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Intrinsic Resistive Transition in Thin Superconducting Wires
Driven from Current Sources
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The Langer-Ambegaokar theory of dissipative fluctuations in narrow superconducting channels for T
near T. is extended to systems driven from current sources, with results identical to those previously obtained
by Langer and Ambegaokar for voltage sources.

I. INTRODUCTION

STATISTICAL criterion describing the onset of
~ ~ ~ ~

~

dissipation in thin superconducting wires near
T, has been proposed by Langer and Ambegaokar. '

Their analysis is based upon a Helmholtz free-energy
function of the Landau-Ginsburg form and is directly
applicable to samples driven from a voltage source.
Recent experiments by Webb and Warburton' on tin
whisker crystals' confirm the principal theoretical pre-
dictions. However, because the samples in these experi-
ments were driven from a current rather than a voltage
source, it has been privately suggested that the Langer-
Ambegaokar (LA) theory should not apply. In this
paper we describe the modifications of the LA theory
appropriate to a current source. We find that their
final formulas remain unchanged and are therefore
applicable to general sources.

The essential element in our treatment is the re-
placement of the Helmholtz free-energy function F(Dg)
by the Gibbs function

G(I) =F(ay) BIZ y/2e, —

where I is the current through the superconductor and
hatt is the total change along the sample of the gauge-
invariant phase of the Landau-Ginsburg order param-
eter. In this function, I is the independent variable and
hP the dependent variable. In the LA treatment based
upon F(Ag), AP is the independent variable and I the
dependent variable.

The phase difference AP changes reversibly with
sample voltage V according to the well-known Joseph-
son equation

d(tiki) /dt =2eV/fi,

and it changes irreversibly through phase-slipping
fluctuations. The work done on a system in a reversible
isothermal process equals the change in its Helmholtz
free energy. ' It follows directly from Eq. (2) that the
infinitesimal change in free energy appropriate to a
reversible infinitesimal and isothermal change in phase

' J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1967).' W. W. Webb and R. J.Warburton, Phys. Rev. Letters 20, 461
(1968).' J. Franks, Acta Met. 6, 103 (1958).

L. D. Landau and E. M. Lifshitz, Statistical J'hysics (Addison-
Wesley Publishing Co., Inc. , Reading, Mass. , 1958), pp. 45—48,
68-7i.

difference AP is

dF =IVdt = (iU/2e) d(AP), (3)

which verifies that F is the thermodynamic potential
appropriate to a specified phase difference d,g.4 Differ-
entiating (1) and using (3) to eliminate dF, we find

dG = —(Shits/2e) dI, (4)

which verifies that G is the thermodynamic potential
appropriate to fixed current I.

The fluctuations responsible for dissipation are
limited in the LA theory by free-energy barriers. For
the voltage-controlled system (V=O, AP fixed) these
describe the minimum changes in the Helmholtz free
energy consistent with continuous deformations of the
Landau-Ginsburg order parameter from one to another
of the different nominally equilibrium configurations.
For the current-controlled system they describe corre-
sponding minimum changes in the Gibbs function
G(I). In what follows we compute and compare the
free-energy barriers for the two cases. We find that
the Gibbs-function barriers are identical to the approxi
mate Helmholtz-function barriers used by LA to derive
their final results. The differences between the exact
and approximate Helmholtz-function barriers are small,
generally negligible, corrections of relative order
$(T)/I«1, where $(T) is the coherence length and I.
the effective sample length.

That the Helmholtz-function and Gibbs-function
barriers are equal in the large-L limit is a special case
of a more general thermodynamic equality for large
statistical systems. ' If there exists a set of parameters
),; which together with hP or I define the state of the
system, variations in the X; produce equal changes in
the Gibbs function at constant current and in the
Helmholtz function at constant phase difference when
the variations Q.; are sufficiently small that

8I/8(Ay) =dI/d(Arti), (3)

where t'iI is the change in current at constant hit and
8(hit) is the change in phase difference at constant I.
The Gibbs-function and Helmholtz-function barriers
are different only to the extent tha, t Eq. (5) is violated.
If the 9, produce localized perturbations within a
large system, Eq. (5) will always be valid in the limit

' See Ref. 4, especially Eqs. (15.12) and (24.16).
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that the system size is much larger than the extent
of the perturbation.

