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impurities were nonmagnetic, then BCS should apply
and the specific-heat jump would be proportional to
T,/T, „, as shown by the dashed line. For magnetic
impurities, SBW predicts the solid curve, in excellent
agreement with the experiments. The open circles are
calorimetric determinations of the specific-heat jump
take in this laboratory for La—Gd alloys. ' "Both the
specific-heat and critical-field results show the effect
but the critical-field data illustrate the point to much
higher accuracy.

Values of p, H„T„ I'/h„(0), and C,—C„~ r r, are
all summarized in Table II. A complete tabulation of
all the data is presented elsewhere. "

CONCLUSIONS

Pure thorium is a weak-coupling type-I supercon-
ductor with critical-field curves which follow the BCS

'6The data for the highest concentration have not yet been
published in Ref. 6.

theory to an accuracy of 0.3%. For additions of Gd
impurity in concentrations up to 0.2%, the samples
remain type-I superconductors which exhibit a Meissner
efII'ect in the gapless regime near T, as well as the
regime where there is a well-defined gap at low tem-
peratures. The AG-SBW theory' "predicts the critical-
field curves for Th—Gd alloys to an accuracy of better
than 0.5%.
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We have studied the excitation of plasmons by energetic electrons, and their subsequent decay, in small
spheres. We estimate that plasma decay light from electron bombardment of small, randomly distributed
metal spheres suspended in a dielectric medium may be emitted with intensity comparable with that found
in experiments on plasma decay light from metallic slabs.

I. INTRODUCTION

t lHE characteristic absorption of light by small..metal spheres has recently been studied. experi-
mentally by Doremus' and theoretically by Kawabata
and Kubo. ' Doremus's data for the wavelength de-

pendence of the absorption coefficient for 100 A silver
and gold spheres show peaks which are explained on the
basis of plasma resonance absorption by the conduction
electrons. Kawabata and Kubo have used linear
response theory to explain the widths of these resonances
in terms of the damping of the plasma oscillations by
transfer of energy to single-electron modes. They also

* Research sponsored by the U.S. Atomic Energy Commission
under contract with Union Carbide Corporation.

f Consultant to Oak Ridge National Laboratory.' R. H. Doremus, j'. Chem. Phys. 40, 2389 (1964); 42, 414
{1965).

'A. Kawabata and R. Kubo, J. Phys. Soc. Japan 21, 1765
(1966).

take account of radiation damping, and their results
show good agreement with Doremus's data.

The successful explanation of light absorption peaks
in terms of collective resonances in a spherical electron
gas leads one to speculate about the possibility of
stimulating similar resonances by means of energetic,
nonrelativistic electrons and observing the radiative
decay of these collective states. It is well known that
such resonances can be produced in metal foils by
electron bombardment and that light from the damping
of these resonances can be observed. ' Plasmon decay
light from foils was first predicted by Ferrell. 4 Recent
characteristic energy-loss experiments by Fujimoto,

' A. L. Frank, E. T. Arakawa, and R. D. Birkho8, Phys. Rev.
126, 1947 (1962); E. T. Arakawa, N. O. Davis, L. C. Emerson,
and R. D. Birkho6, J. Phys. Radium 25, 129 (1964).

4 R. A. Ferrell, ibQ'. 111, 1214 (1958); also, R. H. Ritchie and
H. B. Eldridge, ibM. 126, 1935 (1962).
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Komaki, and Ishida' involving bombardment of small
metal spheres by electrons show that the excitation
process may occur with measurable probability.

In what follows we consider a system of small metal
spheres embedded at random in a thin dielectric slab,
and we inquire whether it is feasible to expect to see
light from plasmon decay in the spheres. Since the
spheres are considered to be distributed randomly in a
transparent medium at an average distance large
compared with their radii and with the parameter
n/or„, where v is the velocity of the incident electron and
co„ is the resonant frequency of collective oscillations in
the spheres, we may expect that plasma oscillations in
diferent spheres can be considered to occur inde-
pendently and that only incoherent addition of radiation
fields will be necessary if there are many spheres
present.

