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The symmetry of wave functions in the one-electron band theory of ferromagnetic solids is discussed.
The exchange interaction, spin-orbit coupling, and coupling of spins to the magnetic induction vector B
are included in the Hamiltonian. The resulting symmetry, which is not invariant under time reversal, can
contain only those point operations which belong to the paramagnetic space group and leave the pseudo-
vector B invariant at the same time. Character tables are presented for the case of face-centered cubic,
body-centered cubic, and hexagonal close-packed structures and for various directions of B. Compatibility
relations and lifting of degeneracies are discussed.

I. INTRODUCTION AND GENERAL THEORY

"N the last few years the band theory of solids has
„.been considerably successful in explaining the
properties of the ferromagnetic metals. ' In particular
the group-VIII transition metals Fe, Co, and Ni have
been the subject of many investigations, both theoret-
ical' ' as well as experimental" "which exhibit in a
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prominent way the band-theoretical aspects of the be-
havior of their conduction electrons.

It is important to remark, however, that in the ferro-
magnetic metals, which crystallize in the usual metallic
structures fcc (Ni), bcc (Fe), and hcp (Co), the usual
group-theoretical arguments, '~" which refer to non-
magnetic materials, are no longer valid. For instance,
the presence of a net magnetization results in the de-
struction of time-reversal symmetry" with the conse-
quent splitting of up and down spin bands. The effects
of the broken symmetries, moreover, go beyond this
first-order and most important feature; in addition to
time reversal, many other symmetry operations cease to
exist in the presence of ferromagnetism. It is the pur-
pose of this paper to reexamine the question of band
symmetries in those circumstances and to provide the
necessary character tables and compatibility relations
which give complete information on the symmetry
properties of the electronic states in ferromagnetic
metals.

In the one-electron approximation, the electrons in a
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metal (magnetic or otherwise) are described by a set
of one-particle wave functions that satisfy a self-
consistent Schrodinger equation of the form

Xlt'nkvd = +no (ir) lanka,

where e denotes the band index, k the wave vector, and
0- a generalized spin index. The Hamiltonian K can be
decomposed into several contributions:

X=XE+Xn„+X„+X,+X~, (2)

kz

~k
Y

where the various terms will be discussed in turn. The
first two terms XE and BCH„correspond to the kinetic
energy and the Hartree self-consistent potential,
respectively. BCK has complete translational and rota-
tional symmetry, while XH„ is invariant under the
operations of the space group of the relevant lattice
structure (Ok' for face-centered cubic+ Ok' for body-
centered cubic" and Dek4 for hexagonal close-packed") .
The third term, X„,is the usual spin-orbit interaction, 22

which is invariant under the space group operations
applied simultaneously to spin and space coordinates.
Therefore (XK+Xn„+X„) remains invariant under
the operations of the pertinent "double" space group;
it is also invariant under time-reversal symmetry.

The last two terms in (2), in the case of ferromagnetic
metals, have a lower symmetry and consequently
destroy many of the high-symmetry properties that
are exhibited by the eigenfunctions of (Xz+XH„+
X„).X,„ is the usual Hartree-Fock exchange term
which, when ferromagnetism is present, results in dif-
ferent energy levels for spin-up and spin-down elec-
trons. It is important to emphasize that X, distin-
guishes between up and down spins, which consequently
have different energy spectra, but does not establish
which direction in the crystal corresponds to the direc-
tion of quantization of spin. This preferred direction is
determined mostly by the coupling between spin and
magnetic induction 3 by the interaction

FIG. 1. First Brillouin zone for a fcc lattice. The major sym-
metry points and lines are designated according to the notation
of Ref. 20.

kz
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FIG. 2. First Brillouin zone for a bcc lattice. The major sym-
metry points and lines are designated according to the notation
of Ref. 20.

Xg= —pgB' lf, (3)

where p~ is the Bohr magneton, 6 the Pauli matrices,
and B the magnetic induction vector. The spin-orbit
term X„also contributes (although very weakly) to
the determination of the direction of spin quantization.

If we make the usual approximation of taking B as
constant throughout the crystal, '4 the term (3) has
complete translational symmetry, but remains invar-
iant only under those point operations (applied only
to spin coordinates) that leave the pseudovector B
invariant, i.e., the inversion, all rotations about the
axis B, and the product of these rotations and the in-
version. The total Hamiltonian (2) therefore conta, ins
all the translations of the space group, but only those

~'r
k,

A

R

1=
I Qq

u) gr 0-—
I pg

gl

k„=k

K

'4The approximation of constant B is not necessary for the
group-theoretical arguments but makes the discussion simpler
and easier to follow.

