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The temperature 2'0, at which the shear modulus -', (Cn —C~2) vanishes in the cubic phase and in the
normal state of some high superconducting p-% compounds, is calculated as a function of the small number

Q of electrons (or holes) in the nearly empty (or nearly full) d subband. The variation of 2; with Q was
calculated in a previous paper. We show that T0 is much more sensitive than T. to the value of Q, and thus
to the exact chemical composition of the A38 phase. Moreover, we show that when Q falls in some range of
its value, a linear extrapolation at low temperatures cannot be used to obtain the value of TD. /In other
words, the temperature T&' at which the extrapolated value of —', (Cn —Cis) goes to zero may be somewhat
different from the temperature Te at which -', (Cu —C») is actually zero. g The failure of some samples to
undergo the martensitic phase transition, when the extrapolated value of 2 (Cn —Cu) seems to go to zero in
the normal state, may be explained in this way. Finally, we find that at room temperature —,

' (Cn —C&s) is
minimum for some small value of Q.

I. INTRODUCTION parameter would go to zero at a low but nonzero tem-
perature To'. If C11—C12 actually vanishes, the cubic
phase becomes instable. And in fact, a martensitic
phase transformation was observed in several samples
of VSSi and NbaSn, resulting from the elastic softening
on cooling. '~ In the samples where this transformation
takes place, it does at a temperature T not much larger
than To'. All the experimental evidence indicates that
TD' and T are much more sensitive than the super-
conducting critical temperature T, to the exact chemical
composition of the A38 phase, for a given compound.
Variations of To' and T of several degrees are observed
among samples, all of them with the same T,. In some
samples, the martensitic phase transformation does not
occur. In this paper we calculate the temperature To
at which C» —C» actually is zero in our model, in the
normal state and in the cubic phase. We find that in
some cases To may be different from the temperature
To' at which the linearly extrapolated calculated value
of CII—CI~ goes to zero. We show how the temperature
To and T, are related, as resulting from the comparison
of their calculated variations versus the small number

Q of electrons (or holes) in the nearly empty (or nearly
full) d subband responsible for the anomalous prop-
erties. We shall neglect in this paper the difference
between To and T, which is generally small. This allows
us to restrict the discussion to the cubic phase. (For a
strictly second-order phase transition we should have
T = To. In fact, in our model the transition is a Grst-
order one. But the calculated discontinuities of the
parameters and the calculated latent heat are small. )

N recent papers' we have shown that most of the
„„unusual properties of the intermetallic ABB com-
pounds with the P-W structure could be understood
by using a one-dimensional linear-chain model to
calculate the d-band structure in the tight-binding
approximation. In this model the density of states
tt (E) has very narrow and high peaks at the d-subband
edges. The total number of valence electrons, and thus
the Fermi level position Ep, depend on the chemical
nature of the elements A and 8, and, for a given com-
pound, the exact chemical composition of the A38
phase. When Et falls in one of the peaks of tt(E), the
compound is brought in a strong-coupling limit of the
superconductivity. 4 Moreover, large anomalies appear
in the temperature variations of the elastic moduli"
and of the Pauli susceptibility. ' An elastic soften-
ing on cooling was observed" for the shear modulus
&s(C»—C») by measuring the sound velocity of the
ultrasonic mode (110)I110I.The velocity for this mode
is proportional to (Cn Crs)'t'. In some extreme cases,
such as VsSi and NbsSn, the decrease of Cu —Cts on
cooling is so large that the associated increase in the
attenuation forbids the propagation of the (110)I110I
mode in the limit of Iow temperatures. In those cases,
by linearly extrapolating the measured variations of
C11—C12 at low temperatures, it is found that this

II. CALCULATION OF TEMPERATURE To

We shall first give the results of our calculations
concerning the influence of Q on the variations of M=
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FIG. 1. Variations of To and T, versus the small number Q of
electrons in the d subband in V3Si.