In Sec. II we treat the free electrons in a sphere in the
hydrodynamical approximation, and we use this model
to quantize the surface plasmon Geld and to obtain the
dispersion relation for surface plasma oscillations. In
Secs. III and IV we calculate, in the dipole approxi-
mation, the cross section for surface plasmon creation
by fast electrons and the radiative decay rate for
surface plasmons. Finally, in Sec. V, the complete
process consisting of photon decay of a surface plasmon
following excitation by a fast electron is considered and
an expression for the differential cross section for this
process is given.

%e also use the present model to calculate the cross
section for the process in which a photon excites a
surface plasmon and compare our results with the
classical Mie theory. This is taken up in Sec. VI.

V'@(r, t) =4~ex (r, t),

Vy(r, t) = (a/at) ~(r, t) /~„

(2)

(3)

where Q(r, t), f(r, t), and e(r, t) are perturbations in
the electric potential, velocity potential, and electronic
density, respectively, in the electron gas. mo is the
electronic density in the undisturbed state of the
electron gas, and p is the rms propagation speed of the
disturbance through the electron gas. The appropriate

~ F. Fujimoto, K. Komaki, and K. Ishida, J. Phys. Soc. Japan
23, 1186 (1967).

6 F. Bloch, Z. Physik 81, 363 (1933).
~ H. Jensen, Z. Physik 106, 620 (1937).

II. HYDRODYNAMICAL MODEL

In order to carry out the calculations we start with
the Bloch linearized, hydrodynamical model of an
electron gas. '~ The appropriate equations —(1) the
force equation, (2) Poisson's equation, and (3) the
continuity equation —are

8 e p'
V' —y(r, t) = ——V'y(r, t)+ —V~(r, t), (1)

N m no

boundary conditions are (i) continuity of the electric
potential at the surface of the sphere, (ii) continuity of
the normal component of the electric displacement at
the surface of the sphere, and (iii) the vanishing of the
normal component of the disturbance velocity at the
surface of the sphere.

Under these conditions one finds the following
dispersion relation for surface plasmons:

t f co~"I .
I

1——'
I j—CsR(~' —~&) 'Is/P3

/+1 E &Pl

t(eo —1)1+ —"
P oo(l+1) +t j i+~L~R(~' ~i') "'/p j (4)

where co& is the spherical surface plasma frequency
corresponding to a collective oscillation in the angular
mode corresponding to the /th spherical harmonic,
(o& =L4mnoe'/m)"' is the volume plasma frequency, R is
the radius of the sphere, and eo is the dielectric constant
of the medium in which the sphere is suspended. j&(x)
is the spherical Bessel function of order l.

In this paper we shall consider only the limiting case
p'—+0, in which case Eq. (4) reduces to a&p/~~'=
t/Leo(t+1) +tj, as one may show using the asymptotic
expansions of the j~. Further, we ignore the e8ect of the
dielectric, i.e., take e =1, for simplicity, and limit our-
selves to the dipole approximation l=1. The resulting
approximation to the dipole surface plasmon frequency
is &oq=oo„/v3 (cf. Ref. "/) . We assume that the dielectric
permittivity of the slab is essentially constant and not
greatly diferent from unity over the range of frequencies
involved in collective motion of electrons in the spheres.
Thus we neglect any screening of the field of the incident
electron by the dielectric during its passage through
the film, as well as any dynamical response by the
dielectric in this same frequency range. Although these
approximations limit, somewhat, the range of applica-
bility of the present work, the general form of the
results given below should be maintained in a treatment
of a more realistic situation; e.g., one would like to
treat the e6ect of a thin dielectric slab, in which plasma
spheres are suspended, upon the radiation field from
plasmon decay.

