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Collective Excitations and Magnetic Ordering in Materials
with Singlet Crystal-Field Ground State
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The low-lying magnetic excited states ("Frenkel spin excitons") in rare-earth compounds with a singlet
crystal-Geld ground state are studied. We consider the effect of exchange interaction between the ionic
momerits as it increases from zero towards the critical value necessary for magnetic ordering at zero tem-
perature. For simplicity, we consider the two-level system where the 6rst-excited crystal-6eld state is also a
singlet. By employing a pseudospin formalism, we avoid many of the fundamental difFiculties encountered
in previous treatments which introduce fermion operators for each of the crystal-6eld states. Applying
techniques similar to those used in treating standard spin problems such as the Heinsenberg fer'romagnet, we
obtain an improved collective-excitation spectrum with a gap which decreases as the exchange increases.
The critical value of exchange for magnetic ordering found is substantially greater than that obtained
from molecular-Geld theory, and also is somewhat greater than that found with the constant-coupling
approximation.

I. INTRODUCTION

N rare-earth compounds, the crystal electric field can
.. be comparable to or even dominant over the ex-

change field between rare-earth ions. Thus, the crystal
field is expected to play a very important role in the
nature of the macroscopic magnetic properties and of
the collective excitations for such materials. Indeed, for
rare-earth compounds with a singlet crystal-6eld ground
state for the rare-earth ion, the exchange interaction
must exceed a certain critical value relative to the
crystal field to have magnetic ordering even at zero
temperature. ' ' The magnetic moment which occurs
in such a case is essentially an induced moment cor-
responding to the Van Vleck susceptibility, where the
exchange field takes the place of an applied external
magnetic field. (This is then a sort of "bootstrap"
process where, at zero temperature, the induced moment
in the ground state gives an exchange field which self-
consistently determines the induced moment. ) Trarn-
mell" first pointed out the existence of a critical value
for the exchange necessary, even at zero temperature,
for such a bootstrap process to give magnetic ordering.
Bleaney' has also discussed this effect using the molec-
ular-field approximation. Recently, Cooper4 calculated
this critical value by use of the constant-coupling
approximation. The critical value of exchange necessary
for magnetic ordering was significantly increased over
that necessary in the molecular-field approximation.
As Cooper pointed out, it is the short-range correlation
that gives rise to the change in critical value. It should
be possible to examine experimentally the critical ratio
of the exchange to the crystal field necessary for mag-
netic ordering by using mixed rare-earth crystals. 4'

The energy of the collective excitations for such
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singlet ground-state systems is of interest both in itself
and also because the theory of the excitation behavior
provides a criterion for the critical value of the exchange
necessary for magnetic ordering. If one investigates the
nature of the collective excitations in the paramagnetic
regime at zero temperature (exchange less than the
critical value) for ferromagnetic exchange, this criterion
for ferromagnetic ordering is that the zero wave-vector
mode becomes unstable. If one investigates& the low-

lying excited states using the Bogoliubov-type approxi-
mation developed by Van Vleck, ' Trammell, ' and
Grover, 7 the critical ratio of exchange to crystal-Geld
interactions necessary for magnetic ordering is exactly
the same as that in the molecular-field approximation.
Therefore, an improved calculation of the collective-
excitation spectrum is desirable that will include cor-
relation effects on the determination of the critical
condition.

The energy behavior of the elementary excitations is
also of interest since understanding it provides the basis
for calculating the various thermodynamic properties.
Perhaps even more important, one can hope to observe
directly the excitation spectrum by neutron inelastic
scattering. Then comparison with theory for the excita-
tion energies should allow direct determination of the
exchange interaction, as for example has recently been
done in terbium' ' and erbium" metals.

We have therefore studied the collective excitations
for the crystal-field singlet ground-state problem using
a technique that takes better account of short-range
correlation than the Bogoliubov-type approximation.
In particular, we have calculated the energies of collec-
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tive excitations for the two-level system where the 6rst
excited state is also a singlet. This has been done using
a pseudospin formalism where the expectation value of
S;„the pseudospin for the ith ion, corresponds to the
occupation of the molecular-6eld states for that ion.
(The expectation value of S,, for the true ground state
would be ——', if the molecular-6eld approximation were
exact. ) This method allows us to take into account the
Quctuations of the ground state as well as the interac-
tions of the excitation waves. Restricting our study to
the two-level system simplifies the algebra greatly;
however, it should be possible to generalize the formal-
ism to any type of crystal-field level configuration. In
practice, our calculation would apply, for example, to
Pr'+ in an hexagonal environment.

In this paper, we then obtain the improved dispersion
relation which takes into account the correlation effect
of excitation waves for the two-singlet-level problem.
The critical value of the ratio of exchange to crystal-
6eld splitting necessary for ferromagnetic ordering is
obtained using the criterion of the instability of the
k=O excitation energy (i.e., the k=0 excitation energy
becomes imaginary for exchange greater than the
critical value). This critical value is larger than that
found in the molecular-6eld approximation. For nearest-
neighbor exchange, the increment for a simple cubic
lattice is 18%, and for body-centered cubic 14%, over
the corresponding molecular-field results. For purpose
of comparison we have also calculated these values in
the constant-coupling approximation. The increments
then are smaller: 12% for simple cubic, 9% for body-
centered cubic.

In Sec. 2 we review the molecular-6eld theory for the
singlet ground-state system and the elementary excita-
tion theory using the Bogoliubov-type approximation.
The treatment of the collective-excitation theory, and
the resulting criterion for magnetic ordering using the
pseudospin formalism, is presented in Secs. 3 and 4.
The pseudospin Hamiltonian is solved using the
equation-of-motion technique with two different ap-
proximations. First, in Sec. 3, a random-phase approxi-
mation (RPA) is adopted to linearize the equations of
motion. The results of the RPA reQect the fact that the
molecular-6eld ground state is not the true ground state
of the system. However, correlation effects of excita-
tions on different sites are not included in the RPA.
Therefore, in Sec. 4, an improved approximation is used
which should be more accurate in taking care of correla-
tion effects at low temperatures where the population
is mainly in the molecular-6eld ground state.

2. MOLECULAR-FIELD THEORY AND ELEMEN-
TARY EXCITATIONS IN BOGOLIUBOV-TYPE

APPROXlMATION

To review the earlier theories, we consider the
Hamiltonian

(2 1)

Here V„. is the single-ion crystal-field potential which
gives a singlet ground state and a singlet excited state,
separated by an energy gap h. In (2.1), J; is the total
angular momentum of the rare-earth ion at the ith site,
and g;; represents the effective exchange integral. The
sum in the exchange term is over all interacting pairs of
ions.

