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The two-band model proposed by Suhl, Matthias, and Walker (SMW) for the superconducting state
of pure transition metals is extended to the transition metals in the presence of nonmagnetic impurities.
Both the interband and intraband impurity scattering are included in the formulation of the extended model.
Two limiting cases of the extended model, namely, the strong intraband phonon-coupling limit and the
strong interband phonon-coupling limit, are studied in detail. The basic features of the two limiting cases
agree with those of the SMW model. It is found that, in the case of the strong intraband phonon-coupling
limit, the lower one of the two transition temperatures is raised from that of the SMW model by the inter-
band impurity scattering, and, in the case of the strong interband phonon-coupling limit, the transition
temperature is either raised or lowered from that of the SMW model, depending on whether the interband
impurity scattering or the intraband impurity scattering is stronger.

I. INTRODUCTION

TWO-BAND model was 6rst proposed by Suhl,
.I Matthias, and Walker' for the superconducting

state of transition metals. It has been known for a
long time that there are two overlapping bands in most
of the transition metals, an s band and a d band, and
the s-d interband impurity scattering contributes con-
siderably to the resistivity of the transition metals in
the normal state. ' Suhl, Matthias, and Walker suc-
ceeded in extending the usual one-band BCS theory to
the two-band situation. Yet they limited their discus-
sions to the case of pure transition metals. In the two-
band model, they introduced an extra phonon-coupling
term in the Hamiltonian to take care of the possibility
of pair formation of electrons in different bands. (We
call this type of phonon coupling the interband phonon
coupling, in contrast to the usual BCS-type intraband
phonon coupling which causes electrons within the
same band to form pairs. ) It is noticed that when the
interband phonon coupling vanishes, there are two
transition temperatures, and when the interband pho-
non coupling is finite, even if weaker than the intraband
phonon coupling, there can only be one transition
temperature.

In this paper we shall investigate the inhuence of
nonmagnetic impurities on the critical temperatures of
the two-band model. It is fair to remark that we intend
to make a model study, with the purpose of under-
standing better the general properties of the two-band
superconductors. The two-spherical-band model which
we shall deal with is actually quite diBerent from the
band structure of real transition metals. As a matter of
fact, we actually know very little about the band struc-
tures of the transition metals, for example, vanadium
and niobium, on which some superconductivity meas-
urements have been done.

Moreover, we shall only pay attention to two limiting

II. GENERAL TWO-BAND MODEL

We take the Hamiltonian for the two-band model
without impurities to be

+Z d'* A.'(x) (—(~'/2~') —t )&'(x)

—
g d'~k t'(x)Att(x) At(x)k. t(x)

d'&4'et (x)A& (x)At(x)4'tt(x)

—g' d'~IS«t(x)4. tt(x)4. t(x)At(x)'H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev.
Letters 3, 552 (1959).

'A. H. Wilson, The Theory of Metals (Cambridge University
Press, Cambridge, 1953},2nd ed. +0' t (x)tt'et (x)4' (x)4' t(x) I. (1)
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cases of the general problem, namely, the strong intra-
band phonon-coupling limit, in which the interband
phonon coupling is considered to be vanishing, and the
strong interband phonon-coupling limit, in which the
intraband phonon coupling is considered to be vanish-

ing. In the strong intraband phonon-coupling limit, we
obtain two coupled equations relating two order param-
eters as functions of temperatures, from which two
critical temperatures can be obtained. One of the order
parameters is identified as due to the s band, another as
due to the d band. It is shown that, if the d-band order
parameter is much larger than the s-band order param-
eter, the interband impurity scattering would lead to
an s-band critical temperature larger than that of the
pure two-band model. In the strong interband phonon-
coupling limit, we obtain only one order-parameter
equation, and there can be only one critical tempera-
ture. The impurity scattering can raise or lower the
critical temperature depending on whether the inter-
band scattering is stronger or weaker than the intra-
band scattering.
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Here P, (x) and P, t(x) (0 = t' or j, ) are, respectively,
the destruction and creation operators for the s-band
electron at position x. Similarly, Pd, (x) and Pq, t(x)
are those for the d-band electron. p, is the chemical
potential, with respect to which it is convenient to
measure single-particle energies. The phonon-induced
attractions between electrons are represented by cou-
pling constants, g, for s-s coupling, g~ for d-d coupling,
and g, q for s-d coupling. With the negative signs thus
chosen in Eq. (1),g„g&, and g,z are all positive coupling
constants.