FIG. 3. First Brillouin zone for a hcp lattice. The major sym-
metry points and lines are designated according to the notation
of Ref. 21.
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rotations, rotation inversions, rotation translations,
and rotation-inversion translations that belong to the
double space group and leave the pseudovector B
invariant. In addition, the presence of (X, +X~)
removes time reversal as one of the symmetry operations
of the Hamiltonian.

The discussion above shows clearly that of the 32
point groups only those that include rotations or rota-
tion inversions about only one axis can be compatible
with the symmetry of a ferromagnetic structure. This
fact reduces the acceptable groups from 32 to 13, which
are of the form C„, C„~, and 5„ in the SchonRies nota-
tion or, equivalently, e, n, and n/m in the international
notation:

TABLE I. Character table.

TABLE II. Character table.

Z

C:
Ca'

S:

Cy C2 C3 C4 C6,
Cg, Cgy, Cy, Cm Cy,

Sg S4 $6.
TABLE III. Character table. co = ~ (—1+i') .

All these groups (with the trivial exceptions of Ci and
Cra) exhibit a preferential axis that corresponds to the
direction of the magnetic induction B.

With this new classification of the total symmetry
of the Hamiltonian, it is useful to analyze the usual
simple approximations made in some ferromagnetic
band structure calculations. The most common ap-
proximation' """' is to neglect the spin-orbit inter-
action X„.In that case there is no coupling between
space and true spin coordinates. The space part of the
Hamiltonian (XK+XH„+X, ) is invariant under all
the operations of the single space group. The labels up
and down spin simply identify two different bands that
could be considered otherwise spinless. Time-reversal
symmetry of course has been broken by X, . The usual
labeling by the single group representations"" thus
remains valid, and therefore many spurious degeneracies
are still present.

When spin-orbit interaction is taken into account, it
is necessary to consider X& at the same time in order
to have an unambiguous problem. The usual assumption
in this case is to take the up-spin and down-spin bands
as corresponding to directions parallel and antiparallel
to B, respectively, the former labeling the majority
spins and the latter the minority spins. K& is neglected
otherwise or its eGects are included in K, . It is a com-
mon approximation, '9 which describes some phenom-
ena with good enough accuracy, to take X, as a con-
stant for each spin. This produces a constant splitting
AE between up-spin bands and down-spin bands, inde-
pendent of the spatial part of the wave function. Such
an approximation can be expressed by

TABLE IV. Character table. n= (1+i)/v2.

C D F

1 z —1

1 —z

1 zG0 Go

1 zoo cd

1 z(v

1 Ad GP

ZCO

ZG7

ZG7

TABLE V. Character table, co= ~2( —1+AS) .

which exhibits very clearly the invariance properties of
the Hamiltonian which we have just discussed. Cor-
rections to this model can easily be made by assuming
that AE is a function of position r, a function of wave

TABLE VI. Character table.

Ei CCg
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TABLE VII. Character table. P =1+AS.

Bg CC1 DI FFI JJI EEI 3/I3f j I'PI E.EI LLg

0 0 0 0

P* 0 0 0 0 0

vector k, or, more generally, a nonlocal operator that
depends on the angular momentum character of the
wave function close to the ion sites. In all cases, how-
ever, hE exhibits the complete symmetry of the crystal
lattice.

lI. CHARACTER TABLES AND GENERAL RESULTS

In this sectio'n we give complete details of the group-
theoretical properties of one-electron wave functions in
ferromagnetic metals which crystallize in the fcc, bcc,
and hcp structures and for various directions of mag-
netic induction B. For the cubic structures we follow
the notation of Refs. 20 and 22. For the hexagonal
structure the notation is identical to that of Refs. 21
and 22. Figure 1 shows the Brillouin zone for the fcc
structure, Fig. 2 that of the bcc structure, and Fig. 3
that of the hcp lattice. Points and lines of symmetry are
indicated and labeled. The results are given in tabular
form and should be interpreted in the following way:

(a) Tables I—IX give the relevant double group
character tables. The operations are expressed in a
symbolic way that might take diGerent meanings for
different structures, magnetic induction directions, and
symmetry points and that are properly defined in each
case in Tables X—XVIII.