II. FREE-ENERGY BARRIERS

The longitudinal Quctuations appropriate to a long
thin superconducting wire and the nature of their
associated free-energy barriers have been described by
Langer and Ambegaokar. ' We shall not repeat their
description but shall turn directly to the determination
of the barriers, using only the necessary details of their
paper.

If the transverse sample dimensions are small com-
pared to a coherence length, it is accurate and con-
venient to write the Landau-Ginsburg Helmholtz free
energy in the form'

L/2

—l/2

+ 'f'(*)+1-3 ) +(fi~) ), (3)

where /= L/$(T) i—s the sample length in dimensionless
units (not to be confused with the electron mean free
path), where )T((P(T) is its constant cross-sectional
area, and where f(x) expL+(x) ) is proportional to the
gauge-invariant Landau- Ginsburg order parameter. The
phase difference 6))t is

)33' =@(', f) —y( —-',-l), modulo 2)r.

In the limit AT—=T,—T—+0+, the prefactor

oII.2(T) t(T)/4n

in (6) vanishes as (BT)~)2.
For the voltage-controlled and current-controlled

cases we must determine the extrema with respect to
admissible variations of f(x) and ))))(x) of the Helmholtz
function F(I),P) and the Gibbs function G(I), re-
spectively. In both cases at these extrema, the functions
f(x) and ))))(x) satisfy the Landau-Ginsburg equations,
which in our notation are

d'f(x)/dx'= f(x)+f'(x—)+PJ'/f'(x) j, (Sa)

That solution of Eqs. (8) which corresponds to a local
free-energy minimum consistent with this current is

f'(x) =1—»s,

y(x) =»x+y„

for which h)t) =»/. The free energies are, for the Helm-
holtz function,

F))(») = —(P.2&/82r) lo (1—»') ',

and, for the Gibbs function,

(12a)

Go(») = —(H.2q/82r) lo (1—»') (1+3»') . (12b)

In the absence of Ructuations these results describe
thermal equilibrium.

To compute the Quctuation-produced resistance, we
require for the voltage-source case the Helmholtz free
energy at the barrier saddle points appropriate to
»-+»+22r/1 transitions. The saddle-point solutions of
Eqs. (8) have been described in detail by Langer and
Ambegaokar. ' If for rc&0 we define new parameters
~+ such that

K =Ky (22r/1) + (2/l) arctanL( 1—3»+s) /2»+'g'I' (13a)

=» +(2/l) arctan/(1 3» ')/—2» '$'I' (13b)

the saddle-point free energies are

F.( ) =-(II.~/8-)1 L(1-;)
—(Sv2/3l) (1—3»~') '12). (14)

Subtracting (12a) from (14), we obtain the barriers

bF(») —=Fg(») —Fo(»)

~(Z,s(0/8)r) ~s&2(1—3»') 'I'

(15a)

where
+LaFO(») /a»gs»y, (15b)

2/3V3) in the absence of fluctuations. In Eq. (9), Co

is the flux quantum hc/2e.
It is convenient to express J, 0&/& J„in terms of a

parameter ~ such that

J(») =»(1—»'),

where J is independent of x and related to the super-
current I in the sample by

I=J~II,'(T) q(T) /C, . (9)
)2 /2 2 2 —3 ')"'——arctan
( 0 2K

(16b)

In the limit AT-+0, the ratio I/J vanishes as (AT)'I',
which is characteristic of the critical current (J=J,=

Our notation divers slightly from Ref. I. This disadvantage is
compensated by 6nal expressions which are somewhat more
transparent.

The LA result follows from Eqs. (15b) and (16b).
It is approximate in that it differs from the exact
expression by small, generally negligible, terms of order
$
—j.

For the constant-current case the parameter a defined
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by Eqs. (9) and (10) remains unchanged, but fluctu-
ations produce h~hg&2ir transitions. The saddle-
point solutions of (8) appropriate to the Gibbs-energy
barrier are similar to the Helmholtz-function solutions
described by Langer and Ambegaokar but are diferent
in that the same functions f(x) and P(x) are used at
both saddle points. The phase difference hP differs at
those two points by 2x, which is consistent with the
modulo-2ir uncertainty in Eq. (7).