—,'(Cn —Cqp) versus the temperature T. In a previous
paper' we had shown that in the cubic phase

EnfdE+ A~nf'dE +M', (1)

nfdE= Q. (2)

%hen EJ is not too far from the edge E of the d sub-
band we may use for the density of states the simplified
form n~(Z/xw'I') (E E) 'I', where Z is —the number
of available states in the d subband for the two spin
directions, and w is the subband width. Equations (1)
and (2) give

M =M'+ (Z'a'q'w/6n Q) (8—E)R,

k~T= (pr'wQ'/4Z') R ';
(3)

k~ is the Boltzmann constant and we have intro-
duced the functions R and S of the parameter q=
(EI —E~) (k&T) r de6ned by

$1+exp(x —g) j ~dg

where u is the interatomic distance in a linear chain of
transition atoms, q is the Slater coeflicient for the
atomic d orbitals, E is the energy of one electron, E
is the bottom of the d subband under consideration, n
is the density of states for this d subband, f is the Fermi
distribution function and f' its derivative versus E,
and M' is the temperature-independent contribution
from the lattice, including the s-electron conduction
band and the other d subbands. The electronic transfer
between the diferent bands can be neglected in the
calculation of the shear modulus, as shown by Barisic. '
Thus the change of Fermi level Ep is obtained by writ-
ing Q as a constant:

To and Tc in K
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By tabulating R and S, we obtain the variations of M
versus T. Here we defined To as the temperature for
which M= 0. But it must be kept in mind that T0 may
be somewhat different from the value To' of the tem-
perature for which the linearly extrapolated variation
of M at low temperature goes to zero. In fact, we shall
see that when Q falls in some range of values, M stops
decreasing linearly with T in the cubic phase just before
going to zero. (This phenomenon, which takes place
in the cubic phase, must not be confused with the arrest
of the linear decrease of M at the martensitic phase
transition temperature T .) Now we calculate Tp by
solving Eqs. (3) and (4) for M =0. Its variations versus

Q are shown in Fig. 1 for VpSi and in Fig. 2 for NbpSn,
where the variations of T, calculated in a previous
paper' have also been plotted for comparison, and where
we have roughly indicated the behavior of the density
of states at Fermi level, which is the monotically
decreasing function of Q given by n(Ep) 2Z'/pr wQ.
The curves of Figs. 1 and 2 have been obtained using
parameters which are determined. in the last part of
this paper. The following results may be given:

(a) Except in the neighborhood of Q=O, Tp varies
more rapidly than T, with Q.

(b) Tp vanishes for Q=0 and for a small value Qp
——

(ZP/127r')a'g'(w/M') of Q. We shall see in Sec. III
that, as a typical order of magnitude, Qp should fall in
the range from 10 2 to 10 ' electrons in the d subband
per transition atom.

(c) Tp is maximum for Qp„——0.715Qp, with the value

T =0.0011(Z'/m') 4q'(w'/k&M") .

T, is maximum for Q, = 1.9(Z'/pr') V/w, with the value
T, =0.51(Z'/pr') V'/k~w, where V is the BCS coupling
constant, as shown in our paper. ' The ratio

Tp /T, „=2.1(Qp /Q, „)'=0.0021(a4~4/V'M") (6)

very strongly depends on the parameters.
(d) At the origin Q=O, Tp starts to increase linearly

with Q, while T, starts to increase as Pln(1/Q) j ',

Odom ~0 0] Q

11+exp(x' —g) j-'dg. PIG. 2. Variations of TO and T, versus the small number Q of
electrons in the d subband in Nb3Sn.
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Fro. 3. Variations of the shear modulus M=-', (Cu —Cu) versus
the temperature T, for different values of Q.

with an ininite slope at Q=0. For Q«Qs the following
holds:

T./T-=3. 2Q/Q. -18(Q/Q. )"'+o(Q/Q. ) . (7)

(e) For Q&Qs the decrease of Ts from its maximum
value Ts to zero is very sharp, and for Q&1.057Qs,
C~~—C~2 no longer goes to zero at low temperature. In
the very narrow range Qs(Q(1.057Qs, the curve which
gives Ts versus Q has two bran. ches (the lowest one is
related to the existence of metastable states in the cubic
phase). Contrary to Ts, the decrease of T, for Q&Q, is
very slow.