We can express the total Hamiltonian as follows:

where
(2.2)

(2.3a)

(2.3b)

with the definitions

and
(2.4a)

(2.4b)

~ is the molecular-field Hamiltonian. In (2.4a), e,
denotes a unit vector in the 2' direction. The quantity
&J& is the statistical average of the angular momentum
per ion, J„and must be determined self-consistently.
At zero temperature and in the molecular-field approxi-
mation, &J) is the expectation value of J, over the
molecular-field ground state.

In the molecular-field approximation, Kj is discarded
and X0 is diagonalized to give the molecular-field
eigenstates

~
0) and

~
1).

~
0)= cos8

~
0,)+ sin8

~
1,),

11&= sine
I
0.)+ cos9

~
1,).

(2.5a)

(2.5b)

Here
~
0,) and

~

1,) are the crystal-field ground and
excited state, respectively, which can be obtained by
solving the crystal-field Hamiltonian V,. In our general
discussion we do not need the explicit form of the two
states which may differ from material to material. We
only assume that they are magnetic singlets.

The rotation angle which diagonalizes Xp is given by

(2.6)
where

(2 &)

is the off-diagonal element of the angular momentum
which leads to the Van Vleck susceptibility in the
presence of an external magnetic field. It is to be recalled
that 6 is the energy gap between the two crystal-field-
only singlets.

Now &J& is obtained self-consistently. At T=O,

&J)= (0
~
J,

~

0&=n sin28 (2.8)

&~)=48(0)~'&~&/t ~'+ L48(0) ~&~)j' j'". (2 9)

The condition for an infinitesimal moment at T=O is



j.72 COLLECTIVE EX CITATIONS

therefore
4$(0)a'/6= 1. (2.10)

At finite temperatures, the critical condition can be ob-
tained similarly. In that case (J) is the thermal average
rather than the ground-state expectation value. For
details we refer to the paper by Bleaney. '

The behavior of the collective excitations for singlet
crystal-Geld ground-state systems was studied first by
Van Vleck' and by Trammell, ' and later by Grover, "

using the Bogoliubov approximation' originally applied
to the liquid-helium problem. The collective excitations
so obtained are analogous to the spin waves obtained
for the ordinary Heisenberg ferromagnet; where, how-
ever, in the present case the basic excitation transmitted
between ions is that from one single-ion crystal-field
level to another.

The Bogoliubov-type theory proceeds by assigning
fermion operators to each molecular-field energy level
at each ion site. Then d;~t creates and d;& annihilates a
particle in the molecular-Geld excited state

I 1) at site i.
We then rewrite the Hamiltonian in the second quan-
tized form:

XO Q $60dio djo+Eldii di17q (2.11)

where eo and e& are the single-ion molecular-Geld energy
levels,

go= —2A cos28—2$(0) (J&n sin28, (2.12a)

&I.= —
&O&

with 8 given by (2.6); and

8'i(» I i' I ~& &»'
I ii I

~'&
i,j n, m, n/, tn/

(2.12b)

Xd;„td; d,„.td; „, (2.13)

where n, m, n', m' are summed over the two single-ion
states.

It should be noted that the Hamiltonian in this fer-
mion representation is not exact since ~ of (2.11),
besides having eigenstates where, for the ith ion, either
the state

I 0) or the state
I 1) is occupied, also has un-

physical eigenstates where both
I 0) and

I 1) are
occupied, or both unoccupied, for the ith ion. This source
of inaccuracy exists even at T=0, since the presence of
Ki means that the ground state of ~ (the molecular-
Geld ground state) is not the true ground state of the
system. The mixing caused by K& of the excited states
of Kp to the ground state of Xp to give the true ground
state (fluctuations giving rise to occupation of excited
states from the molecular-field point of view) then
means that the unphysical eigenstates of the fermion
expression for Xo given in (2.11) contribute to the
calculated behavior even at T=0. This problem of the
unphysical states of Ko and the resultant inaccuracy is,
of course, much worse as temperature increases, and one
has thermal population of the excited states of ~ even
neglecting the mixing eGects of K~.

It should also be pointed out that if one does adopt
the fermion Hamiltonian of (2.11) and (2.13), strictly
speaking the quantity (J) should be determined self-
consistently. At zero temperature, the expectation value
should be taken over the true ground state instead of the
molecular-field ground state. Grover, ~ however, took
the molecular-field approximation value for (J) to
simplify the calculation in the ordered phase. In the
paramagnetic phase, no such question will arise since
(J)=0 is exact.

With the Hamiltonian given by (2.11) and (2.13)
one proceeds further by introducing the operators

~iI.=diO deal& +~I =~a dsO (2.14)

The commutation relations for these operators are

La;„a„7=La, , ', a„'7=0,

I a;„a;,t7= b;,»,o 8;,»—,,-8;,
(2.15a)

(2.15b)

Here n;o and n;~ are the occupation-number operators
for the molecular-field ground and excited states,
respectively, on the ith ion. The last step of Eq. (2.15b)
follows by neglecting n;I, the population of the molec-
ular-Geld excited state, and replacing n;0 by unity, a
c number. This approximation is consistent with that
introduced in the fermion representation of the Hamil-
tonian. Therefore, a;~ and u;I ~ are approximated as boson
annihilation and creation operators. The Hamiltonian
LEqs. (2.11) and (2.13)7 can then be rewritten in terms
of these boson operators; and one retains only the quad-
ratic terms. Diagonalization of the quadratic boson
Hamiltonian then proceeds by standard technique.

The energy spectrum obtained in the paramagnetic
phase where (J&=0 is

with

and

Ei,=6(1—A») '",

A =4g (0)n—'/6

(2.16)

(2.17a)

3. PSEUDOSPIN FORMALISM: RPA

To treat the behavior of the two-level system more
accurately, especially in the vicinity of magnetic order-

»—=8(lr) /8(0) . (2.17b)

The excited state characterized by the wave vector k
is analogous to the spin-wave state in the spin--,'
Heisenberg ferromagnet. However, instead of spin de-
viations, excitations from the crystal-Geld ground state
to the excited state are passing from one site to another.
The energy spectrum shows a gap, and in the ferrornag-
netic case the minimum of the spectrum occurs at k =0,
where y~=i. It is seen that the gap decreases as A
increases toward 1 and becomes imaginary for A) 1,
indicating that the paramagnetic ground state is not
stable for A=1. This signals the transition to the
ferromagnetic phase. The critical ratio of exchange to
crystal-field interaction for the phase transition is
identical to that predicted by molecular-Geld theory.
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ing, we use a pseudospin representation to describe the
system. This is based on the fact that the matrix ele-

ments of the Hamiltonian for a two-level system can
always be written in terms of the Pauli matrices, and
thus the Hamiltonian for such a system can always be
written in terms of an effective spin Hamiltonian with
spin equal to -', . Ke assign S,= ——', to the molecular-
held ground state and S,= —,'to the excited state. It is
a simple matter to project the exchange Hamiltonian
onto this manifold, and thereby to express the exchange
interaction in terms of pseudospin variables. This
involves recognizing the form of the four spin--', opera-
tors which correspond to 2/2 matrices, with unity as
one element and zero as the other three elements. These
operators, for the ith ion, are S;+, S;, S, S;+, and
S;+S; . For example,