The saddle-point Gibbs energies are

Gy(K) = —(Q pp/ger) lg f (1 —Kp) (1+3Kp)

tively little effort, to extend the "system" to include
its boundaries.

An instructive one-dimensional example is that of a
long thin sample of total length lr =—Li/P(T)»1 whose
transverse dimensions are variable but everywhere small
compared to the coherence length $(T). If the di-
mensional changes are slow over distances Pp(&g(T),
the free energy (6) obtains as before, except that the
integrand must be weighted by the factor o(x)/o,
where o(x) is the cross-sectional area at x and o is a
constant average or reference cross section. The Landau-
Ginsburg equations for this system are [cf. Eqs. (8)]

—(g&2/3l) (1 3K —)'~'+4K(1 K') —g(gy) ~/i] (17)

where for ~&0,

8(dg)+=8(h$) +2ir

d o(x) df o(x)
dx 0' dx 0'

~2J2
f(x)-+f'(x) + ,

(21a)

=2 arctan[(1 —3K') /2K']' ' 1=[a(x)/a5 f'(x) (@/dx). (21b)

These 8(h@)~ are the changes which must be induced
in 6@by an external voltage [via the Josephson equa-
tion (2)j in order to maintain the current constant in
going from the initial free-energy minimum to the
saddle point. The Gibbs-energy barriers are

which are identical to the Helmholtz free-energy barriers
computed by Langer and Ambegaokar with the approxi-
mations (15b) and (16b).

III. DISCUSSION

These results and those of Langer and Ambegaokar'
have all been derived under the assumption that the
sample length L is large compared to the coherence
length g(t) —that is, l—= /Lg(T)»1. If l &1, the mathe-
matical expressions are considerably more complex
[because the "energy" E of LA, Fig. 2 and Eq. (3.8),
is unequal to II,«(fp)), but our general conclusion
remains. The constant-voltage and constant-current
formulations are equivalent whenever

J(Ky) ~J(K) + (8J/cjK) 8Ky, (20)

which is equivalent to (5) and suflicient to validate the
approximations (15b) and (16b) .

One might object that it is incorrect to use the LA
analysis when l&i because neglected boundary cor-
rections to the free energy could dominate the bulk
contribution. This objection is less damaging than it
appears because it is possible, in some cases with rela-

bG+(K) = (II,'go/ger) {pe(1—3K')'~'

—8K(1—K') arctan[(1 —3K') /2KP7'~'J,

$G (K) = (II p$p/8~) (xpv2 (1—3Kp) i/p+ 8K(1—Kp)

X ( m —arctan[(1 —3K') /2K'g'~ j ) (19)

A simple representation of a short length-L "sample"
and that to which our above remarks refer has

o(x) =o for ) x i&-', l

(22)

6$=2irC/Cp, modulo 2n., (23)

where Cp
——hc/2e is the Qux quantum. The condition of

fixed external field or equivalently of fixed external flux

4, =4+L,I, (24)

where L, is the self-inductance of the loop, reduces for
2nL.dI/d(hg)»4 p to t.hat of constant current and for
2vrL, dI/d(hg) «4 p to that of constant phase difference.
For intermediate values the behavior is mixed.

where o«o,(&P(T) .
A second important "one-dimensional" example,

whose properties are formally very similar to those of
simply connected systems with non-negligible self-
inductance, is that of a closed loop of thin supercon-
ducting wire in an external magnetic field. In this
example, the sample is of finite length but has no ends.
Its analysis is slightly more complicated than those
considered above in that the external magnetic field
rather than the phase difference AP or the current I
is the independent thermodynamic variable. (The cur-
rent is the complementary dependent variable. ) The
total free energy includes that stored in the wire [Eq.
(6)j plus that stored in the field. Although the phase
of the complex order parameter is quantized by the
structure periodicity, the gauge invariant pha-se P(x)
and phase difference hP are not, so that the mathe-
matical details are not very diGerent from Langer and
Ambegaokar. ' The phase difference hP is related to the
total Aux C linking the loop by


