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The atomic g& factors for the two levels composing the lowest term of atomic fluorine have

been calculated utilizing the theory of Kambe and Van Vleck and wave functions resulting
from Hartree-Fock treatments of varying accuracy. For the high-accuracy wave functions,
the results of our calculation are in exact agreement with the measured g&(Ft~; tps)/'gg{H; tS ~)

= ~2-(497 y 1) &&].0 8, to within the experimental error. The contribution to g&(F 9; 2&~) aris-'. 2.
ing from the Breit interaction is found to amount to 49 x10 . This sizeable contribution,
and the excellent agreement obtained, substantiate the validity of the theory and, in particu-
lar, of the Breit interaction to the order of 0. . For the upper level, the value gg(F 9; P&)
= &-(1072+2) x10 is obtained. For this, no experimental test of adequate sensitivity has
been made.

I. INTRODUCTION

The various effects affecting the simple atomic
Landd gg factors have been considered by several
authors. ' ' The corrections which are produced
arise from the anomalous magnetic moment of the
electron, '~'~' isotopic effects caused by the motion
of the nucleus, 4~' relativistic and diamagnetic ef-
fects, '~' and departures from Russell-Saunders
coupling. ' The anomalous magnetic moment is
known to the order of a', therefore its inclusion

in the calculation is readily accomplished. The
theories for the isotopic and departures from I.-S
coupling effects are well established and can be
calculated to the accuracy permitted by the avail-
able wave functions. Concerning the so-called rel-
ativistic and diamagnetic effects, it is convenient
to make the following remarks. Abragam and Van
Vleck' have shown how these effects can be de-
rived from the Darwin-Breit Hamiltonian, "which,
as it is well known, is of an approximate nature and
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can be used only in a first-order perturbation cal-
culation. This makes the corresponding correc-
tions amenable to calculation to the order of a',
and should make the results accurate up to the or-
der of a', i.e., a few tenths of a ppm. This has
been accomplished unquestionably in the case of
helium, "but in this case the magnitudes of the cor-
rections due to the Breit interaction are compara-
ble to the minimum errors in the calculation itself,
so that this is not a very stringent test for the the-
ory. The contribution from the Breit interaction
is expected to be larger in more complex atoms
and detailed calculations have been made for oxy-
gen. In the first of these' the calculated g values
for the two lowest levels were in fair agreement
with experiment. However, several algebraical
errors were detected in a later work" with the re-
sult that the calculated g values deviated from ex-
periment by as much as 10x10 '. This can be
blamed on several facts not related to the theory,
such as the use of low-accuracy wave functions or
the neglect of effects which might produce correc-
tions of a magnitude of a few ppm. The aim of this
work is to test the theory of atomic magnetism to

the above-mentioned accuracy by comparing the re-
sults of a calculation based on high-accuracy wave
functions with g& factors which have been mea-
sured to within 4 ppm or better. Oxygen and fluo-
rine are among these. ' ~" Fluorine was chosen be-
cause departures from J -S coupling are expected
to be very small and inaccuracies resulting from
the lack of knowledge of wave functions of excited
configurations are less likely to vitiate our results.
The present calculation proves this to be the case.
All the integrals in this calculation have been eval-
.uated with wave functions obtained by three differ-
ent groups of authors" "which we shall hence-
forth identify as K-A, C-R-Y, and Brown, respec-
tively. The first two are very precise solutions of
the Hartree-Pock equations and are believed to
have three-decimal-place accuracy or better for
the orbitals. The Brown wave functions are less
accurate.

The numerical results of this calculation are in
excellent agreement with experiment. Provided
that correlation effects are not important, this is
the first succesful test for the Kambe and Van
Vleck theory of atomic magnetism.

II. CALCULATIONS

The lowest term of atomic fluorine is an inverted 2P'P doublet with the 'P», level some 400 cm ' above
the ground 'Ps&, level. All other terms lie more than 10' cm ' above the 'P term. " The simple Landd gJ
factors for the two levels are given by the expressions:

(1

The corrections to these values which arise from the various effects referred to in Sec. I are calculated
as follows.