(b) Tables I—V correspond to those point groups G
compatible with the ferromagnetic structure and such
that they do not contain the inversion: C&, C2—C&I„C3,
C4—S4, Cg—C3$ To each of these tables we attach a com-
panion character table (not actually displayed),
labeled I,—V„which correspond. s to the direct product
of the group G with the inversion group Ss= IE, JI.
If the representations of G are labeled y; i= 1, 2, ~ ~ ~ e
then the representations of GS2 are labeled y;+,

TAsI.K VIII. Character table.

Ag

i= 1, 2, ~ ~, m, and such that

where E. is any element in G. Tables I -V correspond
to the groups S2, C», S6, C4&, and C6I„respectively.

(c) Tables VI—IX appear in some representations of
the nonsymmorphic group D6&'. They are not iso-
morphic to any point group.

(d) Tables X-XVIII give the proper character table,
the definition of the operations, and. the compatibility
relations between the paramagnetic double group struc-
ture"" and the ferromagnetic symmetries for the three
crystal structures and magnetic inductions in various
symmetry directions. The symmetry points, lines, and
planes are identified in such a way as to distinguish
between inequivalent ones in the presence of a magnetic
induction B.

(e) For B in an arbitrary direction, no symmetry
operations exist in general, except for translations. The
proper representation for any point in the Brillouin
zone is that of Table I. The only exceptions are points
I', X, I., B, and X of the cubic structures and points
I', A, M, and I.of the hexagonal structure; these points
have inversion symmetry and their representations cor-
respond to Table I .

Some general and important features of these tables
can be easily seen. Firstly, all ferromagnetic representa-
tions are one-dimensional, the only exceptions being the
points A and. I of the hcp structure for 8 parallel
either to the t 0001) axis or to (1010) type directions.
As a consequence, and with the exception of the points
mentioned above, no degeneracy due to symmetry is
permitted in the hcp structure, and none at all in the
cubic cases.

Accidental degeneracies~' are, however, allowed, but
only when the magnetic induction B is parallel to a
symmetry axis and in that case only along symmetry
lines parallel to B or on symmetry planes perpendicular
to B.

~ The double representations of the A and F symmetry lines
of the cubic structures are vrrong in Ref. 22. The correct character
tables are given in L. M. Falicov and S. Golin, Phys. Rev. 13'7,
A871 (1965), Table III.

"C.Herring, Phys. Rev. 52, 365 (1937).
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TABLE IX. Character table. co = —', (—1+i%3).

Cl D Dl Fl

V2

V3

—1
—1
—1
—1
—1

1

—1

1

1
1
CO

1 Gl

1 co

1 GO

CO

—CO2

Cd

CO

TABI E X. Character tables and compatibility relations for the fcc structure with the magnetic induction Bparallel to the L001]direction.

Symmetry
point

Character
table

Corresponding
elements Representations

X(1, 0, 0), X(0, 1, 0)

X(0, 0, 1)

W(1, -'„0), W( —1, ——',, 0)

IV E=E, A = C4, B= C42 C= C43

E=E, A=C2

Same as F

~Pl ++2
F7 ~F3 ++4
FS ~71 ++2 ++3 ++4

X6 ) X7 ~Pl ++2
X6 ) Xz ~pl +y2

X6 ~Pl ++2
Xz+~y3++y4+

W6, 8"7—+yl+y2

W(1 o k) W( —1 0~ —k)

a(0, 0, a)

Z (a, a, 0), Z (—a, u, 0)

S(a, a, 1), S(u, —u, 1)

z(o, 1, a), z(1, o, ~)

z(1, ~, o), z(~, 1, o)
Z(u, 0, 1), Z(0, a, 1)

(oo1), F

(001), X

IV

IV

E=E, A= JC4, B=C', C= JC43

E=E, A = C4, B= C4', C= C43

E=E, A=op

E=E, A=op

E=E, A=C2

E=E, A=ay

E=B) A=op

E=E, A=op

~6~+1++2
~7~&3+&4

L4+, L5+~yl+

L6 +2'+

~6~+1++2
~z~&3+y4

~5~+1++2

~5~F1+&2

Z5~+1+P2

Z5~+1++2

TABLE XI. Character tables and compatibility relations for the fcc structure with the magnetic induction B parallel to the L111$
direction.