Equation (6) shows that for reasonable numerical
values of the parameters (ag 1, w 8 eV, M' 10 eV
atom ', V 0.15 eV) Qs cannot be much larger than
Q,„, which is itself small (probably not larger than
10 ' electron/atom in the d subband) . Thus the shear
modulus M can go to zero at low temperature only
when Q is small enough to bring the compound in the
strong limit of the superconductivity de6ned in our
previous paper. 4 And we may conclude that the mar-
tensitic phase transition can take place only in those
P-W compounds which have a high critical supercon-
ducting temperature T,.

But conversely, the sharp decrease of Ts for Q&Qs,
compared with the slow decrease of T, for Q&Q, ,
shows that a large value of T, is not necessarily asso-
ciated with a decrease of M large enough to trigger
the martensitic phase transition. For Q a little larger
than Qs (Figs. 1 and 2), M no longer goes to zero, but
T, may be large again. This should explain why the
martensitic phase transition was observed only in
some of the high superconducting P-W compounds. So
far, it was observed only in V3Si and Nb3Sn.
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Fro. 4. Variations of the shear modulus M=-', (Cu —Cqs) versus
the temperature T for the small values of Q.

On the other hand, for a given P-W compound, where

Q falls in the neighborhood of Qs, we,may assume that
a small change in the chemical composition, at the
departure from the stoichiometry, may produce a
change in Q able to make the lattice instability appear
or disappear, without any large change in the value of
T,. This should explain why, even in. VSSi and Nb3Sn,
the martensitic phase transformation was not observed
in all the samples. ' ' And in those samples where it
was observed, the variations of To from one sample to
another may be also understood as caused by small
changes in Q.

III. RESULTS FOR THE SHEAR MODULUS
M= s(Crt —Cts)

By using M/M', T/T, and Q/Q, as dimensionless
parameters, we have plotted in Figs. 3 and 4 the varia-
tions of M/M' versus T/Ts„ for different values of
Q/Qs, as calculated from Eqs. (3) and (4) . We see in
Fig. 3 that the lattice instability exists only when Q
is small. And we see in Fig. 4 that when Q is in the
neighborhood of Qs, small variations of its value are
sufhcient to produce a signiicant change in the thermal
variation of JI/I at low temperature. It is interesting
to compare the results shown in Fig. 4 with the experi-
mental data of Testardi and Bateman' for diGerent
samples of V3Si.

In fact, it appears that a linear extrapolation to low
temperatures of the measured thermal variation of 3f
can predict that M goes to zero at a Qnite temperature,
when actually it does not. This can occur when Q is
just in the neighborhood of 1.057Qs or a little larger
than this value. For instance, the curve with Q=
1.070Q, in Fig. 4 stops decreasing linearly just a little
before that M for which it can go to zero, and in fact
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M does not vanish for this value of Q. This could be
one of the possible reasons why the martensitic phase
transition was not observed in samples of V3Si or
Nb3Sn in which M seemed to vanish by extrapolation. '
In these samples, the actual value of 3f in the cubic
phase may in fact not completely go to zero, even in the
normal state.

On the other hand, Testardi and Bateman have
observed in a sample of V3Si an arrest of the decrease
of M just at the onset of the superconductivity at
T, 17'K. This phenomenon may be at least qualita-
tively understood in our model by the fact that for
T(T, the electronic distribution is no longer deter-
mined by the Fermi function, the width of which goes
to zero with T, but by the function g&

——(1—@12)f&+
eI,2(1—fi), which keeps a finite and slowly varying
width from T, to the absolute zero, 4 where 2','=
1—$i/ep, fI. '= 1+exp(eI/Aii T), with &p