The presence of impurities will cause transitions of
electrons within each band as well as between diferent
bands. The interaction Hamiltonian can be generally
written as

X;„,=g g d'x V, (x—R,)P,.'(x)$,.(x)

+P g d' V.(x-R')O..'(x)O"(.)
d

d'x V,„(x—R;)
0'

X I4-'(x) A.(x) +4'-'(x) &-(x) I (2)
Here we consider only the presence of nonmagnetic
impurities which do not cause spin-Ripping interactions.
V, (x—R~) is the potential of an impurity atom at
position R; as felt by an s electron at position x, while
V~(x —R;) is the potential as felt by a d electron.
V,q(x —R;) will cause interband transitions. '

To treat the electrons in the two bands simultan-
eously, we introduce a 4-component space in which the
6eld operators are dined as

'4 I(*)
'

AI (x)

where T is the time-ordering operator and (~ ~ ~ ) denotes
the grand canonical ensemble average. The 4&&4 matrix
Green's function can be expressed in terms of 2&2
matrix Green's functions

where

( 6(x, x') F(x, x')
s(, ")=I

E—Ft(x, *') —Gr(x, x'))

(G.,(x, x') G,d(x, x ))6(x, x') =/

EG„(x, *') G«(x, x'))

and

P;,(x, *)
F(x, x') =i

&~„(x,*) F«(*,"))

LF'(» x')]-t =LF(*', *)]~-*,

LG (x, x')].p=LG(x', x)]p..

(9)

(10)

We follow the convention of Baym and Kadanoff4
for the Fourier transform of the Green's function

d8
g(x, x') =(—zp)-'g

(2n.) '

XexpLip'(x —x') is (t —t')]8(—p s ) (11)

Both ~; and d; are Pauli matrices. We let ~; denote the
Pauli matrices in the larger space, and d, in the smaller
space. Next, we define a 4&4 matrix Green's function

g(x, x') = —i(~(x)+'(x') ),

+(x) =—

W.I'(x) g(y, s„) = d(t —t') d'(x —x')

0 I 0 —1
I
I
I
I0' —1
I 0,

H. Jones, in Handblch der I'hysik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956).

,|t'I'(x),
+'(x)=—(4"I'(x) AI'(x) &I(x) &«(x)) (4)

Here, x represents space and time (x, t). We write
matrices in this 4-component space as direct products of
2&(2 matrices. For example, we have

.IX~i=l --',,----
I

E0 '.

' -~)
0 1,' 0 0

I
I
I

1 0 I 0 0

XexpL —ip (x—x') +is„(t—t') ]g (x, x') . (12)

LF'(p, s.)]-t =LF(—p, —')]I-*,
LG'(p, s.) ]-t = LG( —p, —&.) ]~-.

(13)

With the total Hamiltonian BC=Xp+3C' I one can
obtain the equation of motion for the 4&&4 matrix

4 L. P. Kadano8 and G. Baym, Quantlm Statistica/ Mechanics
(W. A. Benjamin, Inc. , New York, 1962); also see V. Ambegoa-
kar, in Brandeis Lectures (W. A. Benjamin, Inc. , New York,
1963),Vol. 2.

Here, s„=iIr(2I+1)/P, with I equal to any positive or
negative integer, and t is taken to be imaginary time,
defined in the region (0, —ip), just as in the usual
6nite-temperature Green's-function theory. Equations
(9) and (10) in the (p, s„) space are
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Green's function:

(i (81/Bt) —K (x) —V(x)
! —~t(x)

where

!g(~, *)=! !S(x—x') S(t—t'),
i(81/Bt) +K(x) +V(x)) (0 1)

( 15)

Jt' —(V'/2m, ) —p
K(x) =!

o

(+~V, (x—R;)
V(x) =I

EZ'1' ~(x R')

o

—(V'/2m') —p)

Q,V,&(x—R,))
Q,V.(x—R.,) )

and cL(x) is a 2X2 matrix order parameter which can be obtained by self-consistent calculation,

t'g. «. (*)~. ( ) ) g"«. (*)~.(*)))
~(*)=I

(g 8 ~'(&)At'(~) ) g"«.~'(*)At'(&) ))
~ (*)=I

Eg'«~~'(~)4 t'(*) ) g~«A'(*)4't'(*) ))
(19)

