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Critical magnetic fields of superconducting vacuum-evaporated tin films were measured for all angles
0 between the magnetic field and the film surface at temperatures from 0.4T, to T,. The experimental results
were found to be consistent with Ginzburg-Landau theory provided that the original theory was modified
to account for the extended temperature range and the nonlocal nature of superconducting electrodynamics.
Measurements of the temperature dependence of the parallel and perpendicular critical fields supported
the extensions of Ginzburg-Landau theory developed, most notably, by Maki and de Gennes. The angular
dependence of the critical field for 0&8&-,m at diferent temperatures was found to be in agreement with
Tinkham's original formula for several suSciently thin films, d«$z, a detailed derivation of that formula
is given here, with discussion of its range of validity. For thicker films the corrections found by Yamafuji
et al. were necessary to obtain agreement with the data. The critical fields were carefully measured for 0=0,
and evidence of surface superconductivity was found in the thickest film studied, but not in thinner films.
This is consistent with the numerical calculations of St. James and de Gennes.

where d is the thickness of the film, II,~ is the thermo-
dynamic critical field, and 6 is a length giving a measure
of the energy contained in the interface between the
normal and the superconducting regions which make up
the intermediate state.

For a sufficiently ]hie film the behavior is quite
di8erent. Using Ginzburg-Landaus (GL) theory,
Tinkham7 showed that when a magnetic field H is applied
perpendicular to the surface of a sufFiciently thin super-
conducting film, the field penetrates the film and the
mixed state discovered by Abrikosov forms, as opposed
to the intermediate state. The film makes a second-order
phase transition into the normal state at a critical field
H, z given in GL theory by

H, J.=47''H, bs/q p, (2)

where X is a suitable penetration depth, and pp ——
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I. INTRODUCTION

HEN a thick superconducting film is placed in a
perpendicular magnetic field, the field penetrates

the film and the intermediate state is formed. ' ' The
film is driven completely into the normal state at a
critical field H„given by

H, t.= q p/2v. &r', (4)

where tt is the GL parameter and P& is the temperature-
dependent coherence length discussed by de Gennes. 9

Physically, $r is the distance over which the super-
conducting order parameter changes. This result for
H, & is identical with the critical field H, 2 for a bulk
type-II superconductor (tc) 1/V2). Surprisingly, for a
sufficiently thin Glm the result is valid for type-I
(tt(1/W2) as well as type-II superconductors.

In the original work Tinkham reasoned that a Glm is
sufficiently thin to enter the mixed state if d(fr Maki, ".
Lasher, " and Fetter and Hohenberg" have found more
exact expressions for the critical thickness. Their
results show that the critical thickness is of the order of
X'/$r, but since X and $r are typically quite similar in
type-I superconductors, these two criteria do not differ
greatly in practice.

For a Geld applied at an arbitrary angle 0 to the sur-
face of the film, Tinkham' " showed that the critical
field is found by solving

(H, c o/seH~~)'+H, si /no,H=s1

for H, . The parallel critical field H, ~~
was found earlier

by GL' to be

H, u= (2 )4' 'tp, H, bd/). (6)

' P. G. de Gennes, Snpercondnctivity of Metals ond Alloys lW. A.
Benjamin, Inc. , New York, 1966) .' K. Maki, Ann. Phys. (N.Y.) 34, 363 (,1965).

"G.Lasher, Phys. Rev. 154, 345 (,1967).
~s A. L. Fetter and P. C. Hohenberg, Phys. Rev. 159,330 (1967).
ie M. Tinkham, Phvs. Letters 9, 217 (1964).

44i

hc/2e= 2.07)& 10 " G cm' is the Qux quantum. Using the
GL relation ps

——2427r) (rH, b, the expression for H, s.

may be written as

H, i=42() /&r) H,b=&2ttH, b

or
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II. THEORY

The results stated above for H, ~{ and H, & are now
rather well-known consequences of GL theory. The
angular-dependence formula (5) was first obtained by
rather physical arguments, "but subsequently shown"
to be also a straightforward consequence of GL theory
Because the account in Ref. 14 is rather brief and in-
accessible, we feel it is desirable to present the argument
here in somewhat more detail.

All of the above results, including the angular-
dependence formula, may be obtained by solving the
linearized GL equation

n++ (1/2m) (iAv+2eA/c)'4=0, (7)

subject to a suitable boundary condition at the surfaces
of the film and suitable assumptions of thinness. Within
the general limitations of GL theory, this linearized
equation is appropriate for determining the critical
field, provided the phase transition is of second order,
since then the term in

~

4 }'+ in the full GL equation is
negligible compared to the linear terms. Moreover, as
4—&0, we may take A=A, &, since the screening currents
become negligible as

~

4' ~'. Thus the second GL equa-
tion, which determines the supercurrent density in
terms of A and 0, plays no role in the determination of
H, in this case.