——E(k) —E~
and ei ——($q'+6')'~'. So, if the cubic phase is stable at
T„ it should usually keep its stability for T& T,. It
may be for the same reason that in the transforming
samples the lattice distortion seems to stop increasing
on cooling just when T becomes smaller than T„as
observed in V3Si by Batterman and Barrett. But, of
course, the onset of the superconductivity, at T
18'K, cannot explain why no martensitic phase transi-
tion was detected in a sample of Nb3Sn where the
extrapolated value of M should have gone to zero at
To'~32'K, and thus in the normal state. ' (The phase
transition takes place in the same sample after an
appropriate metallurgical treatment has made it more
stoichiometric. ')

A third possible reason of the failure of the non-
stoichiometric compounds to transform inay be due to
the martensitic nature of the phase transition. The
involved mechanism needs the migration throughout
the crystal of an interface which produces a twinned
tetragonal structure by a double shear. The departure
from the stoichiometry is obviously associated with
small irregularities in the lattice arrangement, such as
excess of atoms of one kind at wrong sites. These ir-
regularities may, by a mechanism which in fact is not
well known, quench the migration of any interface, and
thus forbid the transition.

Another interesting phenomena appears by plotting
the variations of M/M' versus Q/Q0 for different values
of T/Tp, as shown in Fig. 5. We see that for a given
value of T (for instance room temperature) the shear
inodulus M is minimum for a small value of Q which
does not vary very much with T and falls in the range
from 0.7 to 3QO. This should be compared with the
recent observation by Matthias' of the existence of a
minimum of M at the room temperature in the ternary
phase diagram formed by Nb3Sn, Nb3A1, and Nb3Ge
near the composition 4 Nb3Al:1 Nb3Ge.

9 B.T. Matthias, Phys. Letters 25, 226 (1967).

Finally, we shall give the asymptotic expansions Of
the shear modulus M in the two extreme cases of the
very small and the large values of Q. For Q/Qo((T/T&
we 6nd

M/M' 1—3.20(T /T) Q/Qo+3. 23(T /T) 31'(Q/Qo)'.

(8)

For Q)&QO (but with Z))Q) we find the temperature-
independent limit M/M' 1—Q,/Q.

IV. NUMERICAL RESULTS IN Nb3Sn AND V3Si

A. N13Sn

The highest value at which the martensitic phase
transition was observed in Nb3Sn is 43'K.~ It seems rea-
sonable to assume that To is not much larger than this
value, which thus should correspond to a value of Q not
very diferent from Q0„0.715QO. But in Nb3Sn the
measured distorsion e is negative (e —0.0041), so
we conclude from our first paper' that Q(s3QO. Finally,
to satisfy the two previous conditions, we shall assume
that Q falls in the neighborhood of 0.6Qo. At room tem-
perature T= 300'K 7TO, and with Q=0.6QO, Eq. (8)
gives 3f~0.8M'. But at this temperature the experi-
mental data' are M= 10.9 eV/niobium atom. Therefore
we obtain M'~13.6 eV/niobium atom.

The formula e —agwQ/6M' (formula I, 32 of
our first paper) gives agwQ 0.336. We shall use the
result of Morin and Maita' for the density of states
at Fermi level in the cubic phase N(Ep) 2Z'/~'wQ
8.8 states eV '/niobium. atom and for the two spin
directions. With Z=4(d, & „'d,„subband, for instance)
we find wQ~0. 37 and thus ay~0. 91, q~0.34
zv 8.7 eV, and Q0~0.071 electron/niobium atom in the
subband. Equation (5) gives To 45'K. Finally, we
know that in Nb3Sn, T, was never observed to be much
larger than 18'K. (The larger value T, 20'K wa, s
discovered by Matthias" in the ternary compound
4 Nb3Al:1 Nb3Ge. But we do not know precisely the

2 3 4 5 6 7
&0

FIG. 5. Variations of the shear modulus M =-', (C11—C1~) versus
the number Q of electrons in the d subband, for diferent values
of the temperature T.

' F. J. Morin and J. P. Maita, Phys. Rev. 129, 1115 (1963)."B.T. Matthias, Science 150, 645 (1967).
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parameters of this compound. ) By assuming T,„
18.5'K, we find V 0.13 eV and thus Q, 0.88Qp
0.63Qp as shown in Fig. 2.