The problem now is to solve the set of Eqs. (15)—(19)
self-consistently. Once the 4&4 matrix Green's function
is obtained, one can calculate all the thermodynamic
quantities through the usual BCS theory. The particular
case with no impurities involved has been solved by
Suhl, Matthias, and Walker. ' They have shown that
without impurities, there are two transition tempera-
tures in the limit g, z

——0 (that is, there is only intra-
band phonon coupling); on the other hand, there can
be only one transition temperature when g,«0. It will

be shown that, with the inclusion of nonmagnetic:im-
purity scattering, the general features of their theory
still exist. Due to mathematical complication involved
in the general case (with all g„gq, g,&40), we shall pay
attention to two limiting cases, namely, (1) g, &

——0, the
intraband phonon-coupling limit, and (2) g, =gq-—-0,
the interband phonon-coupling limit. Through solving
these two cases, some important features of the in-
Ruence of the nonmagnetic impurities on the two-band
model are revealed.

III. INTRABAND PHONON-COUPLING LIMIT

In this limiting case, the 2&& 2 matrix order parameter
is diagonal:

(e„o)
Io

(22)

where 6p and Gap are single-particle kinetic energies
measured with respect to the Fermi energy level. The
matrix self-energy Z(p, s„) is to be determined self-
consistently by considering the lowest-order diagrams
contributing to the self-energy. Similar to the case
treated by Markowitz and Kadanoff, ' the 4&4 matrix
self-energy is the sum of two types of diagrams:

~(y, s.) =~-.(y, s.)+~'-.(p, «.) (»)
The interaction leading to the superconductivity gives
rise to components (off-diagonal in the larger space but
diagonal in the smaller space) of

~,, (y, ,) =- (1/-4)
d'k

Xg ~3Xgg(p —lr, «, —s,) |:3X1, (24)
(2n-) '

component case:

g '(p, s,) =s, lX 1—&3Xep —Z(p, s,)
—=8 '(p, ') —~(y, «.) (»)

Here, go '(p, s„) is the corresponding 4X4 matrix
Green's function for the two-band model in the normal
state and ap is now

(2o)

or

d'k
=-1/t g 2, 1Xgg(~, «.)

o.d.Xd. /J o.d.Xd.

It is convenient to solve the problem in the (y, s„)
space and to define a 4X4 matrix self-energy p(y, s„)
in a formallv identical fashion as one dyes ig. a ont;-

(25)
'D. Markowitz and I„P, Ka/anoR, Phys. Rev, 1/1& 56$

(1963),
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where

(26)

&sup Io.s.)&a.=~iX &, (27)

We remark that this will turn out to be the following:

tion, Eq. (6), we have

( &imp

&imp =
I

w,

The nonvanishing components of X; ~ are

(33)

(~, 0)
lo

(28)

with
V(x) = Vi(x) +V2(x), (29)

(QV(x —R) O

Vi(x) =I (3o)
0 g~Vg(x —R;))

V, (x) =d, +~v,g(x —R;) . (31)

The self-energy due to electron-impurity scattering is

Since the impurities are randomly distributed
throughout the superconductor, the self-energy due to
the electron impurity is obtained by taking the usual
second-order Born approximation and averaging the
positions of the impurities over the entire supercon-
ductor. We write Eq. (17) as

d'k
Z; p„,(p, s„) =n; V,2(k)G„(p—k, s„)

27r 3

dk+I, , V,j(k)G«(p —k, s„), (34)

d'k
Z;., «(p, s„)=I, V, (k) G«(y —k, s,)2~ 3

d'k+n;, V„~(k)G., (y —k, s,). (35)

The nonvanishing components of; ~ are

d'k
=-;,„,(p, s„) = n; — V. (k) F„(y—k, s„)

2n- '

d'k

, V."(k)F«(p —» & ) (36)

d'k d'k
&imp(ps sv) =&' &3XVi(k)B(p —ks s ) ~3XVi(k) -;,«(p, sv) = I; V„'(—k) F„„(p—k, s„)

2m '
(2m)'

d'k
+e, ~gXdig(p —k, s,) ~3Xdivsg(k), (32)

2~ 3

where Vi(k) and V,q(k) are the Fourier transforms of
V&(x) and V,d(x —R,), respectively. e; is the density
of the impurities. Because of the nature of the sym-
metry of the components of the matrix Green's func-

d'k
, V,g'(k) F„(p—k, s„). (37)

In this case the 4&&4 matrix Green's function is diagonal
in the smaller 2&&2 space, and, therefore, the 4)&4
equation of motion, Eq. (15), can be split into two
simultaneous 2X2 equations in the (p, s„) space:

( Sv &sp &imp, ss(ps Sv)

—4*+=. ':,-*(—p —&.)

