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Determination of Critical Behavior in Lattice Statistics from
Series Expansions. I.*
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A method is developed for determining the critical point and the critical exponent from terms of a series
expansion for a restricted class of functions. The advantage of the method is that under certain reasonable
assumptions it provides estimates for errors which are narrower than those usually given. As examples,
we consider the high-temperature susceptibility series for the Ising model and the analogous chain-generating
function for the excluded volume problem.

1. INTRODUCTION

N recent years there has been renewed interest, both
.. theoretically and experimentally, in the behavior of
fluids and magnets in the neighborhood of their critical
points. The system most studied theoretically has been
the Ising model. Exact analytical results are known for
the two-dimensional model, but since no analytical
results are known for the three-dimensional model,
considerable effort, chiefly by Bomb, Sykes, and co-
workers, ' has been devoted to obtaining series expan-
sions for the quantities of interest, and to obtaining
the maximum amount of analytic information from
the available terms in the series. Mathematically, the
simplest problem that occurs can be stated as follows:

A function f(x) has a power-series expansion about
the origin of the form

f(x) = P a„x",
n=o

and the coeKcients u„are known exactly for m= 0,
1, ~ ~ ~, h. Given that f(x) has at least one singularity
on the positive real axis, and that the closest such
singularity p ' is algebraic, find p, and the exponent p
under the assumption

f(x) = (1—ttx) &h(x), (1.2)

where h(x) is analytic in and on the circle
~

ttx j
&1 in

the complex x plane, except possibly at px= —1.
As examples, we consider here the high-temperature

susceptibility x of the Ising model and the analogous
chain-generating function C for the excluded volume

problem. In asserting that 7f and C have the form (1.2)
we are assuming (i) the closest singularity to the origin
is at

~
ttx

~

= 1 and (ii) the ' ferromagnetic" singularity

at ttx=+1 (tsx= —1 corresponds to the "antiferro-
magnetic" singularity)' factors. Both assumptions are
commonly made in the literature. ' %e stress, however,
that they are not generally valid for Ising-model and ex-

cluded volume functions. For example, the specific-
heat ferromagnetic singularity almost surely does not
factor, and for the low-temperature Ising-model series
one in general has singularities inside the circle

~
ttx

~

& 1.
In fact, the only functions for the Ising and excluded
volume problems that we believe have the form (1.2)
are the high-temperature susceptibilities and the chain-

generating functions.
Two methods that have been used extensively in the

problem of determining p, and y from terms of a series
expansion are the ratio method' and the method of
Pade approximants. ' Both methods give sequences of
values for y and y, which are assumed to be convergent,
and the results for p, and y represent extrapolated
limit points of the sequences, with errors stated being
confidence limits rather than true errors.

Our purpose here is to present a simple method, ap-
plicable to functions of the form (1.2), for determining

p, and y. The advantage of the method is that under
certain reasonable assumptions, precise error estimates
for p and y can be given. Moreover, if either one of p
or p is known, the estimate of the other is extremely
accurate. The results for the high-temperature sus-

ceptibilities and the chain-generating functions are
summarized in Tables I and II, respectively, where for
comparison we have included the values usually quoted
from the ratio and Pade methods.

Although the method presented here applies only to a
very restricted class of functions, we believe that it
can be generalized to cover a wider class of functions,
and we hope to report on this at a later date.

' For the Ising model it is trivial to prove that the antiferro-
magnetic singularity (for loose-packed lattices) occurs at nx= —1
if the ferromagnetic singularity occurs at px=+1. The analogous
result for the excluded volume problem has not been proved, al-
though from the known terms of the series expansions for C(x)
it seems very likely that the distribution of the singularities of
C(x) in the complex x plane for a given lattice is identical with
that of y{x) and depends only on the lattice in question.' G. A. Baker, Jr., Advan. Theoret. Phys. 1, 5 (1965).
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2. METHOD AND AN EXAMPLE

Consider a function f(x) of the form (1.2), and let us
assume initially that

h(x)~A(1+t4x)» as t4x~ —1. (2 1)
-0

Our method rests on the simple observation that for
functions of the form (1.2), with h(x) satisfying (2.1),
the coeffi ci er4ts a of (t4x) ~ ir4

i'4„(x) = (1+px) (1—t4x) &f(x) (2.2)

z
0
0

I 1 tI
1.24 1.25 1.27

CRITICAL EXPONENT

FIG. 1.Contour map of e values in the p -p plane for the function
(2.5).