We choose a coordinate system in which x is measured
normal to the film from the midplane. The magnetic
field H is chosen to lie in the xs plane at an angle 8 from
the plane of the film. For convenience, the vector
potential is chosen to have only a y component, which
is given by

A „=H (x cosO —s sinO) .

Inserting this vector potential into (7), the equation to
be solved is

holed to the critical field by choosing a trial function for
@ and computing the value of H (in A) for which F
becomes zero by cancellation of the two terms in the
volume integral.

In choosing a trial function, we can be certain that
~

4'
~

is not a function of y because there is no explicit y
dependence of any term in (11) to favor such a depend-
ence of 4', and any variation of 4' would add a positive
term

~
BV/By ~'. A variation only in the phase of 4, of

the form e'"", can be cancelled by a gauge transformation
which adds the constant k&po/2~ to A„, so there can be no
effect on the minimum energy due to such a variation in
phase. Thus we can take 4(x, s) with no loss of accuracy,
and (11) becomes

{ } B@/Bx ~'+
~

B%/Bs }'+(2~H/qo) '

X (x cosO —s sinO)'
[
4' ['—

(

4' }'/g&'}d V. (12)

Next we note that the optimum x variation is deter-
rnined by the balance between the term x'H' cos'O

~

+ ~',

which favors a smaller
~

+ ~' at larger x' (i.e., nearer the
surfaces), and the term

~
BV/Bx ~', which favors 4'

independent of x. Evidently, as the sample gets thinner,
so that x' is restricted to smaller values, the first term
gets less important, and in the limit of very thin film, we
expect B%'/Bx=0. This automatically satisfies the
boundary condition

M /Bx }.=~~~2 ——0.

Since the only characteristic length in (12) is $r, we
expect that this approximation will be good if d(($r. We
shall show this more precisely later.

With the approximation that 4 is a function only of
s, (12) may be integrated over x in a trivial way, noting
that (x')=r'~d' and (x)=0. Thus (12) reduces to

d%' ' 2xH sine '
ds go

where we have replaced the parameter n by $& according
to the defining relation b = (5'/2m

~

a
~ ) '~'. This partial

differential equation is to be solved subject to the GL
boundary conditions

2xH cose 2 d'-1
~

4 ~'}dc, (13)
po 12 $r

where d is the film thickness and I" is its width in the y
direction. Since we have reduced 0' to a function of a
single variable, the rest of the minimization can be
carried out exactly. Applying the calculus of variations
to (13), we obtain the ordinary differential equation

B@/Bx (27rfA.—/qp)@ ~, ~pp ——B+/dx ~, ~~~2 ——0, (10)

since both surfaces face insulating materials. In general,
no simple analytic solution exists. We resort instead to a
variational calculation, noting that the linearized GL
equation may be derived by minimizing the expression d% {I'2+H sine ' 1 xHd cos8'{'

, +i s%=
de ( yo gr' ~3yo

{ } (V 2~iA/(po—)+ ~'—
~

@ ~'/Pr'}dV (11)
(14)

—V'4+ (27rA„/go)% —(47rt /pp) A&B'%'/By=+/fp, (9) Ii = Yd

and that at a second-order transition to the normal state
this expression, being proportional to the free-energy
difference, vanishes. Thus, we can find a rigorous lozver

' M. Tinkharn, in Conference on the Physics of Type-II
Superconductivity, Cleveland, Ohio, 1964 (unpublished) .

which is the same as (9) with B+/Bx= BV/By=0 and x"
replaced by an average value, namely, (x)=0 and
(x2)= i,d'. This eigenvalue problem has the familiar
form of the harmonic —oscillator Schrodinger equation
from quantum mechanics. The solution for the ground
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state is

4'= c exp( —rrH sin0z'/ys),

with eigenvalue (2vrH sin0/q p) .Equating this eigenvalue
to the coefficient in the right side of (14) and simplifying,
we find

where

and

(H, cos8/H,
~
~)'+H, sin8/H, i= 1, (16)

(17a)

(17b)

@=f1+c cos(2s x/d) j exp( —pz'), (18)

where the variational parameter c is expected to be
negative to reduce I 4 (' away from the center. Inserting

If H, ~~ given by (17a) is set equal to the original GL
expression for H, ~~, Eq. (6), the relationship qs ——

2&2whtrH, s is recovered. If we use this relationship
to eliminate $r in (17b), the expression for H, i given by
(2) is obtained. Note that the significance of (16) is that
the value of B satisfying it provides a lower bound to
the true critical field as a function of 8, a bound which
becomes exact as (d//r)~0.