Isotopic Effect

The correction to the gJ value which arises from the finite mass of the nucleus has been treated by Phil-
lips, ~ and applied by Abragam and Van Vleck' to the case of atoms with s and p electrons in closed shells
and only P electrons outside closed shells. Their results are given in the two equivalent forms:

6g = —(m/M)(I+ ~~+ [JP2 (d/dr)(P /r)rdr](fP2 P rdr)j (3)

,5g& = -(m/M)[l--', p (JP P2 rdr) (E2 E)]. - (4)

In these equations Pns and P2 are the radial parts of the wave functions for the ns and 2p electrons, nor-
malized in the sense of f (Pnz 'dr = 1. In Eq. (4) Ene and E2p are the total energies of the ns and 2p one-
electron states. The summation is over occupied s states, and each orbital state is counted once only.
The quantities pertinent to the evaluation of Eqs. (3) and (4) are listed in Table I.

By using the values from Table I in Eqs. (3) and (4), and substituting in Eqs. (1), we obtain the isotopic
corrections shown in Table II.

Relativistic and Diamagnetic Effects

The corrections which are due to relativistic and diamagnetic effects arise from velocity-dependent in-
teractions. Abraham and Van Vleck' have shown how these corrections can be obtained from the Darwin-
Breit Hamiltonian. The part of this which is of interest to our calculation is conveniently separated into
the following contributions:

5Z =-pH Q. (l. +v.)T./mc, 5Z = —(pe Z/2mc )Q [V.(1/r. )xA. ] g. ,1 i i i i ' 2 i i i i i'

6Z3 = (pe'/2mc')g. &[V.(I/r. &) x A. ] v. , 5Z4 = (pe'/2mc')g. &[V.(I/r. &) x A.].2a&,

= —(e'/2m'cs)g, &[r.& '(A. p&)+r.
&

'(r.
&

A.)(r.
& p&)]. (5)

Spin-Factor Anomaly

We account for this effect by inserting the value~~'gz ——2x(1.001159622) into Eqs. (1). The increments
produced over the I andd values ~ and —,

' are respectively:

(5g3) =+773.1x10 ', (5g, ) =-773.1x10-'. (2)per 2
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Table I. Quantities involved in the evaluation of the
isotopic corrections. The values for the E''s are those
of the energy parameters e„z „z and e2p 2p of the re-
spective Hartree-Fock treatments expressed in atomic
units.

Table II. Correction due to the isotopic effect.
The upper indices I and II refer to the values
obtained by using Eqs. (3) and (4), respectively.

P re
2P 18

p P mdiv
2P 2s

K-A

0.09 798

1.01 640

—2.30 060

C-R-Y

0.09 653

1.01 493

—2.30 334

Brown

0.082

-1.069

-2.127

~~sg2
I

~gs/2
II -4.9

-13.9
-9.8

-5.0
-14.0
-10.0

-15.3
-14.8

C-R-Y Brown

—6.gx 10 '-7.0x 10 -7.6x 10

—0.72 065

-26.3875

—1.57 835

-0.73 445

—0.72 205

-26.3830

—1.57 255

-0.7300

+ 0.682

-26.540

-1.200

-0.505

(6)

Kambe and Van Vleck' have reduced the expectation value of these contributions to the nlmzpn~ scheme.
Application of their results to the case of the fluorine atom gives the following contributions to the gJ fac-
tors:

(5g3/ )~
———~~ (y (2p ) -3V3 ) 2p), (6g3/3) 3 = (2/15)Z n3(2& ] 1/r J 2p),

(6g3/3) = ~3{—(4/15)F3(2P, 2P) + (1/75)F3(2$, 2P) +Q [-(4/15)F&0(2P, ns) + (1/45)G~(ns, 2P) P&

(5g ) =o3{--'E (2p, 2p)+(4/25)F3(2p, 2p)+Q [ 4/9)E '-(ns, 2p)+(4/45)F 3(2p, ns)+(2/45)G'(ns, 2p)]f,

(6g3/3)3 = o3{--3'[E3(2p,2p)+F3(2p, 2p)]++ [-(4/9)E o(ns, 2p)-(4/9) F&3(2p, ns)

+ —,
'

G '(ns, 2P)+ (7/45)G'(ns, 2P)+ (2/45)G'(ns, 2P)+ —3'R(ns, 2P)]}.

(5gl/3) 1 3 (5g3/2)1) (5gl/2)2 2 (6g3/2)31 (6gl/2)5

(5g ) (6g /) +(6g3/3)4 =o/3{3Fo(2p, 2p)-(8/15)F3(2p, 2p)

+P [-,'F (2P, ns)-(8/9)F&3(2P, ns)+ (4/9)F o(ns, 2P)+-,'G'('ns, 2P)]). (7)

In these equations, the integrals F and G are of the usual Condon and Shortley" type, whereas E& and R
are those defined by Kambe and Van Vleck. In Table III we list the values of all the integrals appearing in
Eqs. (6) and (7).