(0
5'+=

I

Io 0)
Then, by inspection, the total Hamiltonian of (2.2),

(2.3a), and (2.3b) is given in the pseudospin representa-
tion as

X= g wos, s g A~i(noised +nios~++noos~ 5,+
's &i,j)

hexagonal system, such as Pr'+ in PrF3, the s axis is the
axis of hexagonal symmetry.

YVe also emphasize that the transformation to the
pseudospin representation, and the consequent treat-
ment below, proceeds in the same way when the ex-
change is anisotropic. For the two-singlet model being
discussed, anisotropic exchange of the form 3C=

P(, ,g;,J;,J;, introduces no changes. This is because
the vanishing of the J, and J„matrix elements means
that the treatment is exactly the same as for Heisenberg
exchange. However, for situations as discussed in Sec.
5, where the excited state is a triplet, anisotropic ex-
change would introduce new effects. (Of course, there is
no real even-electron system where the owly states of
the system are two singlet levels. There would always
be higher-lying states whose J and J„matrix elements
with the two singlet states would, in general, be non-
zero. Thus, in all real systems anisotropy of exchange
would affect the n,agnetic properties to a 6nite extent. )

In the paramagnetic regime with no applied held

(J)= 0, and consequently e=0 in Eqs. (3.2) —(3.6) .
The Hamiltonian is consequently simplihed:

X=+AS —gg "n'(2S,+5; +5;+5;++S; 5; ).

+niiR+8 ) (noisy +niosg++noos) 5,+

+ „5,+5, )+Kg(0) (J)', (3.1)
The exchange term can be rewritten so that

X= g ~5„—4 P g,,noS,,S,.
(3.7)

(3.8)
~ito

——0 cos2e+4g (0) (J)a sin2e (3.2)

so that ——,'mp equals the molecular-field ground-state
energy per ion, and +-', ioo equals the molecular-field
excited-state energy.

aio= o.=(1lg lO)= cos2e,

noo= (0 l j, l 0)=a sin2e —(J),
n„= (1 l j, l 1)= —n sin2e —(J),

tan2e= 4g(0) n(J)/a.

(3.3)

(3 4)

(3.5)

(3 6)

' J. S. Grifhth, Phys. Rev. 132, 316 (1963}.

Here n, as defined in (2.7), is the off-diagonal element
of angular momentum between the crystal-held-only
states. It is to be recalled that

l 0) and
l 1) are the

single-ion molecular-field states. The energy gap
between these two states is mp, which equals 6 in the
absence of magnetic ordering or applied field.

Ke point out that we have chosen the s axis of the
crystal so that only the s component of angular momen-
tum, J„has nonzero matrix elements between the
crystal-held-only singlet states. The oG-diagonal matrix
elements of J, and J„vanish. (Of course, all diagonal
matrix elements of angular momentum vanish for a
singlet state. ) Such a choice of axis is always possible
for an even-electron two-singlet-level system. " For a

Thus, the Hamiltonian is seen to be quite anisotropic in
the pseudospin variables, and 5, is not conserved. (The
Hamiltonian is, in form, identical to that for an Ising
spin system with a transverse magnetic field. ) How-
ever, since S, describes the population of the two
molecular-field energy levels (the two crystal-field
singlets in the present paramagnetic case), we can
anticipate that S, deviates from —-', by only a very
small amount at low temperature. The nonzero popula-
tion of the excited molecular-field state at T=O arises
from the fact that the molecular-held ground state is
not an eigenstate of the total Hamiltonian. This is
analogous to a Heisenberg ferromagnet with dipole-
dipole interaction, where the zero-temperature moment
is not saturated.

To hnd the low-lying excited states which are de-
scribed by the collective motions, we study the equa-
tions of motion of the spin operators for the gth ion,
Sg+ and Sg

i8o+= Lso, Xj= —Aso+ —4n' Q /go(so, sr++So, sy ),
f

(3.9)

~S, = Lso
—

) X)=Eso—+4n' +pro(so, sg++So,sg)—
f

(3.10)
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In the RPA we make the replacement

5„5,+ — (s,)s,+,
graf

where (5,) denotes the average value of the operator
5„.Multiplying both sides by (1/QÃ) exp( —ik r,)
and summing over g we obtain the equations of motion
in k space.

i8+(k) = —65+(k) —4npg(k) (5,)t 5+(k)+5—
(—k) ),

(3.12)
i8 (—k) = 65—

(—k)+4n2$(k) (5,)/5+(k)

+S (—k) j, (3.13)

replace 5,+ and 5, by their Fourier expansions, and
take the ground-state expectation value. This gives

(5,)= —
—2,+(1/cV) Q expL+i(k, —k, ) rp]

kl, k2

X «'p
I
5'(k ) 5 (k2) I

C'p) (3 23)

Then we write S+(k) and 5 (k) in terms of 8+(k) and
8 (—k) by use of the inverse transformation to that ot
(3.19). This replacement together with use of the
property (3.21) leads to
(5,)=

—2+(1/1V) g expL —i(k,—k.) r,j sinhPk, sinhPi,
k1,k2

where

5+(k) =—(1/QÃ) g 5,+ exp( —ik r, ) (3.14) Also,
X(4p

~

8 (k&)S+(k2)
~

&p). (3.24)

and g(k) is defined in (2.4b).
The generating operator for the elementary excita-

tions, 8+(k), is therefore a linear combination of
S+(k) and 5 (—k) such that

fX 8+(k) $ ~
C'p)= EBS+(k)

~

C'p) (3.15)

where
~

Cp) designates the true ground state of the sys-
tem. Using Eqs. (3.12) and (3.13), it is a simple matter
to find S+(k) such that

—ias+(k)/a~= Pe, 8+(k) )=E,S+(k). (3.16)

This gives the elementary excitation energy

(C, i
S (k, ) 8+(k,) i

C,)
= L

—2(c',
I
s, (0)

I
e,)+ (c, I

8+(k) 8-(k)
~
c,&]s,.„.,

= (1—28)big„(3.25)

where we have used (3.20) and (3.21) and introduced
the definitions

~—= (5.)+-:, (3.26a)

5,(k) =—(1/1V) Q 5,, exp( —ik r,). (3.26b)

(5,. )= —-', +(1/cV) Q sinh2P, (—2(5,)) (3.27)

Ep EL1+8(5,)——n2g (k) /6)"'= 8 (1+2(5,)Ay ) '"
(3.17)

where
A =—4g(0) n2/6,

v.=—a(k)/a(0) (3.18b)

The generating operators for the excitation modes are
then given by

or

so that

(5.)= —lL1+(2/&) Z ' h'&-?'