The particular eigenfunction found above describes
a superconducting strip running in the y direction
and of width (ps/rrH sin0)'". This width reduces to
(ps/s'H, i) =&2(r when 8=-', s., and diverges as 8-+0.
There exist infinitely many degenerate eigenfunctions of
this sort which, for a fixed gauge choice, have variations
in phase ~ exp(ik„y) and whose centers are displaced
to positions z„,where z„=k„q,/27rH sin0. As discussed by
Abrikosov, these degenerate solutions may be super-
posed to form a periodic array of vortices, with a single
quantum of Aux passing through the area associated
with each vortex. However, the single Gaussian strip
solution will have exactly as high a critical field H, (8)
as the vortex solution formed by superposition, and
hence critical-field measurements are unable to dis-

tinguish among the possible solutions. The determination
of which solution is enegetically favored below H, (8)
depends on nonlinear terms which we have neglected.
For 8= ~sr, the triangular Abrikosov array is expected" "
to be roost favorable.

Now let us consider the case for a thicker film where
the restriction that 0 does not depend on x is relaxed
while still retaining the boundary condition that
84/Bx= 0 at the surface. This will give us an indication
of the accuracy of the simple solutions found above. In
the parallel orientation, the only position-dependent
term in the free-energy expression is proportional to
Hsxs ~%' P. As noted above, this term favors having

( @P decrease away from the midplane of the film

x=o, but it will not cause any variation in the s
direction. A simple variational trial function having the
desired properties and satisfying the boundary condition
1s

(18) into (12) and. minimizing, we find

c= a—(u'+2) 'i' —(ls/s-) ', (19)

where a= (s/h)' —s and h=Hd'/&ps. Inserting H=
VSps/rrd&r, we find c —3d'/vr4&r'. Using the

optimized value of c, the improved value of H, ~~
is

found (by setting F=0) to be

Hc
~ i
= (~&q&o/rrdfr) (1+9d'/s. span'+ ~ ~ ) . (2())

From the smallness of the coeKcient of d'/$z', we see that
the approximate solution found earlier is good to 1%%uo if
d &$r. In fact, if d&d,~1.8', the optimum parallel
field solution is the surface nucleation configuration dis-
cussed by St. James and de Gennes" "which leads to
vortices threading the film when the two degenerate
solutions for the two surfaces are superposed, and the
symmetric one-dimensional %(x) treated here is in-
appropriate. For thicknesses small enough to have the
simple vortex-free solution, the maximum departure
from the simple result (17a) is only 3'jjo.

If the field is perpendicular to the film (8= —,s.), the
only position-dependent term in (12) is ~Hss'

~
4 ~'. In

this case, we expect + to be rigorously independent of x
and the simple solution above leading to H,~=II,2=
pp/2s mrs to be exact regardless of the thickness of the
film, provided the film is of type-II material so that
H,2)II,z. However, if H,2&&.;, then there will be a
transition to the intermediate state and the critical field
is given by (1). This has been studied in some detail by
Guyon et al. ,' and by Lasher. "We confine our attention
to films thin enough to avoid this complication.

If the field is at an intermediate angle 9, there are
terms in (12) proportional to xz as well as x' and z'.
The simple variational approximation that + is inde-
pendent of x completely eliminates any contribution
from the xs term in (12), whereas it gives an accurate
account of the s' term and at least an average account of
the x'. To respond to the xs term, we try a variational
function of the form

4= p1+cz sin(s.x/d) j exp( —pz'), (21)

which satisfies the boundary condition of 8%/8x=0 a,t
the surface, while having an xz term for small x. This
form for 0' is especially chosen to respond to the xs
term; it does not reduce to the form given by (18).The
true solution for 4 is a combination of these solutions,
but since we wish to find the contribution due to xg
while maintaining only an average account of the x
term, it is permissable to consider only that part of the
correction to %' which responds to the xs term. When
this solution for 4' is optimized, one finds that p is still
given by s.H sin0/ps, as in the simple solution. Mini-
mizing F with respect to c, we find an improved H, (8),

"D. Saint James and P. G. de Gennes, Phys. Letters 7, 306
(1963).

M D. Saint James, Phys. Letters 16, 218 (1965)."E.Guyon, C. Caroli, and A. Martinet, J. Phys. (Paris) 25,
683 (1964).
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lying above the one given by (16) although having the
same end points at 0=0, —,'~. By restricting attention to

0, a more tractable analysis results, and one finds the
logarithmic slope

superconducting current density and the magnetic
vector potential reduces to the London relationship if
the penetration depth is defined as

)t(1) =)t~(~) (blk)'" (23)
dH, (~)

+c
//

&3(, 1 d'
1———+ ~ ~ ~

d 5)r'
8=0

which may be written as

do. (0) o, ii 12 o, '

)de 2H, i 5 H, ii'

(22a) Here )iI.(1) is the London penetration depth, (p is the
Pippard coherence length which is a measure of the
length over which the magnetic vector potential must
be averaged to determine the superconducting current
density in pure material, and t is a reduced coherence
length which is assumed to be of the form"'4

(22b) 1/5 = 1/(p+1/tp. (24)

Subsequent to the original report of this work,
St. James" has carried out exact, computer solutions for
this intial slope. His exact results follow our simple
analytic approximation quite well for d &(r, but show an
interesting singular change in behavior at the critical
thickness d„mentioned above, at which vortices enter
the film even in parallel field. St. James's result is shown

in Figs. 9 and 10. Yamafuji et a/. ' have given an im-

proved solution for the entire angular dependence for

d/g not too small.
The above discussion is based upon the GL theory

which, in its original form, does not account for the
nonlocal relationship between the super conducting
current density and the magnetic vector potential,
Bardeen" has outlined the necessary modifications to
account for this nonlocal nature of superconductivity.
Later Gor'kov formulated a microscopic GL theory
which has been used to calculate H,

~ ~
(t) in certain limits.