The very important value for the kinetic energy of a 2P electron has been evaluated by direct integration
of the corresponding operator, and also by expressing this kinetic energy in terms of the difference be-
tween the total energy e2p, 2~ parameter for the 2p electron and the potential energy in which it finds itself.
The relevant equation is:

(2p [T [2p) =e2 2
+9(2p [1/y(2p)-4Fo(2p, 2p)+ (8/25)F3(2p, 2p)+Q [-2E (es, 2p)+ 3G'(ns, 2p)].

7

(8)

By substituting the values for the integrals into Eqs. (6) and (7) we obtain the corrections shown in Table
IV.

Departures from L, -S Coupling

Phillips has shown' that the mixing of excited configurations with the ground state leads to a correction
in the atomic g value given by:

(5g)LS =~f~~of'&f~"gau/EOf'Eo~'. (9)

Here Vpg and $~~ are the matrix elements of the electrostatic and spin-orbit interactions, respectively, '

Spy and AgOp are the energy anu g~ factor differences between the kth level and the ground-state level.
The configuration (2p)4(8p) is the nearest one which can be admixed with the ground level 'P», . The elec-
trostatic interaction connects the unperturbed 'P3/3('S) level and the 'P3/3(2s+ 1L,) levels of the excited con-
figuration. These levels and the corresponding matrix elements are listed in Table V.
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C-R-Y Brown

Table III. Integrals involved in the computation of the
relativistic and diamagnetic corrections to g&.

Table VI. Matrix elements of the spin-orbit interaction
between levels of the excited configuration, and differ-
ences in g value. The matrix elements $f~ are in units
of t&2p&, t e spin-orbit parameter for the electrons in
the 2p shell.

&2p I--,'~'I2p&
&2p IT I2p&

'
&2pIu'I2p&
Z&P(1s, 2P)
Z~P(2s, 2P)
Z~p(2p, 1s)
Z)p(2p, 2s)
F&2(2p, 1s)
p'~2(2p, 2s )
F'(2p, 2p)
F2(2p, 2p)
G (1s, 2p)
G '(2s, 2p)
G'(1s, 2p)
G'(2s, 2p)
G'(1s, 2p)
G3(2s, 2p)
R(1s, 2p)
R(2s, 2p)

3.3378
3.3378
1.27 022
0.03 990
0.4469
1.2165
0.4333
0.1434
0.1983
0.8568
0.3788
0.3908
1.1928
0.1254
0.5328
0.0684
0.3070
0.2306

-0.2129

3.3402
3.3436
1.27 163
0.03 976
0.4472
1.2154
0.4340
0.1429
0.1.985
0.8599
0.3800
0.3935
1.1931
0.1251
0.5340
0.0676
0.3065
0.2297

-0.2127

3.03
3.046
1.2160
0.03 948
0.4468
1.2145
0.4329
0.1431
0.1975
0.8563
0.3776
0.3901
1.1935
0.1248
0.5320
0.0676
0.3051
0.2643

-0.2051

Pe/g('P)
'P3/2('»
Psr2( P)
'Ps/2('P)
P3/2( P)
P3/2( D)
P8/2( D)
P3/2( D)
P3/2( D)

4P3/2(3S)

D3/2('p)
S3/2(3P)
'P3/2('»
D3/2( P)

D3/2( D)

'D3/2('D)
D3/2('D)

--.'45

—,'v 2

-~%5
-ftts

1
4
1

goo

-8/15
2

2
Y

-8/15
-2/15
-8/15

2

-8/15
-2/15

Evaluation based on the Hartree-Fock equations.

Table IV. Relativistic and diamagnetic corrections to
gg. Results based on the values of &2pI-s'V I2p& of Ta-
ble III.

Table VII. Total corrections to gg(F; P3/2) and

gg(F; P~2) computed with wave functions from
different authors. The indices I and II have the same
meaning as in Table II.

C-R-Y Brown

K-A Brown

&g~/2

-4.505n
-5.3930.

-4.509m
-5.4140.

-4.15''
-5.03e 2

Table V. Matrix elements of the electrostatic interac-
tion between the unperturbed Ps/2( S) level and the
P3/2(~+ 1L,) levels of the excited (2p)'3p configuration.