(S,) —2+ (1/1V) g sinhppl,

8 (1/1V) g sinh2Pi.

(3.28)

(3.29)

(3.30)

with

8+(k) = coshPI, S+(k) —sinhPqs (—k), (3.19)

tanh2PI, ———(5,)Apl /(1+ (5,)Ayq) . (3.20)

8-(k)
I
C.)

—=0 (3.21)

for all k. To evaluate (S,) we make use of the relation-
ship

(3.22)SP& 2+ SP SP

From (3.17) we see that a knowledge of (5,), the
average value of the operator 5„,is necessary to deter-
mine the excitation-energy spectrum, the behavior of
which in turn determines the critical value of A neces-
sary for magnetic ordering. For this purpose (S,) must
be determined self-consistently. At T=0, (5,) is an
expectation value over the true ground state,

~
4'p),

which satisfies the condition

The smallness of 8 follows from expecting the admix-
ture of the molecular-field excited state into the true
ground state to be small. One expects 8 to take on its
maximum value at A=A„;&, since then the excitation
energy gap vanishes. However, even in that case, we
expect 8 to be small; and this, indeed, is the result of our
calculation.

From (3.20) we see that P~ depends on (S,) so that
(3.29) must be solved self-consistently to find (5,) for
specified A. In particular, we are interested in finding

(5,) when A has the critical value necessary for mag-
netic ordering at zero temperature. This critical value is
obtained from the condition that some Ek given by
(3.17) go to zero (and would become imaginary for
exchange of greater magnitude) . For ferromagnetic
exchange the minimum of the dispersion curve given by
(3.17) occurs at 4=0, so that A„;, is that value of A
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for which Ei, vanishes in (3.17) with 4=0. Since before doing any approximation. Since

Ep ——LL1—(1—28) Ayp]i", (3.31)
for spin ~ and

5+5 +S 5+=1 (4.2)

the relationship between 3 a,nd 8, when A is equal to the
critical value, is

A.„,= 1/(1 —28) . (3.32)

Then, for A =A.„~ we can. rewrite (3.20) and (3.29) as

ianh2Pi ——pi/(2 —yp) . (3.33)

4. PSEUDOSPIN FORMALISM: TWO-SITE
CORRELATION APPROXIMATION

The RPA given by (3.11) is not an ideal approxima-
tion. This can be seen by considering Callen s discus-
sion" of the Green's-function theory of ferromagnetism
for the Heisenberg ferromagnet. The correlation effects
of excitation waves are neglected in the RPA; and,
because of the highly anisotropic form of our Hamilton-
ian (3.8), these effects could be very important.

Callen" suggested a,n approximate way to replace
Sg, in the equations of motion which is valid both at
low temperature where &5,&, the thermal average of
S„, is approximately —-', and at high temperature,
where &5,) approaches zero. Following Callen, one
writes S, in the form

5*= &5.&+ul —&5.))5'5 —(l+&5*&)5 5'] (41)

"H. B. Calle@, Phys. Rev. 130, 890 (1963).

Thus, for A =A „;„Pi,is just a function of yi, .For nearest-
neighbor exchange, it is a straightforward matter to
evaluate the sum in (3.30) to give 8 for a given lattice.
(The general method used in evaluating sums of this
sort is illustrated in Appendix A.) Numerical calcula-
tion shows 5=0.02 for the simple cubic lattice and
5=0.015 for the body-centered-cubic lattice with
nearest-neighbor exchange interactions. Therefore, in
the RPA ground state only 4% of the molecular-field
excited states are populated for the simple cubic, and
3% for the body-centered-cubic lattice. The critical
ratios A„;t, are increased by about the same amounts
over the molecular-6eld-theory results. This increment
directly reQects the zero-point population in the single-
ion molecular-6eld excited levels. The Bogoliubov-type
calculation which ignores this effect, corresponds to
taking &S,&= —

~ in the approximation of Eq. (3.11).
This is a very strong approximation for 6nite tempera-
tures and restricts the Bogoliubov-type calculation to
very low temperature even if one is willing to accept
inaccuracies connected with the zero-point population
of the molecular-6eld excited levels. The RPA repre-
sents an improvement over the Bogoliubov-type
calculation in this respect, in that at 6nite temperatures
&S,&

is taken as the self-consistent thermal average of
S„for the system.

(4.3)

Eq. (4.1) is exact. The quantity to be treated approxi-
mately is in the square brackets and is always small.
This term in brackets then introduces effects into the
equations of motion which are neglected in the RPA.

Before going on to the actual treatment of the collec-
tive excitations, we can see the nature of the new effects
(beyond RPA) introduced by using the approximation
of (4.1) . In the Fourier-transformed equations of
motion, corresponding to (3.12) and (3.13), there
appear new three-spin terms of the form

(1/1V) Q g(k —ki+k2) 5+(k—ki+kn) S+(ki) 5—
(k2) .

k1k2

(4.4)

A reasonable linearization procedure is the following:

(1X) Q g(k —ki+kn) 5"(k—ki+k2) 5+(ki) 5- (k2)
k1k2

(1/&) Za(k) &5'(k)5 (k))5+(k)
k1

+(1/&) Za(k)(5+(k)5 (k) &5'(k)
k1

+(1/1V) Qg(ki) (5+(ki)S"(—ki))5 (—k). (43)

&5"(k)5 (q))=0 (4.6)

for k&q. Equation (4.6) is also true at finite tempera-
ture, when the canonical thermal average is taken,
because of the conservation of the linear momentum.
LWe note that (4.5) is equivalent to the symmetrical
decoupling approximation used by Callen in the
Green's-function theory of ferromagnetism. "]

We can now see what additional physical effects
beyond the RPA are introduced by the terms on the
right of (4.5). Considering the special case of nearest-
neighbor exchange, this can be seen by noting that

(1/&) Z a(k) &5'(k) 5-(4) &

ky

=La(0)/72&5"5 -&, (4& )
g/

(1/~) Z~(k. ) &5 (k)5.(-k.) &

=58(0)/ ]Z &5'5 ") (47b)