Maki" has used this method to calculate H, ~~(t) for a
dirty film, lp«)r(0), where lp is mean free path for
scattering within the volume of the film at 4.2'K.
Thompson and Baratoff" have calculated H,

~ ~
(1) in the

anomalous limit; d«lp, d«gr(0), tp))fr(0). As yet
calculations have not been made for the perpendicular
critical field of a thin film.

Since a complete set of calculations based on the
microscopic theory are not available, we shall proceed
along the lines of the phenomenological theory of

Pippard. " Pippard found that the above-mentioned

nonlocal nature of superconductivity could be accounted
for by using a nonlocal relationship between the super-

conducting current density and the magnetic vector
potential analogous to Chambers's" result for normal

conductivity. For an infinite half-space in the limit
where P($pXz, ', the Pippard relationship between the

» &. Yamafuji, T. Kawashima, and F. Irie, Phys. Letters 20,
123 (1966)."J.Bardeen, in Encyclopedia of Physics, edited by S. Flugge
(Springer —Verlag, Berlin, 1956),Vol. 15, p. 326.

2o L. P, Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959);
37, 833 (1959) )English transls. : Soviet Phys. —JETP 9, 1364
(1960); 10, 598 (1960)g.

si K. Maki, Progr. Theoret. Phys. (Kyoto} 31, 731 (1964).
~'R. S. Thompson and A. BaratoB, Phys. Rev. Letters 15, 971

(1965).
23 A. B. Pippard, Proc. Roy. Soc. (London) A216) 547 {1953).
s4R. G. Chambers, Proc. Phys. Soc. (London} A65, 458 (1952).

Following this result, we will assume that the nonlocal
nature of superconducting may be accounted for in the
local GL theory by using a suitable penetration depth.

The above penetration depth is only suitable for an
infinite half-space. In the study of thin films it has been
found usefuP' to define an effective mean free path which
will accont for the film geometry as well as for scattering
within the volume of the film. According to the size-
effect theory of normal conductivity, in a thin film the
effective mean free path is given by

1/l.n = 1/lp+3/gd. (25)

As discussed by Millstein and Tinkham, "we theoreti-
cally expect l,gg to be somewhat smaller for the super-
conducting case and to depend on the orientation of the
field. For parallel fields, the vector potential A„=Hx
changes sign in going through the thickness of the film,
whereas the electric field driving the current in a normal
film is uniform through the film cross section. Thus
we might expect to replace d by ~std in (25) for (L,ff) ][.
For perpendicular Gelds, the vector potential is uniform
in x over the film thickness, but varies periodically in
the yz plane because of the vortex structure. Millstein
and Tinkham accounted for this by using

(1/)eff) i.= 1/[p+L(3/&d)'+ 1/2( q'&' (26)

For the films to be discussed here, either lp&js or d($~,
or both, so (26) effectively reduces to (25). In fact, we
will use (25) for all orientations because the structure of
the thin films for which 1/d corrections are most im-
portant is believed to be so irregular that refinements
based on ideal Glm geometry would not be justified.

In their classic paper, Bardeen, Cooper, and Schrieffer'
(BCS) found that Pippard's intuitive ideas were
substantially correct. According to BCS, if /«)p, the
dirty limit applies and X is given by

(27)

where J(E, t) is a function comparable to the e-irl«

"M.Tinkham, Phys. Rev, 110, 26 (1958)."J.Millstein and M. Tinkham, Phys. Rev. 158, 325 (1967).
See Appendix.

~' J.Bardeen, L.N. Cooper, and J.R. SchrieRer, Phys. Rev. 108,
»75 (1957).
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which appears in Pippard s relationship between j,
and A, and falls o8 in a similar distance. However,
whereas the Pippard exponential is always unity for
E=O, the BCSJ(0, t) varies from 1.0 at t=O to 1.33 at
t= 1.0. The temperature dependence of J(0, t) may be
calculated from the BCS result

(0)/X (t) i'= J(0, t) LlIz,'(0)/Xr, '(t) j. (28)

The temperature dependence of P (t) is taken from
Fig. 6 or (5.56) of BCS; the temperature dependence
of Xr, (t) has been calculated by Miihlschlegel. " The
resulting temperature dependence of J(0, t) is shown in