Symmetry
point

Character
table

Corresponding
elements Representations

h. (a, a, u)

E=E, A = C3, B= C32

E= E, A = C3, B= C32

E=E) A = C3) B= C32

F + Fz+~+ +++ +
F6, Fz ~y2 +y3
F 6~2~ ++~ ++~ 6

X6+, Xz+~2ql+
X6 ) Xz ~2+1

+~~ ++~ +

I + L+~~+
L6+—+2yl+

A4, A5-+J]
~6~72++3



172 SYMMETRY OF WA VE F UNCTIONS 503

TABLE XII. Character tables and compatibility relations for the fcc structure with the magnetic induction 3 parallel to the L110$
direction.

Symmetry
point

Character
table

Corresponding
elements Representations

&(1,0, 0)X(0, 1, 0)

X(0, 0, 1)

W(1, 0, —,'), W( —1, 0, —)

h(0, 0, a)

A(a, —a, a), A(a, —a, —a)

Z(u, a, 0)

X(—a, a, 0)

S(a, a, 1)

S(a, —a, 1)

Q(i+a, —i+a, 2)
Q( —i+a, 4—a, ——.')
(110), I'

E=E, A=C2

E=E
E=E, A=C2

E=E, A=C2

E=E

E=E, A=C2

E=E, A=0I,

E=E, A=C2

E=E, A=0-1,

E=E, A=C2

E=E, A=ay,

E=E, A=C2

I'6+, I'7+~pl++y2+
78~2 yl +2+2

Xe+, Xz+—&2'+

XB+, Xz+~1++72+

8'6, Wz~yl+y2

L'4 p L'5 ~+I
Ie+~2vF

L'4~+1
L5~V2+I6 ~Pl ++2

~6~+1++2
~z~yx+72

A4~yl

~6~+1++2

~5~+11P2

~5~+11P2

~5~+11P2

S5~yl+y2

Q3~&1+72

ABLE XIII. Character tables and compatibility relations for the bcc structure with the magnetic induction Il parallel to the p001
direction.

Symmetry
point

Character
table

Corresponding
elements Representations

&(2~ k~ o) ~ &(-ki k~ o)

IV

IV

IV

E=E, A = C4, B= C42 C= C43

E=E, A=C4, B=C4' C=C43

E=E, A= JC4, B=C4, C= JC43

E=E, A=C2

E=E

16~Yl +22
I'7+~&3++&4+
+8 ~71 ++2 +P3 ++4

JI+~~ 6+7 +
+7 ~ V3 ++4
+8 ~+1 +72 ++3 ++4

~6~+1++2
&7~&3+&4
+8~%1+V2+V3+V4

g 6~~1++~ 6

N5+~2yl+

D(0, 0, a)

h(0, a, 0), a(a, 0, 0)

Z(a, a, 0), Z( —a, a, 0)

D(k, 2, a)

G(-,' —fz, —,'+a, 0)
G( ——,'+a, —,'+u, 0)

(001), 1

IV E=E, A = C4, B= C42, C= C43

E=E, A=0),

E=E
E=E, A=C2

E=E, A=op,

E=E, A=0),

~6~F1+&2
~7~&3+&4

~e, ~7~&1+A

Z5~2pl

D5~+1+P2

G5~yl+V2
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TABLE XIV. Character tables and compatibility relations for the bcc structure with the magnetic induction B parallel to the L111$
direction,

Symmetry
point

Character
table

Corresponding
elements Representations

E=E, A=C3, B=C32 r+ r +~~ ++~ +

r8~2y1++y2++y3+

E=E, A=C„B=C' B6+, IIv+~&2++&3+
Q +~2+ +++ +++ +

A(a, a, a)

E=E) A=C3, B=C32

E=E, A = C3, B= C32

P6, P7~&2+&.'
P8~2V1+72+V3

N5+—+2y1+

A4, 45~F1
+6~+2++3

F( ,'+a, -—--', +a, -', +a) E=E, A=C3, B=C32 ~4 ~6 ++1

~6~72+73

TABLE XV. Character tables and compatibility relations for the bcc structure with the magnetic induction B parallel to the L110J
direction.