( s„—eg, —Z;, , dd(p, s,)
!

l—&~*+' «*(—p —s )

&s Himp, ss(ps &v)

IG.(p, s.) =1,
Sv+&sp+~imp, ss( ps Sv))

—&a—=.', ,«(p, s.)
IG.(p, s.) =»

s.+~~p+& ~,«( —p, —s.))

(38)

(39)

where

( G-(p, &.)
G.(p, &.) =I

l—F-*(—p, —&)

G«(p, s.)
Gd(p s.) =I

l—F«*(—p, —')

F-(p, ~)

—G-( —p, —&.))
(40)

F«(p, s.)
!

-G-(-p, —'))
(41)

and, from Eqs. (25') and (28), we have

(42)

(43)

Here the prime on the integral signs is to denote the
necessary cutoff in the momentum space, since we must
limit the virtual-phonon energy exchange to the range
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or

Gs (Pv sv) =&sv &sp&2 ~sv'plv

Gd (Pv Zv) Zdv ddp%3 Ada&la

~\s

&av+&sp&2+~sv&1
G, p, s„—

82—2 '—(12

(44)

(45)

( —cdD, cdD), where idD is the Debye frequency. lt can
be shown later that 6, and A~ are real quantities, the
order parameters.

To solve the simultaneous equations (38) and (39)
we take the ansatz

Fermi energy level, and Nd(0) =2Ndp/ d/22r2 is the den-
sity of states of the d band at the Fermi level. P» and
P/ d are, respectively, the Fermi momenta for s band
and d band, as we are going to treat the case of two
spherical Fermi surfaces.

Further, we obtain some important relations between
the quantities given in the ansatz and the already de-
fined quantities. It is convenient to write the relations
in terms of /d„—= (1/i)s„, ip,„—= (1/i)$, „(i~d„), and ~dd„—=

(1/i) &d.(~.):

(~ 2++ 2) 1/2

tV

&dv+&dp&2++dv&1
Gd y, s„=

Zd
'—edp2 —Zd ' (47) +(2 ..)-, ,

""',
,„,, (»)

The ansatz gives the equations of the order parameters

Lvag v dk

P „(22r)2ga2 —da„2 —g 2' (4g)

p p (22r) gd 2 2d/2 gd 2

Based on the same approximations, as used by Marko-
witz and KadanofP in treating the impurity eGects in
one-band superconductors, we have from the ansatz
and Eqs. (34)—(37)

&imp, ss(pv Sv) =&imp, ss(Sv)

~sv

Z ~sv Z ~8v

(g~ 2 /ai 2) 1/2 2r (g„2 /si„2) 1/2

Z;mp dd(P, S„)—Z;mp dd(Zv)

vvs

a,„=Z,+ (2r,)-1
(~ 2+/ai 2)1/2

GOgp

cod„—&d„+(2rd)—
(id 2++ 2) 1/2

nd„=ad+(2«)-
(~ 2++ 2) 1/2

&dv +dv

sv ~sv

isasv a-b'av )(

2rd (gd 2 /rid 2) 1/2 2rd (g 2 g 2) 1/2 Now we can rewrite Eqs. (42) and (43) as
(51)

Zimp, ss(Pv &v):Fvimp, ss(&v)

(g 2 g 2)1/2

wimp, dd(Pv Sv) =Pimp, dd(Sv)

(52)
2&,d (& 2 g„2)1/2

COg)

A, =g,N, (0) 7/DT Q de, '", (62)
~D /dsv +&a ++sv

co

Zd=gdNd(0)DDT Q dad . (63)
v m ~D /sids +Ed +Ddv

where

i
2rd (g 2 g 2) 1/2

vs'

Making use of the well-known identity in the BCS
2&d. (Z,„2—g,„2)1/2 theory,

1/2r, =/2, 2rN, (0) (V,2(p) )11, (54)

1/2rd =N~Nd(0) (Vd'(p) )11, (55)

1/2r. d=/2, 2rNd(0) (V d2(p) )&, (56)

1/2rd, =nyrN, (0) (V,d'(P) )11. (57)

The brackets ( )ii on the impurity potential functions
denote the solid-angle average of the functions. N, (0) =
2/4p»/22r2 is the density of states of the s band at the