L261.23

alternate iN Sigl ar4d deCreaSe irI mageitlde fOr I4+oI)
—1 ar4d for sugciemtly large rI4 Li.e., for m)M(r4),
where M(n) will in general be an increasing function
of I). This is proved simply by using the asymptotic
form of the coefficients for (1+I4x)"It(x) )remembering
(2.1)), viz. ,

f(—1)"A (rI4+I+ —1)!/4I4!(r4+n —1)!). (2.3)

Combinations of algebraic and logarithmic singularities
Lrather than (2.1)) can of course be treated in the
same way with the same result (2.2) .

lf the function f(x) does not have a singularity at
I4x= —1, we consider instead of f(x) in (2.2), f(x) de-
fined by f(x) =f(x) f( x), i.e.,—

f(x) = (1—I4x) &(1+I4x) &h(x) i'4( —x) . (2.4)

To demonstrate how the result (2.2) can be applied

-0Z
0
L

L22 L24 1.-26 1.28
CRITICAL EXPONENT

FIG. 2. Contour map of n values in the p -y plane for the simple
cubic high-temperature susceptibility.

to series analysis, let us examine the function

f(x) = (1—x) 5t'I1.125—0.125(1+x ') ln(1+x) I

= 1+1.1875x+1.34896x'+1.45117x'+1.54596x4

+1.61915x'+1.68859x'+1.7467x'+1.8024x'

+1.85109x'+ ~ ~ ~ (2.5)

which may be considered as a prototype of the high-
temperature susceptibilities for the loose-packed two-
dimensional lattices, '5 and let us imagine that only the
first 12 terms of the series are known, and initially,
that II is known to be unity. FromP(2. 5) we have that

(1—x) "4f(x) = 1—0.0623x+0.02092x' —0.01035x'

+0.006296x' —0.004128x'+0.003007x'

—0.002205x +0.001759x —~ ~ ~, (2.6)

which quickly settles down to the required alternating
and decreasing behavior Lnote that the "antiferro-
magnetic" singularity is weaker than a simple pole so
that (2.2) should and does hold for n=0). We would

say then that z is a possible value for p. Consider now

(1—x) '"'f(x) = 1—0.0605x+0.02171x'—0.009769x'

+0.006710x —0.003780x'+0.003287x'

—0.001957x'+0 001971x' ~ ~ (2.7)

This series does not settle down to the required behavior

4 M. F. Sykes and M. E. Fisher, Physica 28, 919 (1962).
& M. E. Fisher and M. F. Sykes, Physica 28, 939 (1962).
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TABLE I. High-temperature susceptibility critical exponents and critical points.

Method
(1} Two-dimensional lattices. ~

Quad raticb r Honeycombb Triangularb

Ratio and Pade
Present n=O

n=1
n=2

Exact

1.750&0.003
1.750a0.005
1.7497%0.0004
1.7499&0.0002

1.750%0.003
13 1.77&0.03
8 ~ ~ ~

6 0 ~ 0

1.750&0.003
23 1.82&0.15
~ ~ ~ 1 749+0.005

13
12

Method
(2) Three-dimensional lattices.

sc' r bcc' fcc'