Symmetry
point

Character
table

Corresponding
elements Representations

~(k, k, k) &(—l —
k

—l)

&(k, k, 0), &(—k, k, o)

E=E, A=C2

E=E, A=C2

E=E

r + r+~ry6+p+
r +2y ++2y +

g +~~ 6+~ +

H8~2+1 +2+2

P6) P7~7&+72
P8—+2y1+ 2'
N5 +&1++&2~

N5+-+ 2'+

a(0, 0, a)

A(a, —a, a), A(a, —a, —a)

E=E, A=oI,

E=E, A=op

~6) ~7~&1+&2

44~F1

~6~+1++2

Z(a, a, 0)

Z( —a, a, 0)

D(k, k, a), D (l, —l, a)

G(——,'+a, —',+a, 0)

G(-',—u, —,'+u) 0)

Ii(-' —u -' —u -'+u)
Ii (——,'+u, —-'+u -'+u)

E=E, A=C2

E=E, A=el,

E=E, A=op,

E=E, A=C2

E=E, A=oI,

E=E, A=op,

&5~V1+V2

&5~y1+y2

D5~&1+&2

GO+1+P2

G5~y1+y2

~4~V1
~6~72
~6~7&+72

(110),r
(110),N(,', —,', 0)

E=E, A=oj,

E=E) A=op,
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TABLE XVl. Character tables and compatibility relations for the hcp lattice with the magnetic induction 8 parallel to the L0001]
direction.

Symmetry
point

Character
table

Corresponding
elements Representations

Va E= {e I 0},A = {b I r), B= {b I 0}
C= {»I r), D= f»a I 0},F= f»a

I r)
~Z+~&3++&4+

I 8+~&6++&6+

p k~+ 6++ 6

VII E=felo} A={»lr},B={»lof
C=fb I ) D=(»'lo) F=(»'I I

J= {e I r), X={«I 0},I.= {oa'
I 0}

~= f« I r) a
F= Ip{0)a &= f«a I r I

Ga=GX {a I ta} for all elements G.

A4—+y1

A6~P1
~1~Y2+ Y3

E= fel oI, A=(»lr) ~6 ~+1 ++2
M6 ~y1 +y2

VI E= {a I 0},A= {»Ir},B= fa fr)
c= fp I of
Ga=GX {a I la) for all elements G.

L3~7&

L4~y1

E= {el 0},B={»I 0), D=(»a
I Of

C=f IOI F=(« 'I 0) A= f« 'I o)
E'z~V1+V6

XS~V2+V4
&9~Vs+V6

Same as point E' K& &t)~&3

&6, &~&6
Bs~+1++4
&9~V2+V6

~(&), &(&) E= (e I 0},A = (» I 0), B= f»a I 0} P4p P6~+2
PO~+1++3

U(M)

U(L) VIII

E= {eI 0},A = fbe I r }

E= fe I 0},A= {be{rf
Ea= fe I lal, Aa= (» I r+&al

U6~V1+V2

U6~V1+V2

E= fe I 0), A= fp I 0}

E=(elo) A=fplo)

E=(elof A=fp{0)

E=lelo) A=fplo}

~5~+1++2

R6~y1+y2

~6~71+72

S3, S4~1
S2, S6~V2

E={.I of, A = I» I r},B={»I of
C= fbal rf, D= fbaa}0},F= fbe'I r)

~(p) v+v
A(p) ~Vs+Vs
&a(p) ~ra+Vs

Same as A(F)
Ga =GX (e I ta f for all elements G.

~v(A) ~a+vs
as(A) ~vs+vs
he(A) ~pa+pa

(0001), p
(0001), A

E=felof, A=fpl of
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TABLE XVII. Character tables and compatibility relations for the hcp lattice with the magnetic induction B parallel to the L10T0$
direction.

Symmetry
point

Character
table

Corresponding
elements

E= {4 I 0},A= {»"
I 0}

Representations

I'z+, ~s+, I'g+~V1++V2+

I'z, I's, I'9 ~y1 +y~

E= {.I o},A= {»"
I o},B={il r}

C= {p"
I r},K= {4 I 6},A4= {»"

I f4}

B4 {i I r+tx}, cr= {p"
I r+&4}

A4, A5~y1

A6—+2y1

M (-', , 0, ——',; 0) E= {4 I 0},A = {»"
I 0} ~+~~ ++~ +

355 -+y1 +y2

M'(0, -'„——,'; 0)