(64)

1/g, N, (0) =ln(2ycdD/lrT„&2&),

1/gdNd(0) =In(2ycdD/lr T,d"'),

(65)

(66)

where lny=Kuler's constant, and also of the equations
for the critical temperatures of the two bands, when
the superconductor is pure,
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we obtain the following equations:

T
(0)

ln

AT ~
~s v sIp ~D Oisv +Os +esp &v +os

BCS theory for pure one-band superconductors:
CO

ln ~2vdog ((1+vdv2)-'~2 —(vd ) '). (78)
cd V~

It is easy to show that T,&= T,d"). However, we still
have to be careful in treating the s band. The approxi-
mate relation between N,„and v,„ is now

1n where
v-=~-(1+[~.d./(1+v") "3I,

nsdv —(2rsd)
—'(lgv —' —hdv-') .

(79)

(80)

T 22rkDT " (
7Oln

(Oi iSi ((id 2++ 2) 1/2 oo j
These two equations are valid for all temperatures.

It is convenient to introduce the following dimension-
less quantities:

Nsv=idsv/I-IVVI Ndv=oidv/+dvv (71)

v,„=&o„/5,= (2v+1) 2rkDT/isi„

vd„=cd„/hd= (2v+1)rrkDT/Dd. (72)

With the new quantities, Eqs. (69) and (70) become

T CO

ln =2v„g ((1+I,„2)
—'12 —(v,„) ')I (73)

cs v=0

CO

= 2vdog ((1+Nd ) i —(vd ) i) (74)
Tcd v 0

The general problem about the temperature depend-
ence of the order parameters in the present limiting
case can, in principle, be solved from Eqs. (73) and
(74), though the mathematics involved are quite com-
plicated. To show the effects induced by the impurity
scattering, we consider a simpler situation, some as-
pects of which have been investigated by Sung and
Wong. ' %e assume

Xd(0)»X.(0),
and thus, in the pure limit,

Tcd "&&Tcs".
In this case, for d band, we have approximately

Nav —&catv

(75)

(76)

(77)

Equation (74) becomes the equation obtained by the
' C. C. Sung and V. K. Wong, J. Phys. Chem. Solids 28, 1933

(~96').

vts ~sv

(68)
+d V IXI IsD 5'Mdv +ed +Ed v oiv +dlPj

The cutoff frequency now can be taken to be infinity,
as we no longer have the divergence diQiculty. After
carrying out the integration, we have

We rewrite Eq. (73) as

T co

ln =2vog ((1+ud„') '12 (M—sp) ')
c8 V0

—2vsog (v ' —I ') (81)
V~

When T &T„, we have 6, 0, N, „&)1.Then we have
approximately

CO

ln „=2v,og (I,„—' —'v, „-'). (82)
Tcs v=0

In the limit T +T„, 6;+—0. From Eq. (59) we know
that 6™,„ is small but does not approach zero in this
temperature limit. Then, at T= T„, v,„&N,„and Eq.
(82) gives T„)T„&oi. Here we have only given a quali-
tative discussion about this interesting effect. One
would notice that such an eRect is due to the non-
vanishing of (2r.d) '. We can therefore draw a qualita-
tive conclusion that the interband impurity scattering
leads to an enhancement of the s-band pair formation,
and thus leads to an s-band critical temperature which
is higher than that of the corresponding pure two-band
superconductor. It is conjectured that perhaps a de-
tailed investigation of Eqs. (73) and (74) will show
that the s-d interband impurity scattering would lead
to the increase of the s-band critical temperature and
simultaneously to the decrease of the d-band critical
temperature if h~) 6,.

IV. INTERBAND PHONON-COUPLING LIMIT

In this limiting case, the 2X2 matrix order parameter
is off-diagonal:

~(~) =~,(x)

( o g"Q.i(*)y.i(*))r

g«(.)&,,(.) ) o )
( o

=g.d 9*i(*)&i(*))I (83)
(—1 0)

We also assume a 4&&4 matrix self-energy Z(p, 2„), just
as we did in the previous case. It is noticed that, in the
present case, the 4)&4 matrix Green's function can
only have diagonal components and off-diagonal com-
ponents, similar to the 4&4 matrix Green's function
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d'k
Z, p

——g,d( —P-')Q,g(k, z„)
O.l s

Ke remark that this will turn out to be the following:

&spp!, .d, = -hsd~2X ~~. (86)

(85)

~-.(y, «.) = ~(—~P—) 'g.

one meets in treating the paramagnetic impurities in a or
one-band superconductor. See Appendix A of a paper
by Ambegoakar and Grif6n. v

The part of the self-energy which contributes to the
superconductivity is

d'k
XQ ciiXlb(y —k, z„—z„)siiXl

The self-energy due to electron-impurity scattering
(84) can be calculated from Eq. (32). The nonvanishing

components of Z; p can be shown explicitly:

&imp, ss(ys «v) ='-p, "(y «.)

