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Electron Transport with Arbitrarily Oriented Ellipsoidal Feririi Surfaces
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General expressions for the kinetic coefBcients of electron transport are obtained for the case of an ellip-
soidal Fermi surface arbitrarily oriented with respect to the applied magnetic field, in terms of the co-
eScients derived for the case of spherical surfaces. The utility of the technique is illustrated by application
to a particular case commonly occurring in the treatment of the semimetals.

INTRODUCTION

S EMICONDUCTORS and semimetals are known to
have Fermi surfaces which are well represented by

sets of symmetry-related ellipsoids. It is therefore useful
to obtain expressions for the elements of kinetic co-
efhcient tensors for the case of a Fermi ellipsoid of
arbitrary orientation relative to the applied electric,
magnetic, and thermal gradient vectors. ' The problem
has been solved by Sondheimer and Wilson' for the case
of spherical Fermi surfaces. The Sondheimer-Wilson
theory has been modified by Grenier et al.' to discuss
both the case of magnetic 6eld directed along one of the
principal axes of an ellipsoid as well as the case of
magnetic 6eld directed at an arbitrary angle in the
plane of two principal axes of the ellipsoid.

In that which follows, explicit expressions are derived
for the kinetic coefficient tensors for the most general
orientation of a Fermi ellipsoid. The transformation
technique of Ham and Mattis~ is employed to simplify
the algebra relating to the ellipsoidal surfaces. The
concise tensor notation of Parrott4 is employed through-
out the development of the theory. General expressions
are given for the isothermal conductivity tensor r and
the thermoelectric coefficient tensor 8". The utility of
the technique is demonstrated by a special case: Using
the Sondheimer-Wilson theory, the conductivity tensor
0- is written explicitly in terms of the elements of the
reciprocal eGective mass tensor 8 for the case of three
Fermi ellipsoids symmetrically distributed about a
trigonal axis, the principal ellipsoid being tilted through
an angle about a single axis perpendicular to the axis of
threefold symmetry. This model is particularly appli-
cable to the semimetals arsenic, antimony, and bismuth.
It is shown that expressions for the other kinetic
coefficients, the Peltier tensor ~" and thermal conduc-
tivity R", are also obtainable by this technique: This is
accomplished simply by demonstrating the validity of
the Onsager relation' rr"=Ti" (7 is the absolute
temperature) and the Wiedemann-Franz law.

w—=up
—'~'d'I'p =Ap

reduces Eq. (1) to the form

(2)

2e=epW W,

where o.o is an arbitrary constant with the dimensions
of 8.Thus in w space the surfaces of constant energy are
spheres (see Fig. 2). Use has been made of the fact that
A. is symmetric, which implies the identity

P1'~P2=~P1' P2 ~

It is highly convenient simultaneously to transform
the experimental coordinate space (x space) by'

y=A 'x.

Then one has the following relations:

d'w= iA idsp,

dsy= [3-'~ dsx

and the total Jacobian is

(6b)

such that
tl(w, y)/t)(p, x)= )A. [ [A '[=1,

d'(~ 3)=d'(P *).

(6c)

(6d)

Thus phase volume is invariant and the distribution
function f is appropriate to both spaces. The 8oltzmann

TRANSFORMATION OF BOLTZMANN
EQUATION

The surfaces of constant energy in p space are taken
to be ellipsoids of arbitrary orientation (see Fig. 1)
described by

2&=p. o.p

where c is the energy and u is the constant inverse
effective mass tensor. The transformation

Notation for the kinetic coefBcients is given in C. G. Grenier,
J. M. Reynolds, and J. R. Sybert, Phys. Rev. 132, 58 (1963).

' A. H. Wilson, The Theory of Metals (Cambridge University
Press, Cambridge, England, 1959), pp. 2088.