Fig. 1.
Finally, with our approximations, (2) and (6) for the

critical fields become

4m lI.z,'(t) H~'(t) I'1 3

IppJ(0, t) l.lp 8d

(24)'~9r, (t)H, (pt) 1 3& '~'

dP (0, t) mls l, 8d~

The above discussion has been based on the GL
equations which are rigorously valid only near T„even
though they seem to give a good qualitative account of
the phenomena all the way down to T 0. However,
de Gennes" and Maki" have shown that in the limit of a
very dirty material (l/)p~O) an equation of the form of

(7) rigorously determines H, at all temperatures.
According to these treatments, the temperature de-
pendence of the critical fields is found from

—lnt= —0 (-', )+0 $-', + Un(t)/4xt), (31)

where 4'(x) = I"(x) /I'(x) is the digamma function and
Un(t), defined by this equation, is called the universal
function by de Gennes. Limiting values are Un(0) =

I.5

I.O

.5-

0 I I I I I I I I

0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 I.O

t=T/T,

FIG. 1. Temperature dependence of J(0, t).

1.76=6(0)/kT, and Un(t) (8/s) (1—t) for I 1.
(There is a misprint in this connection in Ref. 9.) One
can view Un(t) as giving the temperature dependence
of 1/$r' in (9) for dirty materials over the complete
temperature range as 1/(r' ——(0 54/. leap) Un(t) . de
Gennes' has outlined the use of Un(t) for a number of
specific cases. In terms of the universal function, the
critical fields for a thin dirty film normalized to their
values at t= 0 are given by

H&II(t)/H&II(0) =t Un(t)/Un(0) j"' (32a)
alld

H, i(t)/H, i(0) = Un(t)/Un(0). (32b)

The temperature dependence of the critical fields is
calculated according to the above expressions and (31);
the result is given in Figs, 3 and 5.

If the extreme dirty limit does not obtain, it is not
possible to reduce the critical-field problem to the
solution of a differential equation of the GL form, and
more elaborate integral equation techniques are required.
Helfand and Werthamerss have solved for H, (st) for
bulk samples of arbitrary mean free path, and find that
the curve is very insensitive to l/$p, the extremes being
only 4% apart. Thus we expect only rather small
errors even if we use the GL-type theory outside its
true range of validity.

III. SAMPLE PREPARATION

Sixteen tin films were prepared by electron beam
evaporation of 99.9999% pure tin onto glass substrates
cooled to 77'K in a vacuum of less than 5&(10 ' Torr
during evaporation. The thinnest film was 100 A thick
and the thickest was 2500 A. Film strips 10 mm long
and 1 mm wide were trimmed with a razor blade and
copper leads were soldered to the film with indium
solder. Eleven 6lms were deposited at a slow rate of
10 A/sec. The resistivity ratio of these films was nearly
independent of film thickness, indicating that volume
scattering dominated surface scattering (lp&d). Since
lo(d, these films are dirty. Table I lists the thick. ness
and resistivity ratio for these films; the films are
designated as TD1 through TD11.

Five films, listed as TC1 through TC5, were deposited
at a relatively fast rate of 300 L/sec. The resistivity
ratio for these films generally increased with thickness,
indicating that surface scattering was comparable to
volume scattering; hence these films are considered to be
relatively clean. Here the films are classified as clean or
dirty only with respect to their normal resistance. A
film is clean with respect to the superconducting prop-
erties when lp&$p and is dirty if lp&gp. For all of the
films to be discussed here lp&$p hence they 'are dirty
sup erconductors.

The mean free path for volume scattering at 4.2 K
is found in a later section and is given in Table I.For the

"B.Milhlschlegel, Z. Physik 155, 313 (1939l."P. G. de Gennes, Physik Kondensierten Materie 3, 79 (1964). IIo E.Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (196&).
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TABLE I. Film properties.

Film
H,

ii
(0.8)

(Oe)
H, (0.8)

(oe)

TD1
TD2
TD3
TD4
TD5
TC1
TD6
TD7
TC2
TD8
TC3
TD9
TD10
TC4
TD11
TC5

9000
8540
6430
3780
3324
2162
1782
1515
675

1080
486
625
540
378
378
324

205
178
197
186
169
192
128
139
78

153
72

144
154
) 78
125
61

100
110
135
215
240
420
425
570
760
785

1115
1125
1445
1790
2360
2500

120
130
145
250
240
395
430
580
720
815

1165
1230
1300
1700
2240
2240

4.8
3.9
3.8
3.6
4.4
3.8
4.9
5.1

12.5
5.0

10.3
4.7
5.7

12.5
4.8

15.6

525
830
850
510
565
340
650
500

1250
400

1370
415
370
920
460

1315

~ ~ ~

1350
855
430
640
330
540
515

2630
455

1240
390
505

1390
380

1730

rapidly deposited 6lms 10 is consistently longer than for
the slowly deposited 61ms but there are exceptions;
61m TD3 is quite clean and 61m TC1 is quite dirty. A
more noticeable fact is that the mean free path for our
6lms is much smaller than for clean bulk material where

mean free paths of j0 000 A are easily obtained for tin
at 4.2'K. It is likely that lo is controlled by structural
impurities which are introduced into the 61m when they
are warmed to room temperature after evaporation and

subsequently cooled to 4.2'K; structural impurities
result from the stress introduced by the difference in

thermal contraction between the tin 61m and the glass
substrate.