Ratio and Pade
Present n=0

n=i
n=2

1.250+0.004
1.26&0.04
1.250%0.008
1.249~0.002

1.250&0.004
10 1.250&0.060
8 1.247&0.010
5 1 ~ ~

1.250%0.004
8 1.30+0.30
6 1.248&0.046

~ " 1.248+0.011

p ' assuming
7=5/4

Ratio and Pade
Present n =0

n=1
n —2

Pade
Present n=O

"=1
n=2

0.21815&0.00030
0.21809&0.00090
0.21814~0.00020
0.21812&0.00004

0.218156+0.000006
0.218134+0.000040
0.218144&0.000009
0.2181437%0.0000004

10
8
5

10
8
5

0.15617&0.00020
0.15609+0.00090
0.15612~0.00020

0.156179&0.000009
0.156152+0.000051
0.156171&0.000010

0.10175+0.00001
8 0.10179~0.00280
6 0.10170&0.00018

~ ~ ~ 0.10175+0.00013

0.101767a0.000007
8 0.101763&0.000240
6 0.101759~0.000032

0.101770&0.000014

The references given for each lattice indicate where the series may be
found. For the quadratic lattice, the blank entry indicates that, the zeros
close up so far from y =7/4 that no results are given. For the honeycomb
lattice, the presence of further singularities on the circle of convergence
requires a specialized analysis (see text) which leads to only one result.

Other blank entries denote that there are insuf6cient terms in the series for
results to be given in these cases.

M. F. Sykes, J. Math. Phys. 2, 51 (1961).
o Reference 6

and in fact is beginning to diverge. We conclude, there-

fore, that 1.248 is not a possible value for y. With the
aid of a computer i't is possible to try a sequence of
values for y, and, using as a criterion for selecting pos-
sible values for y that the last 12 terms of the series for
(1—x) &f(x) oscillate and, decrease, we find that

(I=0). (2.8)y= 1.250~0.002,

(1+x) (1—x)sI'f(x) = 1+0.9375x—0.04167xs

+0.01042x' —0.004167x'+0.00208x' —0.001190x'

+0.000744' —0.000496xs+ ~ ., (2.9

which converges much more rapidly than (2.6). If one
then examines hi(x) for a range of values for y and uses
as a criterion that the last 10 terms of the series alter-

Pur basic assumption |apart from (1.2)) is, of
course, that if the correct value of y is chosen, "regu-
larities, " once "established" in the known terms of the
series for h(x), will persist for all terms. Similar regu-

larity assumptions are inherent in both ratio and
Pade methods and in fact, in most, if not all, extrapola-
tion techniques. In all cases, whether a trend is judged
to be established or not is a matter of personal taste.

If one is willing to relax one's regularity requirements
somewhat, the estimate (2.8) can be improved by in-
vestigating the h„(x) series LEq. (2.2)) for e= 1, 2, ~ ~

and for a range of values of y. For example, with n= 1
we find that

y = 1.2500+0.0002,

y = 1.2500~0.0001,

(ts= 2)

(n= 3). (2.11)

For I)3 the h„(x) series show no convincing regularity,
so that one can conclude nothing with confidence. In
general (although not with our present example), the
irregularities in the coeflicients for higher n values
occur simply because multiplying by powers of (1+px),
although diminishing the strength of the singularity
at pm= —1, ampli6es the eGect of other singularities.
(Eventually, of course, the coeKcients must oscillate
and decrease if we have chosen the correct exponent. )
One must therefore exercise some caution when ob-
taining error estimates from large e values.

So far we have assumed that the exact value of p, is
known. Let us now assume that p is not known, which is
in fact the case for the three-dimensional Ising model
and the excluded volume problem in two and three
dimensions. We proceed exactly as above except that
now we examine the convergence of h (x) for a range of

nate and decrease, one has

7= 1.2500+0.0006, (ri= 1) (2.10)

which is a considerable improvement on the e=0 esti-
mate, Eq. (2.8) .

Similarly, with m=2 and m=3, using as a criterion
that the last nine and eight terms of hs(x) and hs(x),
respectively, alternate and decrease, we find that
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Tmz. E II. Chain-generating function critical exponents and critical points.