3 F. S. Ham and D. C. Mattis, IBM J. Res. Develop. 4, 143
(1960).

4 J. E. Parrott, Proc. Phys. Soc. (London) 87, 1000 (1966).
' L. Onsager, Phys. Rev. 37, 405 (1931);38, 2265 (1931).

FIG. 1. Ellipsoidal energy surfaces,
a=const, are taken in an arbitrary
orientation relative to the experi-
mental coordinates (y-x space) which
are chosen such that the magnetic
field H is directed along the 3 axis.
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3 space

2

FIG. 2. Energy surfaces, ~=const,
of Fig. 1 are mapped into spheres in
w space. The transformed magnetic
6eld H„generally has three com-
ponents in y space.

quantity in y space is, by Eq. (6b),

dn'(u)=—(2 i dn(v).

This, along with Eq. (9c), reduces Eq. (12) to

dJ= ~A '[2(—dn'eu)= ~A '[AdJ„,
where

dJ„—=—dn'eu

(13)

(14a)

(14b)

equation' in the experimental space is

[—eK —(%)v&&Hj V,f+v V,f
(f —fo)/—= f / —. (7)

Here E= (Eq,Es,Es) is the electric field, H= (O,O,H) is
the magnetic field, fs is the equilibrium Fermi function,
and f~ is the perturbation to fe. The relaxation time
r(e) is taken to depend on p only through the energy.
Making use of Eqs. (2) and (5), and the symmetry of
A. , one has the relations'

V'„f=AV,f, (Sa)

V f=A 'Vof, (Sb)

(vt&H) V„f=A(vt&H) V f, (Sc)

A(vt&H)—= (A 'v)&&(~A~A 'H). (Sd)

(9a)

(9b)

(9c)

Note that the relation

becomes

v= V„e (10a)

(10b)

Using the above relations, Eq. (7) becomes

[ eEo (e/e)u&& Ho]. V„f+u.V'„f= f,/r (11)

TRANSFORMATION OF KINETIC EQUATIONS

The definition of electric current density in differen-
tial form is

dJ= —dn (v) ev, (12)

where dn(v) is the number of electrons per unit x volume
with velocity infinitesimally near v. The corresponding

6 Subscripts on gradient operators are meant to indicate the
space in which the operator is dined. Subscri ts to vectors
(boldface) and to vector magnitudes Oight face indicate the
space in which the vector is de6ned and do not indicate Cartesian
components.

The identity expressed in Eq. (Sd) may be easily
verified in a coordinate system in which A is diagonal;
such a system exists since A. is symmetric. Then by
effecting an arbitrary orthogonal transformation one
may easily show that the relation is valid ip an arbitrary
coordinate system.

Now dedne the transformed electric field, magnetic
field, and velocity by'

E„—=AE,

H„—= iA" iA 'H

u=—A 'v.

is the transformed differential current density. Now
consider the transport, equation'

whel e

J= g E*—c"G,

K*=E—(1/e) (col /8 T)6,
6= V,T, —

(15a)

(15b)

(15c)

and where t' is the chemical potential. Define

G„=36= V„r, —
E„*=—AE*=E„—(1/e) (8f/8T) 6„.

Then Eq. (15a) becomes

J„=a*E„*—e*G„,
with

"*=—iA iA '"A '

.-*=—~A ~A-~.-"A- .

From the definition of thermal current density, '

(16a)

(16b)

(17a)

(17b)

(17c)

becomes

where

We= -sr"Ee+V 6
~eE e+geG

(20a)

(20b)

s*= iAiA Yr"A ' (20c)

V= (A (A-~V'A-~. (20d)

One now proceeds to obtain a solution to Eq. (11) and
then computes the current densities

J„=—2eh 'f fqudsw, (21a)

W„*=2h—'ffg(e —t )udsw (21b)

for the case of spherical energy surfaces. The coefIj.cients
of E„and G„are identified as the kinetic coeificients
a.*, e*, sr*, and R*. The p-x-space parameters d, e", sr",
and g" are then obtained by inverting Eqs. (17b),
(17c), (20c), and (20d). There is no loss in generality by
taking H= (O,O,B) in the experimental x space. Then
Eq. (9b) gives

Ho ——~A ~H[(A
—

')gs, (A
—')ss, (A-')ss), (22)

r H. B.Callen, Thermodynamics Oohn Wiley Ih Sons, Inc. , New
York, 1960).