IV. EXPERIMENTS

A number of experiments may be done to investigate
the presence of the mixed state in a thin superconducting
61m. Chang, Kinsel, and Serin" measured the magneti-
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FIG. 3. H.
~~
(t) /H,

~~
(0.5) versus t for several tin films. The

scatter in the data at t =0.5 results from choosing H,
~~
(0.5) from a

smooth curve drawn through the data for each individual film.
The solid. curve is based on (32a) but would not be distinguishably
different if (30) were used.

FIG. 2. H ( versus t for several tin films,

3' G. K. Chang, T. Kinsel, and B. Serin, Phys. Letters 5, 11
(1963).
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zation curve in a perpendicular Geld for two pure tin
films of thickness 850 and 2600 A. as a function of
temperature. Miller, Kingston, and Quinn" made
similar magnetization measurements for several indium-
tin alloy films. In both of these works the critical field
was well 6tted to a (1—P)/(1+8) dependence pre-
dicted from using the Gorter-Casimer two-Quid model
for the temperature dependence of X(t) and H,q(i!) in

(2). The dependence of H, i upon film thickness and
purity was not studied. H,

~ ~
and II,& have been measured

in tunneling experiments by Burger, Deutscher, Guyon,
and Martinet" as a function of temperature for Sn—In,
In—Pb, and Pb—Bi alloy films of various thicknesses.
Since these alloys are type-II superconductors in bulk
form, it is not surprising that evidence for the mixed.
state was found. The dependence of II',i on film thick-
ness for pure Pb films at 4.2'K was studied by Cody and
Miller. '4 They found that for films thinner than 8000 A,
II,i was a decreasing function of Glm thickness in
accordance with the prediction of the mixed state; on
the other hand, H, i was found to be an increasing
function of film thickness for films thicker than 8000 L
in accordance with the theory of the intermediate state.

l.2—

I.O—

It&

O
~ss 06-

04—

0.2 0.4 0.6
t ~ T~ Tc

0.8 t.o

Fio. S. H~(t)/ Hi( .0)5versus t for several tin films. The
scatter in the data at i =0.5 results from choosing II,~(0.5) from a
smooth curve drawn through the data for each individual 61m.
The solid line gives H, i(t)/H, i(O.S) according to (29) and the
dashed line according to (32b).
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We have measured the dependence of H,
~ ~

and II,~ on
Glm thickness, mean free path for volume scattering,
and temperature for tin films. These measurements
present, on one set of samples, a complete study of the
dependence of the critical Gelds upon film thickness,
purity, and temperature. H, (8) has also been measured
for various films at several temperatures. The critical
fields were determined by measuring the resistive transi-
tion in a magnetic field. The range of the magnetic Geld
over which the resistive transition occurred was generally
less than 5% of the mean value of the field at which the
transition occurred. The critical field is defined by
extrapolating the transition back to zero resistance. The
current density in the films was less than 200 A/cm'. In
all cases the current could be increased by a factor of 10
without changing the value of the critical field.

I

0.2 0.4 0.6 0.8 l.o

FIG. 4. H, & versus t for several tin 6lms.

'2 P. B. Miller, B. W. Kingston, and D. J. Quinn, Rev. Mod.
Phys. 36, 70 (1964)."J.P. Burger, C. Deutscher, E. Guyon, and A. Martinet, Phys.
Rev. 137, A853 (1965).

'4 G. D. Cody and R. E. Miller, Phys. Rev. Letters 16, 697
(1966).

Temperature Dependence of H, tt

The observed values of H, ii(t) for a number of tin
films are shown in Fig. 2. For temperatures near T, the
theoretical temperature dependence of H,

~ ~
is contained

in Xr, (t), H.s(/), and J(0, t), according to (30). For
temperatures much less than T, the results obtained by
solving (31) and (32a) for H, ii(t)/H, ii(0) are believed
to be more accurate. The experimental results are in
substantial agreement with either formulation of the
temperature dependence as shown in Fig. 3; for the
scale of Fig. 3 it is not possible to distinguish between
the two solutions.
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rule is valid, and that R(4.2) is the residual resistance,
the thickness is given byTC52500—

a ~ ~ ~
TD II d= pp(300) I/WLR(300) —R(4.2) j, (34)~ r

where I. is the length of the film, W is the width, and
pb(300) is the resistivity of bulk tin at 300 K taken to be
11.1)(10 ' 0 cm. The "resistive" film thickness ac-
cording to this expression is given in Table I as d„.

