notation and
use the relationship

_ Amiwl f(0)

L'=—Ff=—

B1
4rr e f(0)’ B

for the surface impedance Z as calculated by RS, we
find

Z_,=—21f—2 ) dQZ
T Jo Qe—(Q2

=74, (B2)

where Z ¢’ is the same quantity defined by Eq. (3.21).
The prescription of RS to calculate the reflectance for
non-normal incidence is to replace the dielectric con-
stant e(w) in any classical equation by the quantity
sin26-+(Z")~2 (or sin26+ (Z &')~2). Therefore, the classical
equation (3.28) for Zp'¢D becomes

_ (Zs)?

I/

sin20+(Z5)
Zs
 14sin®(Zg')?

21Q r*  dQ. /
7 Jo QLe—(Q?

(B3)

dQ.

(R e

The classical surface impedance Zp'D on the left-
hand side of Eq. (3.28) isnow denoted by Z ¢/, a quantity
which, according to RS, is supposed to be the true sur-
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face impedance for P polarization. Similarly, Eq. (3.29)
becomes
29~ dQ.

. (BS)
T Jo Qe—0?

We can now insert Zp' and Z4 into the generally
valid equations (3.24) and (3.27) (in place of the correct
Zp' and Zg') to find the reflectances Rp and Rg and
absorptances 4 p and 4 s.

_Equation (BS5) shows that the surface impedance
Z ¢ for S polarization, as found by RS, is correct; the
same is true for the absorptance 4gs. However, Eq.
(B4), which gives the surface impedance for P polariza-
tion, is clearly different from the correct equation
(3.15). Equations (B4) and (3.24) have been used to
calculate the absorptance Ap for potassium, taking
6="75° and y= 10" The result is shown by the dotted
line in Fig. 8. The absorptance agrees with the exact
result (solid line) at low frequencies in the “usual”
anomalous region, but at higher frequencies it drops
down to the classical value (dashed line) and completely
fails to reproduce the ‘“‘new” peak centered at Q~0.4;
for this reason, we can attribute this peak to the pres-
ence of charge fluctuations. At higher frequencies (2> 1)
the classical, exact, and RS absorptances all agree.

Combining Egs. (B4) and (BS), we find that Zg'

and Zp' are related by the expression

Zs

A L —
1+sin20(Z5')?

(B6)
which, according to Eq. (4.4), is the condition for the
existence of a unique ¢(w). In the region of the “new”
peak, where the RS and exact absorptances are different,
Zp'#Zp'. Therefore, the exact surface impedances Z p’
and Z s’ do not satisfy Eq. (4.4), and a unique value of
€(w) does not exist.