This linearization approximation comes from taking all
possible expectation values for two spin operators. At
zero temperature, it is easy to see then that only the
terms shown on the right side in (4.5) survive if we
anticipate that the transformation to the generating
operators for excited states is of the form given in
(3.19). This follows from the definition of the ground
state given in (3.21), which leads to the condition
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l.0—

0,8

0.4

0.2—
Bogoliubov- type

Approximation

i

0.2 5 0.50

ka/ r
0.?5 I.00

FxG. 2. Comparison of dispersion curve calculated in the TSCA
with that calculated in the Sogoliubov-type approximation.
Calculations are for simple cubic lattice with nearest-neighbor
ferromagnetic exchange at zero temperature.

dispersion law for the TSCA to that using the Bogoliu-
bov-type approximation. (The calculations are for a
simple cubic lattice with nearest-neighbor exchange at
zero temperature. ) The difference between the curves
for the two approximations is quite substantial as A
approaches the critical value, and is very small for
A &-',A„;t,~ This is expected since the smaller the A value
is, the bigger the gap becomes and consequently the
closer the molecular-field ground state is to the true
ground state. (The corresponding curves for the RPA
would lie between those for the TSCA and those for the
Bogoliubov-type approximation, but closer to the
latter. For 2 =0.94 the RPA curve has Ei/6=0. 28 for
k=0 and Ei/6=0. 83 for k= sr/a As te.mperature in-
creases the RPA curve moves toward the TSCA curve,
and both then substantially deviate from the curve for
the Bogoliubov-type approximation. ) Again, as in the
case of the critical value of g(0)/5 for magnetic
ordering, for the singlet-ground-state —triplet-excited-
state situation, we may expect even greater differences
between the dispersion law for the TSCA and that using
the Bogoliubov-type approximation than for the sin-
glet-singlet case as g(0)/6 approaches the critical value.

In the discussion above, we have taken a ferromag-
netic exchange interaction. For antiferromagnetic
coupling, the calculation is the same, since we are in the
paramagnetic regime. However, the minimum of the
dispersion curve occurs at k = m/a, where yi = —1 instead
of at k=0. Then

~.„,= 1/(1 —2~) (1+2.). (4.15)

The self-consistent calculation shows that 5 is the same
as that in the ferromagnetic case, and e differs from the
ferromagnetic value by only a sign. Therefore

~
A„;&

~

is identical to A.„~ for the ferromagnetic case. This is
diferent from the constant-coupling calculation, ' where
there is a small numerical difference between A„;t, for
the ferromagnet and ~.4„;i

~
for the antiferromagnet.

This difference may result from the fact that in the
present pseudospin calculation the critical point is

approached from the pa, ramagnetic region; while in the
constant-coupling calculation, the critical point is
approached from the antiferromagnetic region. Thus,
any zero-point effects associated with the nature of an
assumed antiferromagnetic ground state do not appear
in the result of the present calculations using the
pseudospin formalism.

S. DISCUSSION

In the present work, we have developed a technique
for studying the collective excitations in singlet crystal-
field ground-state systems. The treatment developed
here especially represents an improvement over previous
treatments as the exchange approaches the critical value
necessary for magnetic ordering with infinitesimal
moment at zero temperature. It is worthwhile to con-
sider the various ways in which the present results can
be generalized to apply to specific materials of interest.

While the numerical examples for the TSCA cited in
Table I and in the figures treated the special case of
nearest-neighbor exchange, this was done for illustrative
purposes and to give comparison with the results of
other approximations. Both the RPA and TSCA in the
pseudospin formalism, as presented in Secs. 3 and 4,
respectively, are applicable to exchange of any range.
In this respect they represent an improvement over the
constant-coupling approximation for evaluating A„;t,.
While the constant-coupling treatment can be extended
to farther than nearest-neighbor exchange, the treat-
ment becomes quite involved even when the only
addition is second nearest-neighbor exchange.

The treatment of collective excitations with the
pseudospin formalism can also be extended in a straight-
forward fashion to the magnetically ordered regime, or
to the paramagnetic regime when an applied magnetic
field is present. This involves treating the complete
Hamiltonian of (3.1) rather than the reduced Hamil-
tonian of (3.8). Since the transition to magnetic order-
ing at T=O as exchange increases is second-order, the
value of A„;t (the ratio of exchange to crystal-field
interaction necessary for magnetic ordering) is the same
whether calculated, as here, for the paramagnetic regime
going into the ordered regime, or vice versa. For the
magnetically ordered ca,se, the present techniques can
also be used to study the behavior near the ordering
temperature. The results for the applied field and
magnetically ordered cases wiB be presented in a, future
publication.

The pseudospin formalism can also be extended to
treat cases where the excited state is not a singlet; for
instance, the rare-earth group-V compounds of NaCl
structure where the first excited state is a triplet. When
the excited state is a triplet, the pseudospin takes the
value —„and the spin Hamiltonian is more complicated
than that of (3.1). Besides the angular-momentum
matrix element a linking the singlet ground state to the
excited triplet state, there is a second, independent,
angular-momentum ma, trix element linking the states
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of the triplet. 4 Also, the treatment of anisotropic ex-
change becomes more complicated than in the singlet-
singlet case. This is because one no longer can use the
fact stated at the beginning of Sec. 3, that in the singlet-
singlet case one can always choose a z axis such that the
matrix elements of J and J„vanish.

It is, of course, possible that in a real crystal there is
in addition to magnetic ordering a lattice distortion as
exchange increases. In the present paper, we have cal-
culated the critical value necessary for magnetic order-
ing of the ratio of the exchange to the crystal-field inter-
action. Therefore, we could allow the crystal-field
splitting 6 to change at the same time as the exchange.
For a more involved situation than the two-singlet-level
problem treated herein, a change of symmetry (say
cubic to some lower symmetry) associated with dis-
tortion could introduce a further complication.

With actual physical systems, one will sometimes
desire to treat excited states beyond the erst excited
state. For example, the anisotropic magnetization" '5

for rare-earth compounds of NaCl structure with
group-V elements arises from the effect of excited states
above the first triplet. In practice, one can probably
use a hybrid approximation to treat the states lying
above the first excited state. The critical value of ex-
change for magnetic ordering is basically determined by
the mixing of the first excited state into the singlet
ground state. Therefore, one can treat the effect of the
higher excited states more approximately than that of
the first excited state. One could treat the erst excited
state in the TSCA, but use an RPA or molecular-field
approximation to treat the effect of higher-lying states.