M(-,', ——,', 0;0)
E= {4}0} 3II5+ ~2'+

M5 —+2'

I (o, k, —k; k)

I (-,', —-'„0; —,')

VI Same as point A

E={4IO}

L3p L4~71

L3p L4~+1 +Pl

VIII

E= {4 I 0},A= fp"
I r}

E= f4 I o},A= {p"Ir}
E4= {4

I 6},A4= {p"I r+f4}

Ez, Es, ICg—+y1+y2

II4, FIz~y1

FI5, FI5—+y2

FIs, FIg~y1+y2

S(A)

Z(a, o, —a;0)

T(a, —2a a 0)
T'(-', +a, —2a, —-', +a; 0)

VIII

E={4lo},A={p,"lr}

Same as for point FI

E= f4 I 0}~ A= {»"I 0}

E={.
I ol, A={p4" Ir}

~Z 4-ts 4-}9~+1++2

~v, ~s, ~9~F1+&2

~5~+1++2

~5~+1++2

E(a, o, —a; -', )

S(a, —2a, a; -,')
S'(-', +a, —2a, ——,'+a; —,')

VIII

E= f4 I 0},A = {»"
I 0}

Same as for point II

~5~+1++2

S~, S4~y1

S3, S5~y2

E={4
I
0} A= fp" Ir} I'4(&) ~vm

&4(&)~V4

&4 (&)~Vi+V4

VIII Same as for point FI

U(L) (-;, 0, —-„a)

(10TO), r
(1010), M(-'„0, —

A4; 0)

VIII

II or VIII

E={ Io} A={»"lr}

Same as for point FI

Same as for line U or 6

U5 (3f)~y1+y2

U5(L) ~F1+&2
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TABLE XVIII. Character tables and compatibility relations for the hcp lattice with the magnetic induction 3 parallel to the I 1120j
direction.

Symmetry
point

Character
table

Corresponding
elements Representations

z=f. j o},a={s,'Ir} Fz p FS p F9 ~Pl ++2
Fz Fs , F9 ~y1 +y2

Same as F ~4~+1 +Pl
~6~+2 ++2
~6~+1 +71 ++2 ++2

M(-,', ——,', 0; 0) Same as F ~6 ~+1 ++2
3E6=+y1 +y2

M(~~ 0, —2',. 0) &= fe I 0} M6+-+2'+
316-~2y1—

I(k —
2 o; k) Same as F 4~+1 1+1

~4~+2 ++2

E= { IeO} 4, L4~y1++y1

a (0, 0, 0; a)

Z(a —a 0 0)
R(a, -a, o; -', )

II
II
II
II

z={.I o},a={a.I.}
Same as E

z={.
I o},a={p, Ioj

E={ Io},lf={p'Ioj
&=f Io} ~={12'Ioj
&= fe I o} ~= fus'I 0}

EZ, Es, E9~y1+y2

+4 +6~+1
&e, &7~A
+So +9~+1++2
~zp ~8p ~9~+1++2
U6~y1+V2
~6~+1++2
~6~+1++2

T(a, a, —2a; 0)
T'(-'+a --,'+a, —2a 0)

&={el0} ~=fsm'Irj ~6~71++2

S(a, u, —2a; —,')
&'(i+a —-'+a, —2a; k)
(1120), P

z= {.I o},z = {s~'
I r}

&= {eI 0} ~ = bs'
I 0}

S2, S3-+y1
S4, S6~y2

It is interesting to remark that the sticking together
of the bands at the AHL, plane of the hcp Brillouin
zone is completely removed, with the possible exception
of the points A and I-. The line E., which in„the para-
magnetic structure is fourfold degenerate (including
spin) because of time-reversal symmetry, does not
split into two double levels (as it would be predicted by
the breaking of time-reversal symmetry only), but
rather into four single levels. Similar considerations

apply to all other symmetry points and lines in the three
structures here discussed.

It is also worth pointing out that the ferromagnetic
band structures, in general, should be consistent with
the fact that very few accidental degeneracies are per-
mitted. Consequently, the presence of spin-orbit cou-

pling removes most of the band crossovers, and in par-
ticular, intersections of up-spin and down-spin bands

should result in degeneracies being lifted with a con-
sequent hybridization of the separate spin systems.
Effects of this kind have been found in ferromagnetic
Ni '~" and will be discussed in a subsequent paper '
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