In Fig. 7, H, i(0.8) versus d is plotted. The solid line
gives the result for the clean-tilm limit, where lp))$p,
in which case (29) becomes

TC4

„1500
V)
Vl
UJ
X
C3

x
TDIO =

TC3~
TD9

H, i= 19.5 (1+863/d), (35)a r
~ r

~ 1000
where we have taken H, b(0.8) = 109Oe, Xz,(0.8) = 575 A,
J'(0, 0.8) =1.22, and $p

——2300 A, 'P PP and where d is
measured in A.. The dirty-film results lie well above
this line, indicating that there is considerable volume
scattering in these films. The data for the clean (i.e.,
rapidly deposited) films generally lie closer to the result
for the clean-film limit than the data for the dirty (i.e.,
slowly deposited) films. From (29) in the limit of /))d
the perpendicular critical field is independent of d; this
behavior is found for films thicker than 500 A., For films
thinner than 500 A, II,i is a decreasing function of film
thickness in accordance with the dependence of ) on d
when d &lo. For four of the clean films H,~(II,g, there-
fore, ~(1/v2, and these films are composed of in-
trinsically type-I superconducting material. Even so,
the critical field is determined by the relation appropri-
ate to type-II superconductors which indicates that the
mixed state is present.

A
IlTDS~

TC2

TD7 =

TD6
TCI
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TC6g
TD4-

TD3 =
TD2

I
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Fxe. 6. Apparent film thickness from the superconducting critical
fields d, versus t.

Temperature Dependence of II,i
H, i(t) is shown in Fig. 4 for each film and H, i(t)/

H, i(0.5) is shown in Fig. 5 for all films. The theoretical
results according to (29) and (32b) are also shown. For
t~1 the experimental points are in agreement with
either formulation but for lower temperatures the agree-
ment is significantly better with (32b). If the inter-
mediate state were present, the temperature dependence
would be given essentially by H,&(t) . Since this was not
found, these films are all sufficiently thin that the
intermediate state is not formed.

Mean Free Path for Volume Scattering

The mean free path for volume scattering may be
obtained from the critical fields by eliminating the film

300 ~
Thickness Dependence of H, ~

and H, g
lA
O
LLJ

Q 2OO-
UJ
O H i IN THE CLEAN FILM LIMITcl

co . H~bo IOOd= (6qpH, i/~H, )(')'t'. (33)

The thickness of each film calculated in this way from

the critical fieMs at several temperatures is shown in

Fig. 6, where it is seen that the calculated film thick-
ness is independent of temperature as it must be. In
Table I the average thickness calculated from the
critical fields (i.e. , a superconductive property) is given

as ds.
The film thickness may also be estimated from the

normal-state resistance at room temperature, R(300),
and at 4.2'K, R(4.2). Assuming that Matthiessen's

I

2000
I

500
I I

IOOO l500
d INA

2500

FIG. 7. H, & versus tg at t =0.80 for several films. The data points
for the slowly deposited films are closed circles and the data points
for the rapidly deposited films are open circles. The solid line is
for the clean-film limit, l0))&0, according to (35).

' M. Doidge, Phil. Trans. Roy. Soc. (London) 248, 553 (1956).
36 J. Bardeen and J. R. SchreiRer, Progr. Low Temp. Phys. 3,

170 (1961).

The film thickness may be determined in terms of

H,
~ ~

and H, i by eliminating XH,& between (2) and (6) .
The result is
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thickness between the expression for H, ll and JI,i.
Neglecting any small difference between l,« for parallel
and perpendicular magnetic fields, the result is

IO—

&o= $o
J(0, t)q,s, ,

(
)'"—1—

s (38oH. ( (

4rrhg'H os 6ypH, &

(36)

lo is given in Table I as l„; the critical fields at 3=0.8 as
given in Table I have been used. As expected, the slowly
deposited films generally have a shorter mean free path
than the rapidly deposited films.

The mean free path may be determined independently
from the resistance at room temperature and at 4.2'K.
Assuming that Matthiessen's rule is valid, lo is given by

1/lp= L(RRR—1)l(300'K) g
'—3/8d, (37)

where RRR is the residual resistance ratio E(300)/
E(4.2) . This mean free path is given in Table I as l,„,
where a mean free path for tin at 7=3 00K of 95 L has
been used. Once again, the slowly deposited films

generally have a shorter mean free path than the rapidly
deposited films. The agreement between the two mean
free paths for each film is generally satisfactory, con-
sidering the approximate and indirect manner in which
l„and /„ were obtained.