Before discussing some compounds with singlet
ground states where experiments can be performed
showing the effects treated herein, we should point out
that even when the crystal-field ground state for a
magnetic ion is not a singlet, the crystal Geld can pro-
foundly effect the magnetic ordering process. For
example, the ordering temperatures and ordered mo-
ment of Er compounds of NaCl structure with group-V
elements are considerably lowered by crystal-field
effects. ' ' "The present pseudospin formalism could be
extended to dealing with the ground-state degenerate
manifold, and if necessary to also include the 6rst-
excited-state manifold, for such a compound.

The most extensively studied compounds involving
magnetic ordering in systems with crystal-field singlet
ground state are the rare-earth compounds of NaCl
structure with group-V elements. i 2'~i9 (The behavior

"B.R. Cooper, I. S. Jacobs, R. C. Fedder, J. S. Kouvel, and
D. P. Schumacher, J. Appl. Phys. 3'7, 1384 (1966}."B.R. Cooper, Phys. Letters 22, 24 (1966).

'5 O. Vogt and B.R. Cooper, J. Appl. Phys. 39, 1202 (1968).
"H. R. Child, M. K. Wilkinson, J. W. Cable, W. C. Koehler,

and E. O. Wollan, Phys. Rev. 131, 922 (1963).' G. Busch, P. Junod, O. Vogt, and F. Hulliger, Phys. Letters
O, 79 (1963).

"G.Busch, P. Schvrob, O. Vogt, and F. Hulliger, Phys. Letters
11, 100 (1964)."G. Busch, O. Vogt, and F. Hulliger, Phys. Letters 15, 301
(1965).

of the rare-earth compounds of NaC1 structure with
group-VI anions is probably basically the same, ' al-
though not so extensively studied. ) The Tb compounds
of this type order, even though Tb'+ with J=6 has a
crystal-field-only singlet ground state. Therefore, the
value of exchange is presumably greater than that neces-
sary for magnetic ordering. As pointed out by Cooper, ~

it is feasible to substitute Y for Tb in the compounds.
Since Y'+ is nonmagnetic (unoccupied 4f shell), this
would enable one to reduce the exchange below the
critical value necessary for magnetic ordering. Then
one could observe the critical effects described in the
present paper. As pointed out in the discussion of the
constant-coupling calculation in Sec. 4, we might expect
the percentage increase over the molecular-Geld value
of the critical value of g(0) to be correspondingly
greater for the singlet-triplet case than for the singlet-
singlet case in the TSCA.

Such mixed Tb—Y compound experiments are not as
desirable as the ideal situation where one homo-
geneously varied the exchange at each rare-earth site;
however, the results of neutron inelastic scattering
experiments' on Tb—10%-Ho alloys hold out hope for a
reasonably straightforward situation. In those experi-
ments Mpller et al. observed a well-defined dispersion
curve for the spin waves. Superposed on this, and well
localized in k space, was an anomaly attributed to a
localized excitation.

Besides being useful for dealing with magnetic
properties near the critical value of exchange, the pre-
sent pseudospin theory, and its extension to the applied
field and magnetically ordered situations, is also useful
for dealing with crystal-Geld singlet-ground-state sys-
tems with signi6cant exchange e8ects, but where the
exchange is not in the immediate vicinity of the critical
value. For such systems, the RPA treatment of Sec. 3
gives a better generalization to 6nite temperatures than
the Bogoliubov-type approximation for treating the
behavior of collective excitations and the related
thermodynamic and transport properties. ('For ex-
change appreciably different from the critical value, the
calculated excitation spectra for the RPA and TSCA
approach each other. It is then easier to use the simpler
RPA rather than the TSCA in the calculations. ) An
example, besides the compounds already mentioned, of
a material for which such a treatment could be valuable
is UF4. For UF4, Leask et al."have shown that the most
promising explanation for their susceptibility measure-
ments and the specific-heat measurements of Burns et
aL22 is that the U+' ions ha, ve an f' configuration with
singlet crystal-field ground state. While UF4 is para-
rnagnetic, Leask et a/. present evidence for significant
exchange interaction between the U+' ions. The situa-

~' G. A. Smolenskii, V. P. Zhuze, V. E. Adamyan, and G. M.
Loginov, Phys. Status Solidi 18, 873 (1966).

2~ M. J. M. Leask, D. W. Osborne, and W. P. Wolf, J. Chem.
Phys. 34, 2090 (1961)."J.H. Burns, D. W. Osborne, and E. F.Westrum, Jr., J.Chem.
Phys. 33, 387 (1960).
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tion for UF4 is more complicated than that treated in
this paper, since there is more than one type of uranium
site. Nevertheless, the formalism presented herein
should serve as a basis for understanding collective-
excitation behavior and thermodynamic properties for
such compounds. The prospects for a study of the
collective excitations in UF4 is particularly promising
since large single crystals can be grown, and the neutron
absorption properties are quite reasonable for inelastic
scattering experiments. "

since

(C. I
s-(-k)s+(-k)

I C.&

=-2&~o
I ~.(0) I ~.&

+(c, I
S+(—k) S—

(—k) I Co) = 1—28. (Ag)

Next we evaluate the summation appearing in (A7) .

(1/Ã) Psinh'Pi, ——(1/2Ã) P (cosh2P~ —1)

ACKNOWLEDGMENTS = 1/2X g I (1—tanh'2', )

We are grateful to Miss E. Kreiger for her assistance
with some of the numerical calculations. We have
benefjted from interesting discussions with Dr. F. S.
Ham and Professor W. P. Wolf.

and using Eq. (4.13)

(1/Ã) g sinh'Pi,

(A9)

APPENDIX A

The quantities (5,& and e in. Eqs. (4.12) and (4.14)
are calculated self-consistently at zero temperature in
this Appendix. Also, we show how the calculation is
readily generalized to Gnite temperature using the
Green's-function formalism.

The inverse transformation to (4.11) gives

S+(k) = coshPiS+(k)+ sinhPi, S (—k), (A1)

S (k) = coshPiS (k)+ sinhPi, S+(—k). (A2)

At zero temperature, the statistical averages reduce to
expectation values over the true ground state, I Co),
which is de6ned as

=(1/2Z) P ' " """"' —;.(A10)
2L1—(1—2b) (yg —2e) A)'~'

Then 8 depends on A, the ratio of exchange interaction
to crystal-6eld splitting. For convenience of calcula-

tion, we de6ne another variable ) such that

A —=X/(1 —2S) (1-2@~), (A11)

(At the critical point A„;~=1/L(1—28) (1—2c)) and
X=1.) It should be noted that 8 and e are evaluated
self-consistently and therefore depend on ),.