».-p(y, «.) =
z; p„d(y, z„) =" -.,"(y, «.)

(87'i

;mp „,*(—y, —Z„) —Z; p „(—ys
—Z„)

g(yz) -&;,, dd( —y, —z,),
where Z; p,„(y, z„) and Z; p, dd(y, z„) are the same as Eqs. (34) and (35), and

d'k
=- ... (y, ,) =-.; ', «.(k) V.(k) F..(y-k, ,)+V..(k) F.,(y-k, ,) &,

2« ' (88)

d'k
; p, d, (y, z„) = —e;;LV, (k) Vd( k) Fd, (y —k, z„)+V,dz( k) F,„(y—k, z„)).

27r z (89)

Now we write the nonvanishing components of the 4&&4 matrix Green's function explicitly:

G-(y, «.) F"(y, «.)

B(y, «.) =
G«(y «.) Fd.(y, «.)

(90)
—F"*(—y —«) —G-( —y —')

' —F"*(—y —«.) —G«( —y, —«),

The 4X4 matrix equation of motion, Eq. (15), can be split into two essentially identical 2X2 matrix equations in
the (y, z„) space. One of them is

r «v &sp ~imp, ss(ys «v)

!

(—~.d'+ ='-.,"*(—y, —«.)

~sd vsimp, sd(ys «v)

!G,d(y, z„) =1.
z.+«p+& p.«( —y —z))

(91)

Since another equation is essentially identical to this
one, we can only obtain one order parameter, and there-
fore there can be only one critical temperature. The
order-parameter equation is now

We take the ansatz

Zsv esp

G" '(y «.) =l
Zdv+Edp)

(93)

gsg d k
F,d(k, z„).

(2 )' ' (92) ol

G"(y «.) =L(z-—")( d.+ dp)
—~.d'3 '

Zgv ecgp

X! (94)
Zs) &sp

~ V. Ambegoakar and A. Grill, Phys. Rev. 1N, A1151 (1965).

The prime on the integral sign bears the same meaning
as those in Eqs. (42) and (43) .Z, d will be shown to be
real.
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With the ansatz, Eq. (92) becomes

g,g
' d'k

P ~ (2~)'(z„—~„)(zd,+~d, ) —kd, '

(95)

To further our calculation, we pause to take a look at
the condition under which the s-d interband phonon
coupling is likely to be the strongest. The BCS theory
requires that, for two electrons to form a Cooper pair
via virtual phonon exchange, the two electrons should
have opposite momenta and opposite spins. Since the
electrons which can be efhciently couplied via virtual
phonon exchange lie on the Fermi surface, it is not hard
to visualize that, for strong s-d interband phonon cou-

pling to occur, parts of the Fermi surfaces of the two
bands should be common. If we limit our discussion to

the case of two spherical Fermi surfaces, then the radii
of the two Fermi spheres should be equal, P/;, =PFd ——P/ .
In this case, the calculation is very much simplified.

Now, we have

".=(2m. ) '(p' —P~')

".=(2m) '(P' —P ').
It is convenient to introduce a variable x:

x= $1/2(m md) 1/2](P2 Pp2)

It follows that
d'p =N, d(0) dx,

where

N, d(0) = (N, (0)Nd(0) )"'.