B.V3Si

The highest value observed for T in VBSi does not
exceed 25'K.8 The measured distorsion e + is positive
(e +~0.00167). So we assume that Q 0.75Qp for a
typical sample. Numerical estimations very similar
to those for NbsSn, but with e += aqtvQ/12M' (formula
I, 21 of Ref. 1), give M'~10.5 eV/vanadium atom,
aq 0.65, g 0.28 A ', w'~8. 9 eV, Qp 0.048 elec-
tron/vanadium atom in the subb and, Tp„23'K,
V~0.13 eV, and Q, ~1.25Qp„~0.89Qp as shown in
Flg. 1.

We see that the estimated parameters M', aq, m,
and V have the same order of magnitude in Nb3Sn
and V3Si, as it is reasonable to expect. The large dif-
ference in the value of To for these two compounds is
due to the fact that the parameters enter in the formula
(5) with high powers. The abso1ute number Q of elec-
trons per transition atom in the subband is smaller in
VpSi than in NbsSn (we find Q 0.036 in V,Si and 0.043
in NbsSn). But the relative number Q/Qp is larger in
VSSi, in agreement with the sign of the distortion.
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Theoretical and numerical results for the attenuation of high-frequency sound waves in superconductors
are presented. Explicit calculations are given for the attenuation of longitudinal sound waves with wave-
lengths both large and small compared with the electron mean free path in pure superconductors and in
superconductors containing magnetic impurities. Extensions to more general situations are discussed. The
contribution due to the disruption of Cooper pairs by phonons is examined as a function of impurity con-
centration.

I. INTRODUCTION

"EASUREMENTS of the attenuation of high-.. . . frequency sound have provided a useful and
relatively direct means of studying the magnitude and
anisotropy of the temperature-dependent energy gap in
superconductors, as well as providing one of the many
verilcations of the validity of the presently accepted
theory. ' The theoretical description appropriate to such
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Scientific Research, Ofhce of Aerospace Research, U.S. Air Force,
under AFOSR Contract/Grant No. AF-AFOSR-328-67.
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~ Some examples of recent measurements are J. M. Perz and E.
R. Dobbs, Proc. Roy. Soc. (London) A296, 113 (1967); J. R.
Liebowitz, Phys. Rev. 133, A84 (1964); A. C. E. Sinclair, Proc.
Phy s. Soc. (London) 9V, 962 (1967).A summary of such measure-
ments may be found in L. M. Falicov and D. H. Douglass, in
Progress iN I.om Temperature Physics, edited by J. C. Gorter
(North-Holland Publishing Co. , Amsterdam, 1964), Vol. 4,
pp. 97-189.

measurements was developed in the original work of
Bardeen, Cooper, and Schrieffer in an intrinsically
low-frequency calculation. They found the remarkably
simple result that the ratio of the attenuation in the
superconductor to that in the normal metal should be
given by

cr,/n„= 2f(tv, ),
where f(wo) is the Fermi function

1/t1+ exp[tv, (T)/kT]I,
and 2coo(T) is the temperature-dependent energy gap
parameter. The only contribution included here is that
due to scattering of phonons from thermally excited
quasiparticles. Although originally derived for longitu-
dinal waves in the limit q/&)1, where q is the wave
vector of the sound and l is the electronic mean free
path, (1) has since been found to hold for arbitrary
mean free paths (for longitudinal waves) and for the
residual low-frequency attenuation of transverse waves'

~ J.Bardeen, L. N. Cooper, and J.R. Schriefter, Phys. Rev. 108,
1175 (1957), hereafter referred to as BCS.'T. Tsuneto, Phys. Rev. 121, 402 (1961). Recent thorough
discussions of the low-frequency theory for pure superconductors
are given by L. P. Kadanoff and A. B. Pippard, Proc. Roy. Soc.
(London) A292, 299 (1966);J. M. Perz, Can. J. Phys. 44, 1765
(1922).


