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Using many-body techniques, we evaluate the three dielectric screening functions of a free-electron gas
including exchange self-energy and exchange ladder bubble diagrams. The three dielectric functions are
os&(n, ru), eu(v. , „),and ess, (n, sy), appropriate for screening the interaction between an electron and a test
charge, between a pair of test charges, and between a pair of electrons. An approximation for integrals of
the screened exchange interaction previously used by Hubbard and by us enables us to evaluate the di-
electric screening functions for all values of wave vector x and frequency co. The form of p, & and e« is similar
but not identical to that obtained previously using self-consistent-field techniques.

I. INTRODUCTION

iVER since Lindhard derived the dielectric screen-
& ing function in the random-phase approximation

(RPA), there has been much effort expended toward
obtaining the dielectric function in approximations
beyond t,he RPA. ln spite of this fact, no one has in-
cluded exchange effects in calculating something as
simple as the lifetime of an electron above the Fermi
surface of a metal Lwhich depends only on an integral
of Im1/e{ st, to) ).The reason for this is that the extreme
difhculty of carrying the dielectric function beyond the
RPA has forced most workers to work in limits which
have no applicability to the electron lifetime problem.
DuBois' has calculated the contributions of the dia-
grams shown in Figs. 1(a) and 1(b) (with a bare
Coulomb interaction) to e(x, co) in the limit x~0.
Osaka' calculated the contributions of all iterations of
diagrams in 1(a) and 1(b); a typical such diagram
being shown in 1(c). He used a Coulomb interaction
screened with a static RPA dielectric constant and
worked in the limit co=0, x~0. Glick4 used a Thomas-
Fermi screened interaction in summing the same
diagrams as Osaka but was able to work in the some-
what more general limit x—+0, cv—+0, but the ratio
r=tt/o& a free variable. Geldart and Vosko' obtained
II = tt'(e —1) including diagrams of the form 1(a),
1(b), and 1(d) .They used the full frequency-dependent
RPA screened Coulomb interaction but were only able
to obtain results in the r=0 and r=~ limits. They
showed that in order to satisfy their compressibility
theorem

calculated from the Gell-Mann and Brueckner' result
for the correlation energy at high density, II is the
r= ~ limit of II, and the subscript zero signifies the
RPA value. On the other hand, Glick4 has demon-
strated that unless the complete set of ladder bubble
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FIG. 1. Diagrams included by various authors in calculating
the dielectric constant. The doubly dashed line represents the
Coulomb interaction screened in the RPA or some approximation

to Older r, in the high-density limit, one must include of the RPA
the diagram 1(d). In Eq. (1), C is the compressibility
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diagrams are summed (which Geldart and Vosko did
not do) the dielectric function will have an unphysical
singularity for r=(2k )s

Hubbard' has suggested an approximation for the
sum of the ladder bubble diagrams which allows one to

'M. Gell-Mann and K. A. Brueckner, Phys. Rev. 100, 364
(1957).

7 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957).
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FIG. 2. Diagrammatic coupled integral
equations for eI, & and e,&. The wiggly and
bubbly lines represent the Coulomb inter-
action screened by ~I, & and eI,&., respectively.

estimate corrections to the dielectric function for all
values of x and or. Unfortunately, he made a computa-
tional error; he also neglected to include the exchange
self-energy correction, without whose inclusion the
ladder bubble diagrams yield an incorrect plasma fre-
quency. We' have recently, using self-consistent-Geld
(SCF') techniques, evaluated the dielectric function
including screened exchange matrix elements and the
exchange self-energy. Our calculation corresponds as
closely as possible (in the SCF theory) to summing the
same set of diagrams as Glick4 and Osaka, ' but. we used
the approximation of Hubbard so as to obtain e for all
values of x and co. Our dielectric constant was correct
in every limit in which we could test it except that it
did not obey the compressibility theorem.

In this paper we develop a simplified method for
summing the same set of diagrams as Glick4 and
Osaka, ' and again we use the Hubbard approximation
so as to obtain the dielectric function for all values of
x and co. Besides obtaining the ordinary dielectric
function, which we call e«because it screens the po-
tential seen by one test charge due to another, we also
obtain ~&t, and e», which screen the potential seen by
the kth electron due to a test charge and due to the k'th
electron. The functions e«and eI, & are similar but not
identical to those we obtained using SCF techniques. '
We are not able to say which result is more nearly
correci. ; however, the diagrammatic method has the
advantage that higher-order diagrams may be included
and, in principle at least, the dielectric function calcu-
lated to as great an accuracy as one wishes. The dia-
grams also yield ~», which we were unable to obtain
with the SCF technique. The main advantage of the
diagrams is, however, that they demonstrate clearly
what are the correct dielectric screening functions to
use in calculating an electron's self-energy (and hence
its lifetime).