Method
(a) Two-dimensional lattices. '

Quadraticb ' r Honeycomb' Triangularb '

p, ' assuming
7=3

Ratio
Present n=0

n=l
Present n=0

n=l
Ratio
Present n=O

n=i

1.333+0.005
~ ~ ~

1.326+0.014

~ ~ ~

0.378867+0.00026

0.378932+0.000071 0.5420+0.0044
0.379008W0.000088 13
0.3790045+0.0000038 4 0.5410904&0.0000082 23

1.333+0.005
1,43~0.41

0.2404%0.0042

0.240862+0. 000063
0.24090&0.00027

Method
(2) Three-dimensional lattices.

scb r bccb, e ccb,e

Ratio
Present n=0

n=i
Present n=0

n=i

1.167&0.010
1.166+0.039
1.1631+0.0059

0.213631~0.00042
0.213512&0.000078

1.167&0.010
14 1.187&0.030
4 1.163&0.009

14 0.153099&0.00089
4 0.153152w0.00017

1.167&0.010
7 1.208+0.202
6 1.165&0.019

0.09977&0.0014
6 0.099636&0.000150

13
12

13
12

p ' assuming
7= 7/4

Ratio
Present n=0

n=i

0.213557&0.000012
0.213562&0.000016
0.213561~0.000001

=0.1529
14 0.153185&0.000053
4 0.153207&0.0000010

0.0996528%0.0000074
7 0.099663&0.000078 13
6 0.0996529&0.0000063 12

a The references given for each lattice indicate where the series may be
found. For the quadratic lattice, the blank entry indicates that the zeros
close up so far from y =4/3 that no results are given. For the honeycomb
lattice, the presence of further singularities on the circle of convergence
requires a specialized analysis (see text) which leads to only one result.
Other blank entries denote that there are insuKcient terms in the series for

results to be given in. these cases.
M. E. Fisher and B.J. Hiley, J. Chem. Phys. 34, 1253 (1961).
M. F. Sykes, J. Math. Phys. 2, 51 (1961).
M. E. Fisher and M. F. Sykes, Phys. Rev. 114, 45 (1959).

e M. F. Sykes, J. Chem. Phys. 39, 410 (1963).

p '= 0.9999~0.0017 y= 1.2506~0.022 r= 12,

y = 1.2505~0.003 r= 10,p, '= 1.00005+0.00026

values of p, as well as y. Thus for a range of values of

p and y we obtain the values of e for which at least the
last r terms of h„(x) oscillate in sign and decrease in
magnitude (the value of r depends on the number of
available terms and how reasonable one is). The results
for example (2.5) are shown in Fig. 1 as a contour map
of e values in the p-'-y. plane for the case r=8. For
N)4 the h„(x) series are not sufEciently regular for
reasonable conclusions to be drawn. Also, if one de-
mands more regularity, for example, by requiring that
at least the last nine terms of h„(x) oscillate and de-

crease, one obtains no I=3 values and therefore a
wider range of possible p and. p values. Similarly, if one
requires that the last 10 terms oscillate and, decrease,
one obtains no +=2 or m=3 values. The prescription
one adopts then is that the maximum value of e, de-
noted by n(r), where r is the number of terms of the

h„(x) series one requires to alternate and decrease,
corresponds to the correct p, and y. As can be seen from
the figure, this condition is satisfied by a range of values

lying in a thin closed region, the extremities of which

give bounds for both p and y. For this example we have

Note that the estimates for y are not nearly so accurate
as those given above assuming p is known to be unity.

In addition to the above example, we have studied
some more complicated functions and ha.ve concluded
that if nine to fifteen terms of a series are known for
functions of the type (1.2), requiring at least the last
five or six terms of the series for h„(x) to alternate and
decrease provides a reasonable criterion for determining
p and p.