By inserting (A10) and (A11) into (A7) we obtain

8/(1 —26) = -', (A a„)+ (b /4Ag) —-'„(A12)
where

s-(k)
I c.&=0 (A3) (A13)

(s,&—=——',ys. (A4)

for all k.
It is convenient to write (S,& in terms of 8 defined in

(3.26):
bi,= (1/X) Q (1—Xyi)'12.

(A14)

(A15)

Therefore,

s=(c,
I
s+s-I c,&

Equation (A12) provides one relationship between

8 and e. Another such relationship can be obtained from

the deinition of e.

=-(1/~) Z .«~ (k)~(k) &+&~ (k)~ (-~) &)

In terms of the generating operators for elementary
excitations we have

(A16)

or

Using (A1) and (A2) with (A3) and (4.13), it is easy

8=(1/E) gsinh2p (C I
S (—k)S+( k) I

C & (A6) to show that

(1») Z "&5 (k) ~(k) &

8= (1—28) (1/E) g sinh'pi„ (A7) = (1—26) I ~Agcy+ (di, /4At, )j, (A17)

(1/&) Z7~&~+(k) ~+(—k) )
"We are grateful to Professor W. P. Wolf for his comments on

UF4.
= (1—28) I

i~Xi,ci,—(di,/4Aq) j, (A18)
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where

ci,= (1/cV) g Lyq/(1 —Xys) '"j= (1/X) (aq —bq), (A19)

d~= (1/&) 2 vs(1 —le.)'" (A20)

Therefore,
2e= (1—28) Agcy. (A21)

Age = 1—2Xe = 1—(1—25) A),Xcx.

It is also convenient to define f:
/=1 —28.

Then we can rewrite Eqs. (A12) and (A22) as

(A22)

(A23)

Thus, for specified 7, Eqs. (A12) and (A21) give two
equations that can be solved for 8 and e. Once 8 and e

are known, one obtains the corresponding A from (A11).
(We remember that X= 1 for A „;~.)

The quantity e enters (A21) both explicitly and
through the function Az. Algebraically, it is convenient
to eliminate e from (A21) with the help of (A13).

and a body-centered-cubic lattice we obtain

Simple cubic

cy= 1.111
bc= 0.9&5
28= 0.039
2&= 0.122

A„;~——1.18

Body-centered cubic

1.084
0.981
0.028
0.095
1.14

It is interesting to point out that there is an internal
self-consistent check of the calculations for a two-level
problem. This is to see how well the kinematic con-
straint

(S+)'= (S-)'=0 (A29)

for such a system is obeyed. In general, it is dificult to
properly treat kinematic restrictions in approximating
the behavior of interacting spin systems. Typically,
these restrictions are not obeyed, and some unphysical
states are included in the description of the behavior. It
is, therefore, interesting to calculate &(S+)') or ((S )')
at the critical point where such kinematic eGects are
most important.

axAi' —(2/f) Ai+b~=0,

Ag'+i (a),—b), ) Ag —1=0.

(A24)

(A25)

&(-")')= (1P') 2 (S"(k) S'(—k) )

= —;h.tat —(1/4Ai) bi. (A30)

Assigning a value of X&1, we then compute u), and b~,
and solve Eqs. (A24) and (A25) for the value of Az and
of f. Once Aq and f' are known, (A23) and (A13) give
8 and e for the speci6ed X.

In the procedure just described, aq and b~ are cal-
culated by resumming the leading 40 terms in the series
expansion of Eqs. (A14) and (A15). For example,

The present calculation (TSCA) gives a number of the
order 10 ' for &(S+)'), while the Bogoliubov-type cal-
culation or the RPA would give 10 '. This is evidence
that the kinematic restrictions are very well accounted
for in the TSCA.

Green's-Function Treatment for Finite Temperature

1+3
ai, ——(1/X) g 1+-', (Xys)+ (Xpi,)'

2X4

1X3X5 , 1X3X5X7
2X4X6 2X4X6XS

and'4

1/Z Q v '"=3 '"2 '"
l ) Q ( ) l )

for the simple cubic lattice.

(A26)

The 6nite-temperature calculations are more easily
carried out in the Green's-function formalism. Here, we
shall only outline the procedures, since the calculation
parallels what we have already done.

We de6ne two types of Green's functions:

G-(g, t) = —&LS-,(t), S,+(0)g&e(t)

—= «S. (t) ' S+(o) )) (A31)

G+(g, t) = -s&LS,+(t), Si+(0)3&e(t)

=—(&Sg+(t) ' Si'(0) )) (A32)

I'2e
(1/g) g ~„sn 2-se i-| (A28)

for the body-centered-cubic lattice. Here, the odd-order
terms in (A26) obviously vanish for both lattices.

At the critical point, X= 1. For a simple cubic lattice

"R.Kubo, Phys. Rev. 8'7, 568 (1952). )The imal equality in
Eq. (4.9) of Kubo's paper is incorrect. However, the present
Eq. (A27) follows from the next to anal equality in Eq. (4,9)
of Kubo. g

where the canonical thermal average is indicated by the
single angular brackets. The equation of motion of the
Green's function is best described in the energy Fourier
space:

~Gs-(g, t) = (1/2 ) &fS;, S,+))

+«P' (t) 3'j S+(0))) (A33)

EGs+(g, E) = (1/2~) (fs,+, Si+g)

+«Ls+(t), Kj; S+(0) )) . (A34)
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The subscripts E indicate the Fourier components of
the functions. The commutators [5,+, K] have been
given in Eqs. (3.9) and (3.10). To linearize the equa-
tions, we choose Callen's decoupling":

((5 Sf Si')) -'(5.)LGs (f ~) —2&5.'Sr)Gz (g, ~)

-2(5;Sr)G"(g, 1)] (A»)
Similarly,

«52.5f+ Si+)) -&5.)LG s+(y, ~) 2&5—2 Sf+)G~+(g, ~)

—2(52+Sr+)Ga (g, 1)]. (A36)

After performing a spatial Fourier transformation,
the coupled equations are solved.

(5.) Eb+&+5 Eb—~—5G. (k)=-2.E E E + E+E„(A37)

coupling approximation. This calculation follows that of
Cooper, 4 but the details are somewhat different, since
Cooper treated the singlet-triplet problem.

We erst consider a single-ion Hamiltonian where the
exchange effects of each of the s neighbors are incor-
porated in an effective fieM H'.

SC~
——V,—gpgsH'J, . (81)

(82)

Here g is the Lande factor, and y~ is the Bohr magneton.
We can find a magnetization per ion for this Hamilton-
ian, and this magnetization 3II~ will be a function of
sH . Next we consider a two-ion Hamiltonian for ions
a and b, where the exchange e6ects of all other neighbors
are given by the same effective Geld H'.