dW*= (e—l') dn(v) v, (18)

the transformed differential thermal current density is

dWo*=—IA IA-'dW*. (19)

The other transport equation'
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where (A '),; is an element of the tensor A—'. Writing
out the components of H„ in spherical polar form gives

I, Hy

w-y spoCO

sin8= r/t,

cos8= (A ')ps/t,

(23a)

(23b)

Fro. 3. Orthogonal transforma-
tion from y space to y' space
transforms H„ into 8„,which is
directed along the 3 axis.

q= con stan&

sing= (A-'), s/r, (23c)

cos$= (2—') is/r, (23d)

r= L(~ ')»'+(~ ')»'j'" (23e)

= L(g
—i) 2+ (g—1) 2+ (g-1) 2jl/2 (g—2) 1 2 (23f)

where 8 and P are defined in Fig. 2. Although the prob-
lem is now reduced to the simpler situation involving
spherical energy surfaces, it is of further convenience to
perform an orthogonal transformation from y space to
y' space such that the magnetic field H„. is directed
along the y3' axis. This may be accomplished by using

T=—F(&)&(~), (24)

where Z(p) is a right-handed rotation through angle p
about the ys axis and Y(0) is a subsequent right-handed
rotation through angle 8 about the new ys' axis (see
Figs. 2 and 3). The necessary elements of Z(p) and

Y(8) are given in Eqs. (23). Denote all variables in the
y' space by the addition of primes. Then

T—g ag/P (25a)
and

o= iA 'iAT 'a*'TA, (25b)

RESULTS OF SONDHEIMER-WILSON
THEORY

The Sondheimer-Wilson approximation' to the solu-
tions of Eqs. (21) for the case of spherical energy
surfaces with magnetic Geld directed along the y3' axis
yields

II, ,L/ ma„.L/

0*'=n'ec &Hy L' H„;L'
0 0

0
0

1/H„. ,
(26a)

~II„,L'
e*'= ~~sr'k'cTZ' H„L'

0

—H„L'
~H„;L'

0

0
0

&1/H„,. , (26b)

with the other kinetic coefficients transforming simi-

larly. Thus the problem has been reduced to computing
Eqs. (21a) and (21b) for the case of spherical energy
surfaces with magnetic Geld directed along the 3 axis

($3 axis) ~ Then the tensor multiplication indicated in
Eqs. (25) handles the job of representing the kinetic
coeKcients in the experimental coordinates (x space).

where the upper signs are for electrons, the lower signs
are for holes, r= r(i), and k is Boltzmann's constant. '
Now rewrite these equations in terms of x-space
parameters. Z' is the number of states per unit y'

volume, per unit energy interval. Let Z be the density
of states in x space. Then, by analogy to Kq. (13),

z'= iA [z. (27)

Combining Eqs. (22), (23f), (26e), and (26f), one 6nds

H„,= iÃitH,

L,'= ( /
g

/

t)-sI
(28a)

(28b)

(28c)

(28d)

I.= (IP+HP—) ',
H, =c(nper

~

A
~
t) '—.

Combining Eqs. (13), (27), and (28) gives

' HL ~IIL 0

+PL H L 0 (29a)

0 1/H, .

7l k CTZ
&B;L —HL

HL &H L

0

0

0 . (29b)

+1/H;.

with
H, =m*c/er, (31a)

Thus, given an explicit representation of n, Eqs. (29)
along with Eqs. (28c) and (28d) may be inserted in
Eq. (25) to obtain explicit expressions for o and c".
From Eqs. (26c) and (26d) one sees that in x space

V= (Okapi/3es)o, (30a)
m // Ti~// (30b)

such that expressions are obtained for all the kinetic
coefficients.

EFFECTIVE MASS

The so-called saturation field H; given in Kq. (28d)
has the form' "

mg/ T~g/

R*'= (vr'Ip'2'/3e') o *',
L'= (IP„+IP„;)-',-.(26c)

(26d)

(26e)

(26f)II„.,=c/em. p, —

rn*= (np)A
~
t)

—'. — (31b)
'Equations (26a) and (26b) are applicable for the strongly

degenerate approximation where integration over energy involves
essentially the S functions s(p —t), and therefore r(e) is evalu-
ated at the Fermi energy.

