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then

Ir(e ~.) =I-+++(0 ~ )

I2(e, .) =I-+-+(0, ),
Ia(q, ~.) =I++++(a, ~.)
I (q, a)„) =I (q+Q, ,) .

In deriving these equations, the facts that

G ( —k, IC) =G—„+(k,E)

G ~(k, E) =G~ ( —k, E)—

In the text, the notations

D((u) =PD(ar,—&(u+i8),

A(q, co) =ImD(q, (v)/(S) (A14)

(S—4) (1+4)'"'+ (S+1+0)0""
(1+p) 2s+I y28+1

s =

are used where 8 approaches zero from above. As in
(A13) Ref. 1, the value of the lattice magnetization may be

obtained by the formulas

ha, ve been used.
=G+ (k+Q+E, E)— dM

Q=N ' Q —A(q, cv)(eP" —1$ '
Q 2x
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If dipolar forces in magnetic materials are comparable to the exchange interactions, the thermodynamic
properties in an external applied field are, in general, dependent on the shape of the sample. Recently, Levy
has shown that shape-independent thermodynamic properties can be defined from a free energy at given
internal field, rather than at given external field. This result is generalized to include anisotropic exchange
interaction and arbitrarily oriented ellipsoidal samples. Functional-derivative techniques allow a more
condensed notation for the problem, The results given here hold in any order of perturbation theory.

"F the dipole-dipole interaction in magnetic materials
. . is of the same order of magnitude as the exchange
interaction, the thermodynamic properties will depend
on the shape of the sample. Levy' has shown tha, t in
this case a free energy can be introduced which is
shape-independent. This free energy depends on the
internal or local magnetic Geld instead of the external
Geld. The thermodynamic quantities derir ed from this
free energy, e.g. , the specific heat a,t constant local Geld,
are also shape-independent.

Levy gave a proof of this result, valid if the internal
fiel.d is parallel to the external field, i.e., if oG-diagonal
contributions to the dipole sum can be neglected. He
used a linked-cluster diagrammatic expansion and a
resummation procedure. In the present paper, we give
a more general proof of this result, using functional-
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f On leave from M. v. Laue-P. Langevin-Institut Garching b.
Munchen, Germany.' P. M. Levy, Phys. Rev. 1'70, 595 (1968);P. M. Levy and D.
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The Hamiltonian of a system of localized spins in an
external field is assumed to be

K= —QH, S;,—2++I;,, pS, S,p.

II; is the external-field component in the a direction
(cr=x, y, s) and at the lattice point i S, is the .n
component of the spin vector for lattice site i. I;,, p is
the matrix eIement of the spin-spin interaction, con-
taining the excha, nge interaction and the dipole-dipole
interaction

Ie -p =I'v -p+. I"*~;p.

I...,=
~
r,, I Ia.p —3r;;,.r, ,p! I r;; ('I. -(2)

We use units such that gp~
——1.

2 See, e.g., L. P. Kadanoft and G. Baym, Quantzvn Statistical
Mechanzcs (W. A. Benjamin, Inc. , New York, 1962).

derivative techniques' and all orders of perturbation
theory.

I. FREE ENERGY
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To apply functional-derivative techniques we have
to treat the more general case where H, tt) and
I,;, p(tt') are time-dependent, . It is convenient to use
imaginary time variables. ' The starting point is a
generalized free energy

F= P—'ln Tr T exp i
—ip

dt g H,.(t)S, (t)
0

-ip
+ — d«t' gg I',-p(«') ~'- «) S p(t') (3)

2 0 ij aP

T is the usual time-ordering operator, ordering the
spin operators so that those with the greater time
argument (it)it') stand to the left of those with the
smaller arguments. The operators are time-independent
Schrodinger operators, and the time argument is to
be considered only as a label on which the time-ordering
operator can act. In the special case of an Ising-model
Hamiltonian, one can drop the time ordering, since this
conta, ins only the s components of the spin operators,
aud one does not have to worry about the commuta, tor
relations.

If H, (t) is time-independent and

I;;, p(tt') =ih(t t')I;; p,
—

the generalized free energy (3) becomes the usual free
energy

(4)F= (1/P) ln T—re P,
where X is given by (1).