The arguments for the integrals F and G are those in

F(2p, 2p 2p 3po), where. I and II designate the ground
and excited configurations, respectively, in which case
Ep=Gp, F2=G2.

P3/2( S) —' [zp+ Gp+10(z2+G2)]
2P (3S) & [Zp-Gp+10(F2-G, )]

++X -Go-5&Et-Gt&]—.[Z,+G,-s(Z, -G,&]

Pgn&'D& -6&5(&o+Go+ &P2+Gt&]

P3/2( D) &$(F0 G, + (E,-G-,&]

&gs/2
I

II
&g3/2

I

II
~~i/2

526. 3x 10 526. Ox 10 545. 5x 10

528,3

-1074.2

-1070.1

528.0 545.7

-1056.2
-1055.7

-1075.4

-1071.4

K-A C-R-Y Brown

3-497.5 x 10
3-496.5x10 8

3-497.7 x 10
3-496.7x10 ~

3-488x10 8

~-488 x10 8

Table VIII. Calculated values for the ratio of g&(Fis;
Psit)lg~&H; Stiq&, computed with wave functions from
different authors. The indices I and II have the same
meaning as in Table II.

In Table VI we list the levels of the excited configuration which can be connected via the spin-orbit inter-
action with the ground-state configuration. We also list the matrix elements of this interaction and the val-
ues of Lg0y. With the values of Tables V and VI and Eq. (9) we obtain

(5g.) = g'(2p)2Z (2P2 Z)/Z- (1o)
2

We evaluated the integrals I"
0 and E~ by using the Slater-type' wave functions

P (r) = 12.58r e ', P2 (r) =14.88r e ', P8 (r) =0.594r (1-0.315r)e

The resulting values are Eo= 0.2ll and E,= 0.0046.
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Taking the values for the spin-orbit parameter" g(2P) =260 cm ' and the energy of the levels of the ex-
cited configuration" F = 1.1x 10' cm ', we obtain

(5gp) =-4.1x 10 8
—, IS (7)

The total corrections to the gJ factors

'Z= 5'Z'so' ''Z)iso' 'Z'rd' 'Z'fs
can now be obtained with the values of Eq. (2) and Tables II and IV. The value for the fine-structure con-
stant has been taken as" n '= 137.0388. The correction due to departures from L,-S coupling need not be
included, as it is two orders-of-magnitude smaller than the required approximation. The results are list-
ed in Table VII.

For comparison with experiment we divide the corrected g„, values based on Table VII by the theoreti-
cal g (O', 'S') =2(I-n'/3) obtaining the results shown in Table VIII. These values are to be compared withJ
the experimentally'4 obtained a3-(497+ 1)x 10

III. CONCLUSIONS

The results of our calculations based on the K-A
and C-R- Y wave functions are indeed in very good
agreement with the experimental value, although
correlation effects have not been taken into ac~
count. The slight inconsistency shown by these
wave functions upon calculation of the isotopic ef-
fect gives rise to an uncertainty not bigger than 1
x 10 ', which is within the accuracy to which the
theory is expected to be valid. This seems to indi-
cate that correlation effects are negligible in this
case, and our results can be taken as the first suc-
cessful test of the theory of atomic magnetism to
t;he order of ~.

Concerning the quality of the wave functions. '

The consistency of the Hartree-Fock treatment,
from which they were obtained, should have been
apparent in the calculation of the quantum mechan-
ically equivalent terms in Eqs. (3) and (4), and al-
so in the calculation of the average kinetic energy
of a 2p electron by the two methods mentioned in
Sec. II. An examination of Table III indicates that
the values for the kinetic energy are equal to with-
in 1x10-', 3x10 ', and 15x10 ' for the K-A, C-
R- Y, and Brown wave functions, respectively. Ta-
ble D shows that the values of the correction due
to the isotopic effect found by the two different
methods differ by 2x10 ', 2x10 6, and Q.2x 1Q
when calculated with the K-A, C-R-Y, and Brown
wave functions, respectively. Given that the con-
tribution of the kinetic energy to gJ is two orders-
of-magnitude larger than that of the isotopic effect,
the results based on the K-A and C-R-Y wave func-
tions are more reliable than those based on Brown's.
This is further supported by the fact that in all ta-
bles the values from K-A and C-R- Y are consis-
tent with each other. The contribution to gJ aris-
ing from the Breit interaction is obtained from the
parts 6Z~ and 6Z, of Eqs. (5). For 4= 2, this con-
tribution is found to amount to (5g,i,),+ (6g„,),
= -0.918m'= -48.8x 10 which is considerably
larger than in the case of He" where it is only 2.3
x10 '. It appears then that the theory of the cor-
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versidad Nacional Autonoma de Mexico, Mexico D. F.,
Mexico.