9 D. E. Soule, Phys. Rev. 1I2, 698 (1958)."J.W. McClure, Phys. Rev. 112, /15 (1958).
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Comparison to Eq. (31b) shows that m*=m, . Then
p space

A,

& = con stant

FrG. 4. Right elliptical cylinder of
height po is erected upon the ellip-
tical base of area A, dehned by the
intersection of a plane p3

——const and
the constant energy surface shown
in Fig. i.

+i Mc7 y

where co, is the cyclotron frequency.

AN APPLICATION

(39)

It is interesting to calculate the cyclotron mass m, for
comparison to Eq. (31b). The cyclotron-mass formula"
is

Consider a Fermi ellipsoid of electrons which has been
rotated out of principal axes by a rotation through
angle it about the 1 axis. Denote 8 in a principal-axis
system by n~, where

m, = (1/22r) BA,/Be, (32)

where A, is the area of the ellipse normal to the mag-
netic Geld H= (O,O,H) formed by the intersection of the
plane

n1
d~= 0

.0

0 0
n2 0
0 n3.

The above described ellipsoid is characterized by

(40)

and the ellipsoid

p k= ps
——const (33a)

where
0 0

X(it)—= 0 c s
.0 —s c.

(33b)2e=p np.
(42a)

(42b)

(42c)

c—=costp,

s—=sing .
w k'= ps' ——const,

pp' ——ps(k A—'k)-' '= pp(A-') 22
' '

k'=(A ')22 '/'A 'k

(34a)
where

( 4b) Writing out Eq. (41) explicitly, one has
and

n1 0 0
n= 0 n2C'+npS' (n2 as)SC—

0 (a2—ns)SC n2$ +nsC,

(34c)
(43)

is the unit vector normal to the transformed plane.
Since the ellipsoid transforms to a sphere (see Eq. (3)j,
the ellipse of area A, transforms to a circle of area
where

0 0
+C2+n2ssgns (gn2 gnp)sc —. (44)

(gn2 —gnp)sc csgns+ssgn2 .(35)
A=no '" 0A.=22re/np —2rp22(A ')22 '.

Here k is the unit vector along xs. Using Eq. (2), the
plane transforms to a plane in w space,

In order to determine A, in terms of A, one may use
Eq. (6a) to advantage. Construct an elliptical cylinder
of height pp on the ellipse in p space as indicated in Fig.
4. Then from Eqs. (34) one sees that this transforms
into a circular cylinder in w space of height pp (see
Fig. 5), where

Then
pp'= pp(A ')22 '/2. (36)

m, =(ao(A() '(A ') (38)

ss Spa ce

FIG. 5. Elliptical cylinder of Fig. 4
maps into a right circular cylinder
of height po' and basal area A, in
w space.

tant

"See, e.g., J. M. Ziman, E/echoes and I'bonbons (Oxford
University Press, London, 1960), p. 514.

A4 —p2re/np —2rp 2(A—
2)2

—q ~A
—1

~

(A-2)22-1/2 (37)

Equation (32) gives

From Eqs. (23) and (24), noting that the rotation P
about the y3 axis is —,'x, one finds

0
q

1/2 q1/2

0

A22
0 0

—A 23 A22.
(45a)

q—= (A22)'+ (A.s)'.

Now writing out Eq. (25b) explicitly, one Gnds

(45b)

(45c)

with

'd1II —H —d2H
o = 22ecL Hdi 'H; dsH;', (46).d2H dsH, d4H;+ ds/H, L,

dl= (nll/a22) p

de= n22(nlln22)
ds—=n2ns(nrr) '"(a22) '",

ds=n22/n22 p

d4= (a28)2(all)
—1/2 (n22) 3/2

m*= (niin22)
—'",

where the n;; are the elements of d defined in Eq. (43).
Now suppose there are three such ellipsoids located with
trigonal symmetry about the x3 axis. The total con-
ductivity is

o.
4

——o+Z(-222r)oZ( —-222r)+Z( ——222r)oZ(-222r), (47a)
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2 (trit+ tr22) 2 (tr12 tr21)

2 (tris trsl) 2 (trtl+ tr22) 0 ~ (4 ib)
0 0 30-33.