It is convenient to introduce a short notation:
1=}i, n, t}, 2= }j', P', t'}, and a sum convention so
that double indict. s are summed and double time
arguments are integrated from 0 to iP. In this nota-—
tion, the genera&ized free energy reads

F= —(1/P) In TrI T exp[iH(1) S( 1)

+2I(12)S(1)S('2) j}. (3')

The functional derivatives of F are

P[h "F/8H(1) ~ ~—~ 8H(v) ]r ——M„(1~ ~ v) . (5)

In the limit I~0, these quantities are usually called
semi-invariants. The fir. t M, are in terms of expecta-
tion values of spin operators:

Mi(1) =i(S(11),
M (12) =—[(TS(1)S(2) )—&S(1))(S(2))] (6)

It should be pointed out again that the expectation
values of spin operators in 16) are in terms of the full
Hamiltonian. Mi(1) is the true expectation value of
the spin at point 1, and M2(12) is the true spin-spin
correlation function. Since in M'2(12) the factorizable
part (S(1))(S(2) ) of the two-spin expectation value
(TS(1)S(2) ) is subtracted, M~(12) vanishes for large
space (or time) variables. This is shown in any order
of perturbation theory in the Appendix.

Also of interest i~ the first derivative with respect to
I(12):

—89F/bI(12) j~=.(TS(1)S(2) )

= —-', }M2(12)+Mi(1)Mi(2) }. ('7)

The subscripts H and I in (5) indicat. e that the deriva-
tives have to be taken at constant Band I, respectively.

The fact that (7) contains a term Mi(1)Mi(2)
indicates that F contains a term A(1)I(12)A'(2),
where A (1) and A'(1) are certain functionals of I and
H. They depend explicitly on the set pf variables
1 =

I isn't }.
For a homogeneous and time-independent external

field H, (t) =H and an ellipsoidal-shaped sample, one
expects that any quantity of the form A (1) is actually
independent of i and t, at least far from the surface. In
this case, the contribution A (1)I(12)A'(2) to the free
energy reduces to

A(1)I(12)A'(2) =P+A A'p+Ig p
aP sg

=iVQ.4 A'pqh, p.

Q p contains a sum over the exchange interaction and
over the dipole-dipole interaction. The first sum is
harmless, but the latter sum, the so-called dipole sum,
depends on the shape of the sample. This sum again can
be split into a shape-independent part and a shape-
dependent part, which is the classical demagnetization
factor D.' For general orientations of the ellipsoid to
the external field, D is a tensor with the eigenvalues
D, Db, D, equal to the demagnetization factors for the
principal directions u, b, c of the ellipsoid. Concluding,
we can write

where p p is shape-independent. For nonellipsoidal-
shaped samples in general, a quantity like A(1) is not
homogeneous; thus (8) becomes more complicated, and
we will not consider this case. The same is true if the
sample forms domains with di6erent orientations; thus
we will restrict our considerations to a single-domain
sample or a strong enough external field, if the tem-
perature is below the transition temperature.

From M2(12) in (7) we conclude that there exists
also a term of the form 8(12)I(12) in F. Since its
derivative M&112) vanishes at large distances, B(12)
has also to vanish a'. large distances, and this contribu-
tion to F cannot be shape-dependent. Thus, shape
dependence enters only via (8). If we can find a new
free energy F depending on another field L(1) instead
of H(1), which contains no term of the form
A(1)I(12)A'(2'), then we have found a shape-inde-
pendent "free energy. "This means we have to find an
5 where [85:/bI(12) ]r, contains no factorizing term like
Mi(1) Mi(2). The "natural variables" of 5 are L and

' See, e.g. , I. H. Van Vleck, J. CheIII. Phys. 5, 320 (1937).
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free energy at given internal held:

F=F+ ', Qp—,D„pIJp,
aP

I,. instead of H and I, which were the "natural vari-
ables" of Ii.

To find this new free energy we make a Legendre
transformation of the old free energy, where I is to be
determined later.