Angular Dependence of the Critical Field

Figure 8 shows H, (8)/H, ~~
versus 8 at various tem-

peratures for several films. The solid line results from

0.8

0.6

0.4

O
II

W Cgo
x"

x 4

IO

cll "cj.
20

solving (5) at numerous values of 8 using the experi-
mental values for H, ll and IJ,~.'~ The agreement is
excellent for the thinnest films. For thicker films, the
measured values of H, (8)/H,

~ t
lie below the theoretical

prediction. For still thicker films, films TC4 and TD11,
the measurements and the theory agree. For the thickest
film, TC5, the measurements lie above the theory at
both temperatures. According to Yamafuji, Kawashima,
and Irie,"H, (8)/H, ~~

is larger than the thin-61m limit
(5) for thick films, where the order parameter varies
across the film. This is in agreement with the data for
film TC5 at two temperatures. There is no known
reason for the data for films TD9, TD8, and TD7 to
fall below the thin-film limit; however, an error of 2.5%
in the determination H,

l l
could account for this

discrepancy.

Fro. 9. 1/H,
~ ~ )

dH, /ds ( o p versus H,
~
~/H, i for several balms at

various temperatures. The solid line is a plot of the thin-film limit
1/H, ~~ ~

dH, /de
~

o p ——2H, ~~/H, i Th—e chain lin. e is a plot of the
more exact calculation (22b). The dashed line is the result of an
exact numerical calculation made by St. James (Ref. 16).
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30
8 IN DEGREES

l

60

dH, /d8 in the Limit I}=0
The behavior of the critical field, or, more specifically,

dH, /d8, near 8=0 is dependent upon the variation of the
order parameter across the film. The effect of a variation
in + across the film is most easily seen in a graph of
1/H, ~~ ~

dH, /d8
~

at 8=0 versus H, u/H, i, as shown in

I'IG. 8. H, (0) /II, l l
versus 0 for various films at various tempera-

tures. The solid line is calculated from (5).
» Vfe thank J.Millstein for writing a FoRTRAN program to solve

(S) for a, (e).
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dH, /d8 at 8=0. It is also not understood why one point
should occur for H,

~ ~/H, i& 1.695, the limiting value for
bulk samples.

V. CONCLUSIONS

O
II

D

a

l.695 p

H ))/H i

Fro. 10. 1/H,
~ ~ [ dH, /ds ( e 0 versus H,

~
~/H, i for the thick film

TD11 at various temperatures. The three curves are the same as in
Fig. 9.

Fig. 9. In this 6gure, the experimental points are com-

pared with three theoretical curves representing succes-
sive approximations. The first is the thin-61m limit of
(22b), namely,

1/H. ~, [
dH, /d8 [,~=H, ~~/2H„.

Next is the second approximation represented by both
terms of (22b) . Finally, we show the St. James curve"
resulting from an exact numerical solution which nearly
agrees with (22b) for H,

~
~/H, i)2. The cusp at

H, ~~/H, i= 2 in the St. James calculation is due to the
onset of surface superconductivity. The experimental
data are for all 6lms at several temperatures. The
thicker the film and the lower the temperature, the
smaller will be the value of H, u/H, i as H, ~~/H, ~=
2v2(r/d.

In Fig. 10, the data are shown for film TD11 at 6ve
diferent temperatures; at the lowest temperatures
evidence for surface superconductivity is seen. The data
all lie below the theoretical result, which if true is not
understood. It is possible that the discrepancy is due to
underestimating dH, /d8 at 8=0, which was determined

by plotting H, for 0&0&2 and graphically estimating
dH, /d8 at 8=0. Since dH, /d8 is rapidly increasing as 8

approaches zero, this method is likely to underestimate

The agreement between these measurements and
theory indicates that when a thin film is placed in a
magnetic field with a perpendicular component, the
mixed state is formed in a type-I 61m as well as in a
type-II 61m. This behavior is in contrast with the
intermediate state which is known to be present in
thicker type-I films. The experimental data have
included H, (8, t) for 0&8&rss. and 0.4&1&1 for a large
number of films of varying thickness and purity.

The theory which we have used to find H, (8, t) for
comparison with the data is basically the GL theory
generalized in two directions: (1) We have used
Pippard's phenomenological theory as supported by the
BCS microscopic theory to develop an effective pene-
tration depth parameter taking account of nonlocal,
impurity, and sample-size effects; and (2) we have
used the Maki —de Gennes theory of magnetic eGects in
dirty sup erconductors to extend the temperature
dependence beyond t &1. This composite approach was
used, despite its evident approximate nature, because
no detailed results for the full complexity of the problem
are available from a consistent completely microscopic
treatment.

The temperature dependence of our results near t= 1
is well described either by simple GL theory with
parameters taken from Muhlschlegel's calculations
according to BCS or by the Maki —de Gennes theory.
For lower temperature, however, better agreement with
experiment was obtained using the Maki —de Gennes
results. This is as expected, since the Muhlschlegel-BCS
calculation gives the temperature dependence of
X'H, s or ss(t), whereas the de Gennes universal function
is related to ~&(t), which is appropriate for the deter-
mination of the upper critical field."Near T„~r(1)=
~s(t) = ~, but differences develop at lower temperatures.
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