)Work supported in part by Comision Nacional de Ener-
gia Nuclear, Mexico D. F., Mexico.

~J. W. Schwinger, Phys. Rev. 73, 416 (1947).

rections to gJ can give agreement with experiment
to within 1x 10 ', provided that wave functions as
accurate as those of K-A and C-R- Y are used.

Other calculations have been reported previous-
ly" "for g'(E 'P-'). These were made with the
theory of Abragam and Van Vleck, ' which neglects
contributions from exchange integrals. We see
that the agreement of those calculations with exper-
iment is due to an accidental cancellation of the ne-
glected exchange terms with the effect of using a
wrong value for (T)2p. Specifically, if the K-A val-
ue for (T)2p from Table I is used in the calculation
of Ref. 14, we obtain 5gs&2-—-261x10 ', which
compares much better, as it should, with the cor-
rection to g arising from only the direct terms in
our calcula ion. In the K-A case, this contribution
amounts to (5gJ)rd =-264x 10 '. It should also be
pointed out that agreement obtained with a theory
which neglects exchange terms is not to be trusted,
as the exchange terms amount to 23x10 ' in this
case, and are therefore by no means negligible. An-
other important point refers to the isotopic effect.
This was calculated to be negligible in the two ref-
erences cited above, whereas in the present work
it is seen to amount to 5x10 '. The accuracy of
this calculation can be trusted to 1x 10 '. The on-
ly part where crude wave functions were used is in
the contribution to gJ from breakdown of L-S cou-
pling. However, in the case of fluorine this cor-
rection is only 4x10 '. The use of better wave
functions for the excited configuration will not
change the calculated value by two orders of mag-
nitude. In other atoms this contribution can be
quite important, and may require accurate wave
functions for the perturbing terms.

In summary, the calculations based on the Kambe-
Van Vleck theory and accurate wave functions can
give results accurate to within 1x10 ', provided
correlation effects are negligible. It will be worth-
while to re-examine the calculations for other
atoms, such as oxygen, where a discrepancy" of
10x 10 ' still remains.
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Electron correlation in atoms and molecules can be analyzed in terms of correlation coef-
ficients similar to those used in probability theory and mathematical statistics. Different
correlation coefficieqts can be defined for angular, radial, and momentum correlation in
atoms and for axial (left-right), equatorial, and radial (in-out) correlation in molecules.
The correlation coefficients are closely related to certain coefficients of the so-called natur-
al expansion of the wave function. Nonvanishing correlation coefficients are obtained for the
Fermi correlation in the independent-particle model as well as for electron correlation prop-
er. Numerical examples show that the correlation coefficients for atoms are of the order of
-0.05, suggesting that the correlation is usually small and negative, as compared with +1
for "perfect" correlation. However, positive correlation coefficients may occur, in particu-
lar for excited states. Correlation in supersystems consisting of two nonoverlapping systems
at large distances, and the distinction between interorbital and intraorbital correlation, are
also discussed.

1. INTRODUCTION

The term "electron correlation", introduced by
Wigner and Seitz' into the quantum mechanics of
electron systems, is apparently borrowed from
probability theory and mathematical statistics,
where correlation is a mell-defined concept refer-
ring to nonindependent variables. Curiously enough,
the formalism used in probability theory to study
distributions of correlated variables does not seem
to have been applied to electron correlation. We
discuss here, both formally and by numerical ex-
amples, the introduction of correlation coefficients
in this field and their connection with more usual

concepts. These quantities may provide a useful
tool for analyzing electronic wave functions, espe-
cially those going beyond the Hartree-rock meth-
od, and for assessing the importance of correla-
tion in many-particle systems.

2. ONE- AND TWO-ELECTRON DISTRIBUTION FUNCTIONS

Given a normalized n-particle wave function
4(1, 2, ~ ~ ~, n), the one- and two-partic1e distribu-
tion functions p(1) and w(l, 2) in ordinary space~
(which are equal to the diagonal elements of the
corresponding one- and two-particle density ma-
trices) are defined by'~'