Then the conductivity related to experiment is

aBL —BL
0-~= Tet,. BL a;II;L

0 0
where

t'ai= 2 [(trit/cr22) + (t222/ctll)

&'—= (~»)'(~») '"(~.2)
'"

C '= t12cr3(c222) eT/C

S=—3m.

(48a)

(48b)

(48c)

(48d)

(48e)

SUMMARY

The foregoing example illustrates the ease with which
one may write the total conductivity tensor for a Fermi

surface consisting of a set of ellipsoids syrrnnetrically
placed about the direction of the magnetic 6eld. lt
should be clear, however, that even for a set of ellipsoids
having no symmetry with respect to the direction of the
magnetic 6eld one may follow the above recipe to
determine the total conductivity. One need only write
the a. tensors describing the various ellipsoids in a
connnon coordinate system chosen such that the
magnetic 6eld is along the 3 axis. The rest of the
problem is simply to perform the indicated tensor
multiplications and then to add up the individual
conductivities. Corresponding expressions for c", R",
and sr" are Obtained in an ObViOuS manner )See Eq.
(26)j. One may choose to represent the spherical
geometry solutions in an approximation different from
that of the Sondheimer-Wilson theory, ' but the method
of obtaining the ellipsoidal geometry solutions remains
the same.
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Anomalous Skin Effect for Specular Electron Scattering and. Optical
Experiments at Non-Normal Angles of Incidence*
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Received 14 March 1968

The anomalous skin eff'ect for specular electron scattering at the metal surface is studied, permitting the
impinging plane wave to have an arbitrary angle of incidence. It is shown that the expressions for the surface
impedance for a non-normal angle of incidence obtained by Reuter and Sondheimer as a generalization from
their work at normal incidence are correct for S polarization but incorrect for P polarization. The correct
surface impedance for P polarization leads to an additional absorption peak in the frequency range
10 co~(co&co„, where co„ is the free-electron plasma frequency. This additional absorption, particularly
pronounced for long electron lifetimes, is investigated in detail. One important conclusion drawn from this
work is that, in general, optical experiments performed at non-normal angles of incidence cannot be analyzed
in terms of a single complex frequency-dependent dielectric function. In the frequency range of the additional
P absorption, two such dielectric functions are needed, one function for describing P polarization and a dif-
ferent function for describing S polarization.

I. INTRODUCTION

l
'HE theory by which the anomalous skin effect

was incorporated into the general theory of the
optical properties of metals was developed in detail by
Reuter and Sondheimer' and Dingle' for both specular
and diGuse electron scattering at the metal surface.
This work, utilizing the Boltzmann equation, treated
the case of a plane wave incident normally on the metal
surface, although conclusions were drawn concerning
also the eGect of non-normal incidence. A quantum-
mechanical treatment of the anomalous skin eGect at
normal incidence with specular reQection was given by

*Work performed in the Ames Laboratory of the U. S. Atomic
Energy Commission. Contribution No. 2269.

'G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 (1948).'R. B. Dingle, Physica 19, 311 (1953).

Mattis and Bardeen'; their result for the surface im-
pedance was in agreement with that of Reuter and
Sondheimer.

A recent study of the classical optical properties of
an electron gas by the present authors4 indicated that
interesting absorption structure can occur at non-
normal angles of incidence, structure that possesses no
counterpart at normal incidence. This fact, together
with the appearance of the striking results of optical
studies performed by Mayer and his co-workers' on the
alkali metals at large angles of incidence, suggested to
us that a reexamination of the theory of the anomalous

'D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).
4 K. L. Kliewer and R. Fuchs, Phys. Rev. 153, 498 (196/).

H. Mayer and B. Hietel, in Optical Properties and Electronic
Structure of Metats and Alloys, edited by F. Abeles (North-Holland
Publishing Co., Amsterdam, 1966), p. 47, and references cited
therein.