(16)

since the shape dependence enters p p only via the
demagnetization factor (9) . The internal field is

H' =H —gD spy. (17)
—PP= PF(L—, I)

pF—', M—(1—)f H(1) —L(1)}. (10)

The deriva'ive with respect to I(12) at constant L is

( "of' I' 8F bF BH (3)
l,bI(12) z &8I(12) rr 8H(3) r 8I(12) z

II. SUSCEPTIBILITY AND SPECIFIC HEAT

Ke give now a brief discussion of the shape depend-
ence of the specific heat and of the susceptibility, where
we have generalized Levy's discussion to treat the
tensor properties of g s and D p. Since only the micro-
scopic treatment favors the free energy at given local
held, we consider now only the thermodynamic quanti-
ties derivable from the free energy at given internal
field.

The magnetization is usually given by p, =
—(BF/rfH )r. Using (16) and (17) we find that it is
also

= ——',Ms(12) —-,'Mi(1) Mt( 2)

+-,'Mi(3) L8H(3) /BI(12) ]I.
—-'f H(3) L(3) I }:hMi(3)/~I(12) ]I- (11)

Now one has to determine I in such a way that all
factorizing parts in (11) vanish. If we follow Levy' and
choose

p = —(r)F/BH' )r. (18)

L(1) =H(1) —I(12)M, (2),
we find

(ilH(3)/8I(12)]r,
xr s= g(rffi /AH „)T(AH /8Hs)

=b(13'lMt(2) +I(34)LBMi(4)/BI(12) ]r,,

( 12)
The isothermal susceptibility is, in general, a tensor
given by zr ~

——(rffj~/&HE) z. Considering p as a function
of H' according to (18) leads to

so that
—pL8F/bI(12) ]r,———-', Ms(12) . (11')

or'

gaP ~gayayb+TbP
aP

Ij, =E(S )/V= —ilVM /V (gl s= 1) (13)

With the definition of P s, Eq. (8), we 6nd

L =H+g4 gus,
P

thus, the new shape-independent free energy becomes

&=F sVZfi-4 p
—

(i
aP

In the case that the magnetization is parallel to the
external field, F reduces to the result found earlier by
Levy. ' L is the local field, and (14) reduces again to
the local held defined by Levy in the case of p parallel
to H.

Adding a shape-independent term to 5, of course,
does not destroy its shape independence. Thus, one
can go from the free energy at given local field to the

Since here the term M(1)M(2) no longer occurs, we
have found the shape-independent free energy.

Similar to (11), one gets

—PLBF/BL(1) ]r=Mi(1) .
From Eq. (6) we see that M(1) is related to the mag-
netization p per unit volume:

(xr ')-s=(g ')-s+D-s (19)

CH ——T(8$/8T) rr &

the specific heat at constant internal field is

Crr*= T(r7$/BT)H*.

(21)

(21')

Using Eqs. (16), (17), and (20), one finds

Crr =CD' —Tg(8'~/BT)rr'D~s(r7pp/8T)rr. (21 )

4 This simple form, even in the case of p nonparallel to H,
has been questioned by C. D. Marquard l Proc. Phys. Soc. (Lon-
don) 92, 650 (1967)j; see, also, footnote 25 of Ref. 1. This arises
from the fact that in the interesting case, x p is nondiagonal,
thus (x '„)&1/x„. The expression given by Marquard is a series
expansion of 1jx„.

g s = (f)fi /ciH' ) is the isothermal "pseudosuscepti-
bility, " introduced by Levy, which is the same for all
uniformly magnetized samples of a material. The shape
independence of g follows from the fact that it is the
second derivative of the shape-independent free energy
Jf

The entropy can be found differen', .iating Ii or P
S=—(BF/AT)rr —(r7F/8T)~*. —— (20)

The specific heat at constant external field is
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The change of the magnetization with temperature at
a given internal or ex'ternal field, respectively, is found
to be

(22)

= (~p-/~2')»* Z—g-~Ds~(~p~! ~T)»

or

(&p./&I') F1' Q(&——pp/»)» I L»+ QDs,k,-} (22')

Using Eq. (19) it can also be written as

(~p./~T)»'= Q(&p»/&2')»(1 Dy&—) 'p. . -(22")

Finally, the specific heat at constant internal field
becomes

C»* C» Tg——(Bp—./aT)»(1 Dx~) '-—pD»&(~p&/~2)»,

(21/If)

which is essentially the generalization of the specific
heat at constant internal field found by Levy.