3. APPLICATIONS

A. Ising Model

Let us consider first the high-temperature suscepti-
bility for the simple cubic lattice. Eleven terms of this
series are known, and the ratio and Pade estimates for
p and. p are usually quoted at about p '=0.21815~
0.00030 and y=1.250&0.004, respectively (with two
extra terms Sykes has recently estimated, that p '=
0.21814 with a possible error of a few parts in the last
figure) . We have scanned a range of values for p, and y
as indicated above and the resulting contour map is
shown in Fig. 2, which is almost identical in form with
that shown in Fig. 1. n=0, 1, and 2 in this case are

p '= 1 00000+0 00005 y = 1.2500~0.0006 r= 9,

p '= 1.000000~0.000016 7= 1.2500~0.0002 r= 8.

(2.12)

' C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961). The
last two terms of the simple cubic series are in error, but are cor-
rected in Ref. 5.

r M. F. Sykes (private communication).
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B.Excluded Volume Problem

The chain-generating function

C(x) = Q c„x",
n=o

(3.2)

where c„ is the number of I-step self-avoiding random
walks on a lattice, is the analog of the high-temperature
susceptibility ~ for the Ising model (in fact, the series
coeflicients for x are related to the c„'s). In this case,
however, there is no physical analog to the antiferro-
magnetic singularity and in fact no proof exists that
there is such a singularity. As mentioned, however, the
behavior of the series coefficients indicates the presence
of such a singularity for the loose-packed lattices, and

appropriate if one requires that at least the last ten,
eight, or five terms, respectively, of h„(x) oscillate
and decrease. The results are tabulated in Table I.
If one assumes that y= &, which is the value commonly
assumed to be correct, one finds that

p, '= 0.2181338&0.0000375 for r = 10 (n= 0),
=0.2181439&0.0000089 for r= 8 (n= 1),
=0.2181437&0.0000004 for r= 5 (n=2).

(3.1)

These estimates diBer somewhat from the Pade esti-
rnate' of p '= 0.218156&0.000006 (also assuming
y= s) but are quite close to Sykes's recent estimate of
0.21814.

The same method can be applied directly to the
high-temperature susceptibility for the quadratic,
honeycomb, and body-centered cubic lattices (since
these have antiferromagnetic singularities), and the
results are also given in Table I.

For the quadratic lattice it is known that y, =1+VZ
so we have only tabulated the results for y, which sup-
port very strongly the generally accepted result" of
y= 7/4 exactly in two dimensions.

Similarly, for the honeycomb lattice it is known that
p= K3 and that a pair of singularities occur at x= +ip '.
The latter is reflected in the series for hi(x) which shows
the characteristic + + ——sign periodicity result-

ing from such a pair of singularities. 4

For the triangular and face-centered cubic lattices,
which have no antiferromagnetic singularities, we first
form the series for y(x) x( —x) Lsee Eq. (2.4) 7 and
then apply the above method. These results are also
given in Table I.

moreover it seems that the distribution of singularities
for C(x) in the complex x plane is identical with that
for the Ising model for a given lattice. For example, if
one investigates hi(x) for the honeycomb lattice, one
encounters the same four-term sign periodicity for
C(x) as for z. If one assumes that this periodicity per-
sists for the correct p and p, one can eliminate those
values for which hi(x) does not show the required
periodicity. In this way one obtains the results given in
Table II.

Assuming then that C(x) is of the form (1.2), the
method described in the previous section can be applied
directly to C(x) for the loose-packed lattices, and to
C(x) C(—x) for the close-packed lattices. The results
are given in Table II.

In general, the C(x) series is not so well behaved as
the corresponding Ising-model series, and we do not
feel confident in giving results beyond n= 1.The results,
however, support the generally accepted values of
y=~ in two dimensions and 6 in three dimensions.
Assuming these values to be correct, we obtain the
estimates for the attrition p given in Table II, which are
considerably more accurate than those previously
published,

It is of interest to note that with these values for the
triangular and honeycomb lattices p& and p~, respec-
tively, we have

Pr+ prr =5.999&0.006

(or, using the result of Sykes et al.s for the triangular
lattice, we obtain pr+ prr

——5.9999&0.0015), which
supports very strongly Sykes's conjecture that the sum
should be precisely six. (The analogous result for the
Ising model is p~ —p~= 2, and a similar result holds for
the percolation problem. )
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