The system can be quantized using the linearized
Hamiltonian

Thus, keeping in mind the approximations discussed
above, one has for the dipole term of the operator for
electric potential inside the sphere

t'2vr5(ogr'l"' '
p(r, t) = —I,'

I g &i., (&) (b.,+b.,t), (6)3Rs /

where P'q„(0) is the real, normalized spherical har-
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Fzo. 1. Feynman diagram for
excitation of a surface plasmon by
a fast electron.

monic corresponding to 3=1, and b, and b, t are, re-
spectively, annihilation and creation operators for
surface plasmons oscillating in the x, direction. In the
region r)R, the factor r' is to be replaced by R'/r'.

III. CROSS SECTION FOR SURFACE PLASMON
CREATION BY FAST ELECTRONS

We wish to calculate the cross section for the process
shown in Fig. 1, i.e., the excitation of a surface plasmon
in the sphere by an incident electron. We express the
wave function of the perturbing electron as a plane-
wave expansion and calculate the interaction Hamil-
tonian t/'. „between the electron and the plasma from
the equation

V„=—e dr 4'0 p,
' -' '.=.:-"-'-' ="-'" (7)

where 4 is the electron 6eld operator and g is the
operator for perturbation in the electric potential given
in (6) . In the dipole approximation, the matrix element
for the excitation of a plasmon oscillating in the x,
direction is

(k, s
I V,„I

k') =i(96m'euro, /L')'~'Vg. , (&„)jr(KR)/~',

where z=k' —k, L' is the quantization volume for the
plane waves, and &uq ——~~/v3.

The transition rate is obtained from the Golden
Rule, i.e.,

V,„=c' drA J„, (i2)

where the usual plane-wave expansion is made for the
vector potential A, and the polarization current density
J~ associated with the plasma oscillation is obtained
from the perturbation potential g. In the dipole
approximation, the matrix element for the transition is

(pX I V,„I s) = (5/i) (vrR'ter /I'co) 'I'(e~y e,), (13)

where e~q and e, are, respectively, the unit polarization
vector of the electromagnetic field and the unit direction
vector for the plasma oscillation. p and cv are the wave
vector and frequency, respectively, of the emitted

section a.
II for creation of a plasmon polarized parallel

with the direction of the incident electron is given by

o
( (

——(367re'R'/Art) I2 (~rR/v),

while ai, the partial cross section for creation of
plasmons polarized perpendicular to the direction of
the incident electron, is

rri = (18vre'R'/Sv) LI, (rerR/v) —I2(rogR/v) $.

In Fig. 2 is shown a plot of the cross sections times
Rro~/367re'R as a function of &orR/c. For values of
&oqR/c greater than about 4, the cross section undergoes
regular Quctuations of rather small amplitude. These
fluctuations have their counterpart in the plane slab
case (see Refs. 3 and 4) .

IV. RADIATIVE DECAY RATE FOR DIPOLE
SURFACE PLASMONS

Now we wish to calculate the transition rate for the
process in which a spherical surface plasmon decays by
the emission of a photon.

We calculate the interaction Hamiltonian t/', „be-
tween the plasma and the radiation field from the
equation

and the total cross section for excitation of a surface
plasmon by an electron of velocity v is given by

L' fa)Rg
o = —Q w, (k) =367re'R'Ir

I /Sv,
k,e

where

I„(a)=a—'

This total cross section consists of the sum of partial
cross sections for the creation of plasmons polarized
along each of the three Cartesian axes. The cross

8 P. M. Morse and H. I'eshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1953},Vol. I, p. 1264.

u .05—

~02

,0 I

I

4

FIG. 2. Cross sections for surface plasmon creation by a fast
electron. o.

II
is the cross section for creation of a plasmon polarized

parallel with the direction of the incident direction. 0.i is the cross
section for creation of a plasmon polarized perpendicular to the
electron direction.
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photon. Using the Golden Rule and summing over
6nal photon states, one obtains for the decay rate

pit ———,'R'ioi4/c',

where the familiar factor of 2a&i4/3c' reminds one of
the average radiation rate of an oscillating electric
dipole.