Since C»' and (Bp, /BT)» as well 'as g s are second.
derivatives of the shape-independent free energy E,
these quantities are the same for all uniformly mag-
netized samples of the same material.

III. SUMMARY

%e have found that for all homogeneously mag-
netized samples of a material, a free energy can be
defined which is independent of the shape of the
sample. The second derivatives with respect to tem-
perature and internal field define thermodynamic
quantities which are the same for all homogeneously
magnetized samples of a particular material. These
are not new results; they are only generalizations of the
results found by Levy' to the case where the external
held and the magnetization are not necessarily parallel.
The proof given here is valid if the system is homogene-
ous and if the spin-spin interaction is quadratic in the
spin operators which allows an anisotropic exchange
interaction. The proof can be generalized to antiferro-
magnetic materials if each sublattice magnetiza'ion is
separately taken into account. The final results are
unchanged. The proof of the cluster property of the
correlated part of the spin-spin correlation function,
given iD the Appendix, depends on the convergence of
a perturbation series.

ACKNOWLEDGMENTS

It is a pleasure for me to thank Professor D. M.
Levy for bringing my attention to this subject, for
encouragement, and for helpful discussions. I also
thank him arid Professor L. H. Nosanow for a critical
reading of the manuscript.

APPENDIX

It ha, s to be shown that M2(12) has a cluster property,
i.e., that M2(12) vanishes if the spins, denoted as 1
and 2, are far apart. This property can be shown to
hold in each order of perturbation theory, where I(12)
is repla, ced by XI(12) and an expa, nsion is made in
powers of X.'

To do this, we look at

8M, (34)/l&I(12) = PB3P/l&I(12) l&H(3) bII(4)

=M4(1234) +M3(134)Mi(2)

+M3(234) Mi( 1)+M2( 13)M2(24) +M&( 14)M2 (23)

and

8M3(345)/8I(12) =M&(12345)+M4(1345)Mi(2)+

+M3(135)Mg (24) + ~ ~ ~,
and so on.

Assuming the cluster property is true in nth order
for M2 and ail higher M„, Eq. (23) shows that all
terms on the right-hand side of Eq. (23) vanish for
large separations (1, 2) except the last two terms. The
behavior of the derivatives of the higher M„ functionals
is corresponding. Formal integration of (23) shows that
the (I+1)st order M2'"+'& (12) contains a term
M,i"&(13)I(34)M,im'&(42), where m+m'=I or m, m'&
e. Thus, if this term vanishes for large distances, the
cluster property holds in (m+1) st order, corresponding
for higher M„. In zeroth order, the cluster property
is fulfilled since M&i&0&(1 ~ »i) AO only if all spatial
indices 1.~ p are the same.

In first order, M2o&(12) behaves asymptotically like
I(12), i.e., ~

M,"'(12)
~

&Ri, 'Xconst, which is easily
seen from (23) . We assume the same asymptotic
behavior for all M2™up to order e and estimate
M(13) I(34)M(42), where we have to sum over 3 and
4. These sums are split up into a sum over a subvolurne
around 1 and 2, and the remaining sums, which can be
replaced by integrals, if the dimensions of the sub-
volumes are large compared to the lattice constants. The
sums over these subvolumes give again an asymptotic
behavior like R~ ',. the rest becomes

~

M2'"+" (12)
~

&constX d'pd'p'

X I (R~'+p' —2R~e) (p'+ p" 2ep') p" } "— (24)

where 3II2&"+i& is the contribution to the (n+1') st order
due to this critical term. The integrals over p and p'
run over the volume U' remaining if the subvolumes
are excluded. The integration of (24) shows that also

~
M2'"+'&(12)

~

&constXR&2 '. The considerations for
the higher N„are analogous. Thus, our assumption
about the asymptotic behavior of the Nth order is
justified and in each order of the perturbation theory
~
M~(12) } &constXR&2 '.

~ The method used here is analogous to an all-order linked-
cluster diagrammatic expansion.