&2= U-+-U.b g~s—(s 1) —H'(~-+~*b) 28J—.Jb.

Ga+(k) = '
L(E—Eb) '—(E+Eb) '],(5.)~

27';BI,

where

(A3g) Again, we can find a magnetization per ion, M2, which
for the two-ion Hamiltonian is a function of (z—1)H .
Then the condition

5= '4 (0)~'(5.) (72—2e) (A39) Mi(zH') =M, ((s—1)H') (83)
Eb 2( 1+2(5,)A——(yb —22) ]"'.

self-consistently determines the effective field H' and
A40

The equal-time correlation functions are obtained
from the Green's functions" To find the critical value of A, where A is defined in

the nearest-neighbor exchange case as
co Q . — 6

(52+52—
)= lim 2

' '
dE, (A41)

„p exp (E/kii T) —1
A—=4zgn2/A, (84)

(52+5), )

(5,)
Eb exp(Eb/kDT) —1

(85)Mi —2g2I42s2H'sr42/gSimilarly,

(52+5-2+)=— where o. is the off-diagonal matrix element of J, between
the crystal-field-only states

~
0,) and

~
1,), and A is the

energy splitting between those states.
To find M2, we similarly regard the effective-field

term in 3C2 as a perturbation. Then we have

Eb exp (Eb/kii T) —1

1
(A43)

exp (—Eb/kB T) —1

we consider the condition (83) at zero temperature
when the ordered moment, and consequently the
effective field H, is infinitesimal. Then by regarding
the effective field term in (81) as a perturbation, we

(A42) find

As T +0, Eqs. (A42) a—nd (A43) reduce to the previous
results given in the first part of this Appendix. At finite
temperatures 8 and e can be determined numerically,
and the critical value A„;& is temperature-dependent
through the quantities 8 and e.

BC2 X22+R2

X2o= U,.+U.b
—2$J, Jb,

K2' ———gpii(s —1)H'(J, +J,b).

(86)

(87)

(8g)
APPENDIX 3

In this Appendix we summarize the calculation of
A„;~ for the two-singlet-level problem in the constant-

The ground state of the two-ion Hamiltonian %20 is

~
gs)= cos82

~
0., 0.)+ sinei

~
1., 1, ), (89)

with energy"D. N. Zubarev, Usp. Fiz. Naul~ 71, 71 (1960) l English transl. :
Soviet Phys. —Usp. 3, 320 (1960)g. (+2+4 ri2~4) 1/2 (810)
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where
tangs ———Ee,/2gcr'. (811)

Xs' mixes
I ge) with only one of the three excited two-ion

states of X',20, viz. ,

I «)=(1/~2)(l o., 1.)+ I
1., o.)), (»2)

which has energy

&.o= ~L1—2(8/~) '3 (813)
Treating the mixing of

I ee) into
I ge) by perturbation

theory gives

2g'tttssH'(s —1)crs
(1+ sin20r) . (814)~.0

—&00

Then using (84) and (814) in (83) gives the critical
condition for magnetic ordering to occur with in6nitesi-
mal moment at zero temperature.

s 1+ sin2er
815

s—1 I 1+(A/2s) ')'t' —A/2s
'

with

tanor ———2s' f 1—L1+ (A/2s) 'J"I /A. (816)

We have the result that for given s in the constant-
coupling approximation (815) and (816) are a set of
transcendental equations determining the critical value
of A and the value of Hl when A has this critical value.
The values of A„;& shown in Table I were obtained by
numerical solution of this set of equations.

It is interesting to note that the percentage increase
in the critical value of g(0)/6 necessary for magnetic
ordering on going from the molecular-6eld approxi-
mation to the constant-coupling approximation is much
smaller for the two-singlet-level problem than in the
case where the excited state is a triplet. ' (For example,
with s=6, the critical value increases by 12% for the
singlet-singlet and by 23% for the singlet-triplet case. )
This occurs because the excited state of 3C20 mixed into
the ground state by X2' has a much stronger mixing
with the ground state in the singlet-triplet case.
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Atomic Displacement Relationship to Curie Temperature and
Spontaneous Polarization in Displacive Ferroelectrics

S. C. ABRAHAMS, S. K. KURTZ, AND P. B. JAMIESON

Bell Telephone Laboratories, 3IIurray Hill, Sex Jersey
(Received 28 February 1968)

The phase transition from nonpolar to polar in displacive ferroelectric crystals is accompanied by the
displacement d,s of certain atoms from their higher-temperature symmetry positions. A study of all dis-
placive ferroelectrics in which atomic positions have been determined has shown that a fundamental relation-
ship exists between Ds and the Curie temperature To. This relation has the form Tc= (X/2k) (ne)', where X
has the dimensions of a force constant, k is Boltzmann s constant, and Tg is in absolute units. A least-
squares fit, based on De and To for ten ditferent ferroelectrics, gives X/2k= (2.00+0.09) X104 'K L '. In
addition, the spontaneous polarization E, is found to be related to hs by the equation T', = (258+9)hepC cm
X is discussed in terms of the interatomic force constant along the polar axis.

r iHK phase transition from nonpolar to polar in..displacive ferroelectric crystals is accompanied by
the displacement of certain atoms from their higher-
temperature symmetry positions. Until recently, very
few reliable determinations of the detailed atomic ar-
rangement in displacive ferroelectrics have been avail-
able, ' making comparisons with ferroelectric theories
inconclusive. In this article, we report for the erst time
a simple experimental relationship between atomic
displacement and the macroscopic ferroelectric prop-
erties of Curie temperature and spontaneous polariza-
tion, valid over a wide range of materials. From simple
physical considerations, it is shown that this experi-
mental relationship may be interpreted as an equiva-

r F. Jona and G. Shirane, Ferroelectrec Crystals (The McMillan
Company, New York, 1962).

lence between the lattice vibrational energy and the
displacive energy of the ferroelectric state.

We define As as the displacement developed by the
"homopolar" metal atom, as listed in Table I, along
the polar direction at T((Tg. The values of atomic
displacement As, Curie temperature Tg, and spon-
taneous polarization I', for a group of twelve compounds
are given in Table I, together with their estimated
standard deviations. We derive As for one material
as an illustrative example. In the case of LiNb03 above
Tz, the oxygen atoms most probably' are arranged in
planes with s=—,z(2n+1), where n is integral. The
homopolar Nb atom is at s=o, the position with point
symmetry 3. At T((Tz, the oxygen framework may be

~ S. C. Abrahams, H. J. Levinstein, and J. M. Reddy, J. Phys.
Chem. Solids 2/, 1019 (1966).