In Sec. V we derive a detailed expression for the
distribution of photons following Coulomb-stimulated
plasmon decay. In order to show that such photons are
likely to be observable experimentally under the proper
conditions, we consider the value of pic/~i for a 200 A
radius silver sphere. Using a wavelength of 4000 A=
2~c/cot for the photon emitted in the dipole plasmon
decay, one finds pii/o»=0. 02 from Eq. (14) . If one uses
an electronic damping rate y~ corresponding to the
value in bulk silver metal, one may take u&~'yD/co '~
e2(cei) 0.2, where e2(Mi) is the imaginary part of the
dielectric permittivity of silver. ' Thus pz/pz 0.3 for
this case. In order to obtain the total probability for
plasmon excitation followed by radiative decay, one
should multiply the probability of excitation by
pii/yz, where pz is the radiative decay rate of the
plasmon and p& is the total decay rate. If one uses
Doremus's' value of )ii for Ag, i.e., about 4000 A, and
considers spheres of radius 200 A embedded with an
avera e spacing of 2000 A. in a dielectric slab of about
4000 thickness, one finds that the total probability
for dipole plasmon creation per incident 40-keV electron
is ~2)&10 '. Thus the probability of excitation fol-
lowed by radiative decay is P&~2X10 'XyR/y~
6)(10~. This number should be compared with the
probability of exciting normal surface plasmons in a
solid Ag foil followed by radiative decay. The radiative
decay rate for normal surface plasmons in a solid metal
foil is given by

pit/co„= (era/)i„) (sin'8/cos8)

(see Ref. 4) . If one assumes that a=200 A. and that the
angle of observation 8=30', one finds pic/or„0. 04.
Using yr/co„~e~(&o~)~0. 2 for plasmons in bulk silver, '
one obtains pii/pz 0.2 for the thin Ag slab. One may
use Ferrell's result for the probability of radiative
surface plasmon creation by a fast electron normally
incident on a thin plasma slab. He finds LEq. (7b) of
Ref. 4j that the maximum probability is 0.0053'/c,
which for 40-keV electrons gives 2)&10 '. Then one
6nds for this case that the probability of photon
emission following Coulomb-stimulated plasma oscilla-
tions in a thin silver foil is I'~~2X10 'Xyz/yr~
4'gi0 4. Thus emission probabilities are comparable
for the two cases considered. Since plasmon decay light
from electron bombarded silver foils has been studied in

9 R. H. Huebner, E. T. Arakawa, R. A. MacRae, and R. N.
Hamm, J. Opt. Soc. Am. S4, 1434 (1964).

FIG. 3. Feynman diagram
for the resonant process involv-
ing surface plasmon excitation
followed by radiative decay.

great detail by many experimenters, it appears that
under the proper conditions it should be possible to
observe decay photons from spherical plasmons.

V. DIFFERENTIAL CROSS SECTION FOR
PHOTON EMISSION BY DIPOLE PLASMONS
FOLLOWING EXCITATION BY FAST ELECTRONS

In this section we calculate the differential cross
section for the complete process shown in Fig. 3:
excitation of a surface plasmon by an electron followed
by radiative decay of the plasmon. In this case the
transition rate is given by

X&(o~z.-cow —o&), (15)

where only the time ordering indicated in Fig. 3 has
been considered. The ordering in which photon emission
precedes plasmon annihilation is not resonant and

may be neglected in comparison with the process
depicted in Fig. 3 as long as the photon energy Sco&.

In this equation k' and k are the wave vectors of the
incident and scattered electrons, respectively; p is the
photon wave vector and X is the polarization index of
the photon; s designates the direction x, of the dipole
plasmon oscillation, and yp is the total plasmon damp-
ing rate which is equal to the sum of the radiative
damping rate and the electronic damping rate. 4

One obtains the cross section by summing over the
final photon and electron states and dividing by v/L',
where v is the velocity of the incident electron, and L'
is the quantization volume. Finally, if the photon
detector responds equally to photons of any polariza-
tion, one obtains the following expression for the
differential cross section:

d'0- 27e'R

dM&dQ& 27ISCOi (M o») +(2'rz')

XI sin'8 E~(o»R/v) +-,'(1+ cos'8) E,(o»E/v) ], (16)

where 0 is the angle between the wave vectors of the
incident electron and the emitted photon, and co and orj

are the frequencies of the photon and the plasrnon.
The integrals E„(a) are equal to aI„'(a), where the I„
are defined in Eq. (11).
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FIG. 4. Di agram for surface
plasmon excitation by light fol-
lowed by radiative decay.