(96)

(97)

(98)

(99)

(100)

With z,„=Q,„—and zd„=iYod—„, Eq. (95) can be written as

ao &D

~.d = (C"/P) N.d(o) Z
v vv ~D Avd +LA „+i(md/m. ) "'x5$&ed, i (m,—/md) "'x5

(101)

The following integral is useful:

f
CO GS

Z,d„2+I rd,„+i(m„/m, ) '/'x](cod„i (m,—/md) '/'x5 (~.d,2+rd. d,2) "' (102)

where Equation (64) should now be replaced by

co &g) dx

~ fee, +i (md/m, ) "2x][cv„i(m,/—m, ) '/'x]

ln(2y/dD/2ri4/T) =k//T ,'Dm, /md-) "'+(md/m, )"]
Substituting the ansatz, Eq. (93), into Eqs. (34),

(35), (88), and (89) and making use of Eq. (102), we
obtain

( Msv Mgv
&dv=&v+~

v + v ~(+vdv +&dvdv )
&2rv' 2r, a')

a,d, h.d+ (1/2r, d"———1/2r, d')
(g 2+~ 2) 1/2

(106)
and thus

Fu, d„=2$(m, /md) + (md/m, ) ]u„+f (/v/, d„/2r, d')

+2 (6 dv/2rv+evv/2rd) I (~vdv'+covdv') ', (107)

where

1/g, dN, d(0) =ln(2y&o~/2r T„d&'&) . (113)

Combining Eq. (101) with Eqs. (112) and (113), we
have an equation similar to Eq. (67). We let ~&~~
and carry out the integral to obtain the following:

T 2zkgT,
ln = -', L(m, /md) '"+(md/m, ) '"]

y „(0)

(112)

The equation for the critical temperature of the pure
superconductor in the strong interband phonon-cou-
pling limit is

1/ r,2'=
2r22,N(0d) (V,2(p) )o,

1/2rd' 22,~N, d(0) (Vd'(p——) )o,

1/2r, d' 22prN, d(0) (V,d'(p) )——o,

1/2r, d" 22prN, d(0) (V, (p) Vd——(p) )o.

(108)

(109)

(110) whe~e

(111)

Xg ', „—,I, (»4)
v~ (97vdv +Avdv ) v

/dv'= I2r(2v+1)/2P]$(mv/md)'/'+(md/m, )"] (115)
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We deine

Vsdv =~v /~sd

aaaa

usdv =lady/~advs (116)

where f(x) is the digamma function, and

&&/(m, /md)'I'+(md/m, )' '5 ' . (124)
= Lm (2v+1)/2'. d5$(m. /md) '"+(md/m. )"'5

(117)

If the impurity density is low enough, we obtain an
approximate relation between u, d„and v, d„..

Particularly, at T.,&, we have

»(2-d"'/2'-d) =WL2(1+p.d..) 5—0(o) (125)

with

p d,s (~~B2 s d) 'L-,' (1/ra+1/rd) —1/r. d"5

v, d„—u, d„f 1—y,d/(1+u, d.2) "'I, (118) Xp(m. /md) '"+(md/m, ) '"5 '(-126)
where

Equation (114) can be written as

T CG

ln =2m, dog ((1+u,d„') '~' —v, d. '5
Tcsd v=0

(120)

or

V.d= (1/2~") Lo(1/~. +1/«) -1/~.d"5 (119)

It is interesting to notice that T„d can be either larger
or smaller than T„d&), depending on whether p, d, ,(0
or )0, and thus on whether 1/r, d") , (1/r, +1-/«) or
(io(1/r, +1/rd). Physically, what we have shown is
that stronger s-d interband impurity scattering would
enhance the s-d pair formation and thus increase the
critical temperature; on the other hand, stronger intra-
band impurity scattering would handicap the s-d pair
formation and thus decrease the critical temperature.

T OO

ln =2v, dog L(1+u,d') "'—u.d, '5
csd v=0

—2VsdOP Loads usda
vM

Notice that when T &Tc,d, A, d 0, then N, d,&&1. The
first summation is negligible as compared with the
second one. Therefore, for T &T„d,

T oo

ln =—2v dog (v d
' —u.d. '5 (121)

Tcsd v=0

From Eq. (118), for T (T„d, we get

V. CONCLUSION

So far we have investigated the two limiting cases of
the general problem about the inhuence of the non-
magnetic impurities on the transition temperature. The
general case, in which both the intraband and the inter-
band phonon coupling are nonvanishing, is yet to be
investigated. Even the investigation of the two limiting
cases is not exhausted. One can look further into other
thermodynamic properties and the electromagnetic
properties. The present paper has set a background for
their investigation. It is hoped that some real super-
conductors with overlapping bands might happen to
satisfy the limiting cases.

usdv '4dv+Vsd. — (122) ACKNOWLEDGMENTS

Then, we have

„(0) co

ln —2g $(2v+1) ' —(2v+1+p, d)
—'5

v 0

,'(1+p,d) 5—p(-,'),- (123)
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