VI. PHOTON STIMULATION OF DIPOLE
PLASM ONS

The cross section for plasmon creation by incident
photons of frequency co is given by

where y~ is the total damping rate of the dipole plasmon.
This result is obtained by employing time-dependent
perturbation theory, but allowing for damping of the
final state. The probability of dipole plasmon creation
by photons of frequency ~ incident upon a transparent
dielectric slab of dielectric permittivity not greatly
different from unity and of thickness t in which the
density of spheres is cV, is given by P(~) =/%or (M) per
photon incident on the slab. One assumes as before
that the spheres are randomly spaced with average
separation large compared with the wavelength of the
photons. Then one may define an absorption coefhcient
for photons incident upon the system as

zrMPcoi
X ~

The use of yr ——yn+y~ is clearly a better approximation
than y~ here.

Since much experimental work has been done on the
absorption of light in suspensions of small metal
spheres, and since the importance of the dipole plasmon
state in this work has been amply verified (see, e.g.,
Refs. 1 and 2), it seems that observation of light
emitted in the decay of dipole plasmons should be
possible, particularly if the sphere radius is large
enough that the radiative damping rate is comparable
with the total damping rate. In the example treated
in Sec. IV, yzi/yz 0.3 for 200 A radius silver spheres.

The differential cross section for light emission from
a spherical surface plasrnon following excitation of the
plasmon by light may be determined by the method
employed, above. The process is shown in Fig. 4. In
this case the transition rate is given by

where p' and p are the incident and emitted photon
wave vectors, respectively. The nonresonant time
order of Fig. 4 has been neglected here.

It is clear that the plasmon created in this process will
be linearly polarized in the same direction as the
polarization vector of the incident photon. Summing
over final photon states, we obtain the following
differential cross section:

dg 3R coy 2'lt'g

, —',L1+ cos'8], (18)
dQ, 4c ((o—(oi) '+ (-,'yr) ' '

which may be compared with the classical absorption
coefficient for a dilute system of small, randomly dis-
tributed spheres in a medium of dielectric permittivity

first derived by Mie," In the present notation this

may be written

18zr1Veo V
XMie ~

62

L(61+26 ) +Cz']
'

'0 G. Mie, Ann. Physik (4) 25, 377 (1908); also, M. Born and
E. Wolf, PrirIcip/es of Optics (Pergamoq. Press, Inc. , New York,
$9/9), p, 630,

where U=~m.R', the volume of each sphere. Here e' is
assumed constant, while e~ and e2 are the real and
imaginary parts, respectively, of the frequency-
dependent dielectric permittivity of the bulk metal of
which the spheres are composed. If one sets co=1,
ti = 1—(M&/Q)), 6z =M& 'rD/oP, where rn is the bulk
electronic damping rate of the metal, and assumes that
xM;, (co) is strongly peaked about the frequency ~& ——

cu„/K3, one finds an expression which agrees exactly
with that for x(cv) given above, except that instead of

there appears y~, the bulk metal damping rate.

where 8 is the angle between the wave vectors of the
incident and emitted photons, co is the frequency of the
emitted photon, E is the radius of the sphere, and yg
is the radiative decay rate given in Eq. (14) .

VII. SUMMARY

We have considered the interaction of fast but non-
relativistic electrons with dipole plasmons in spherical
systems. We find that the yield of photons from the
decay of dipole plasmons which have been generated
by fast electron bombardment of fine spheres sus-
pended in a transparent medium may be comparable
with the corresponding yield from thin metal slabs. It
appears that experimental work along these lines would
be quite interesting. Further work planned in this area
includes the study of plasmons of higher order, as well
as volume plasmons, in spherical systems.
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