II. DIELECTRIC SCREENING FUNCTIONS

In Fig. 2 we show the diagrammatic coupled integral
equations for e,&, where e,& is the test-charge —electron

8 L. Kleinman, Phys. Rev. 1M, 585 (1967).

dielectric function el, &,'averaged over all k&k~. The
dashed line represents the bare Coulomb interaction;
the wiggly line represents the Coulomb interaction
screened by eI, &, i.e., it includes all vertex corrections
at one end of the Coulomb line; the bubbly line repre-
sents the Coulomb interaction screened by e», i.e.,
it includes all vertex corrections at both ends of the
Coulomb line. Note that the interaction of an electron
with another electron or with itself, providing there
is an intervening vertex, is screened by e», but that a
self-interaction with no intervening vertex is screened
by eI„. This is demonstrated clearly in Fig. 3, where the
simplest self-energy diagram of Fig. 2(b) is expanded
into an infinite hierarchy of diagrams. Diagram (a)
is equal to (b) (the double dashed line represents a
Coulomb interaction screened by e&~, i.e., with no
vertex corrections) plus diagrams (c), (d), (e), ~ ~ ~,
identical with (b) but for single, double, triple, ~ ~ ~

vertex corrections at one end only. These vertex coriec-
tions are Coulomb lines screened by e», and so they
themselves contain vertex corrections at both ends.
Diagrams (g), (h), and (v) are just (c), (d), and (e)
with no further vertex corrections; (i) and (j) come
from (c) with a single vertex correction to the vertex
correction; (k), (1), (m), and (n) come from (d) with
a single vertex correction to one of the vertex correc-
tions; (o), (p), (q), and (r) arise from adding a
vertex correction to a vertex correction to the vertex
correction of (c); (s), (t), and (u) arise from adding
a double vertex correction to one end of the vertex
correction of (c) or adding a single one to each end.
Note that had diagram (a) contained a bubbly instead
of a wiggly Coulomb line, we should have had to add
vertex corrections on both ends of (b). The diagram
like (g) but with the vertex correction on the other
end would have been identical to (g), the diagram like
(g) but with vertex corrections on both ends would
have been identical to (j); in fact, every diagram would
have appeared twice.

We now solve the integral equations of Fig. 2 for
~„, keeping the first three terms on the right of 2(a)
and the first two on the right of 2(b) . By iteration one
sees that this is sufhcient to generate all i.he diagrams
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of Glick4 and Osaka, ' but with the addition of vertex
corrections to all the screened interaction lines. In
practice we shall approximate all screened interaction
lines (except the line to the external vertex) in a sufli-
ciently crude manner that these additional vertex cor-
rections do not enter. Once we have e, & we will easily
be able to obtain ~y~, e~~, and |.I,I,. In principle, we coul.d
then recalculate e.& using Cou1omb lines screened by
the eI, & and @I, of the previous interaction and thus
include the extra vertex corrections. Following the
usual rules, ' we have from Fig. 2(a),

Q V, (K) S(k) S(k+K) =v(K) Q S(k) S(k+K)

+2iV, ( K) v(K) Q S(k) S(k+ K) S(k') S(k'+ K)
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FIG. 3. In6nite set of self-energy diagrams with ordinary 6g]
screening of Coulomb lines which is generated by a single self-
energy diagram with @,& screening.

XS(k) S(k+K) r (2) and S(k) is the electron propagator given by
where v(Kj =Sv./»' is the Fourier transform of wave
vector x of the potential of an unscreened unit test
charge oscillating with frequency Kp=M V (k k k )
is the screened electron —electron interaction (see Fig.
5), and

Vg(K =v(K)/sag(1C) pp)

is the screened test-charge potential seen by an aver-
age' electron in the Fermi sea. The sum over k stands
for

(2 ) 4f e'ad-a„

S(k) =f(k)/Lkp-. (k) -M(k) -i,j
+L1-f(k)3/fk. - (k)-M(k)+'. j, «)

where M(k) is the self-energy to be determined from
the equation corresponding to Fig. 2(b), cp(k) =ks
(in atomic units), rf is a positive infinitesimal, and
f(k) is the zero-temperature Fermi function. If we ap-
proximate M and t/'„by the frequency-independent
functions M(k) and V„(k, k', k'+x) the integrals
over kp and kp' in Eq. (2) become trivial. Solving for
v(K)/V, (K) one obtains

s„(x, (o) =1+2v(K) (2v) ' 8(k')d'k' —(2v. ) ' 8(k) V.,(k, k', k'+x)B(k')d'kd'k' 8(k) d'k, (5)

where

8(k) = f(k) $1—f(k+x) j f(k+-) [1-f(k)j
~(k+~)+M(k+x) —o)(k) —M(k) —a)—irt rp(k)+M(k) —pp(k+x) —M(k+x)+re —irf

(6)

We show in the Appendix that Eq. (6) is equivalent to

8(k) = f(k) f(k+r)—
pp(k+x)+M(k+x) —co(k) —M(k) —(a irf sgncp—

when M is real. When M is complex, one can neglect. the infinitesimal rf and Eq. (7) follows immediately from
Eq. (6) . Let us write

8(k) =I f(k) —f(k+x) jD *(k),

where

D~(k) =Lpp(k+rl+M(k+s:) —a&(k) —M(k) &(u+srf sgnco] '.

J. R. Schrieffer, Theory of Supercondlctivitp (%. A. Benjamin, Inc. , New York, 1964), Sec. 5—9.
'P This average is of course defined by V. (K) Z&S(k) S(k+K) = ZsVs(K) S(k) S(k+K) .
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Then one easily sees that"

okd3k= V D, k D*k d3k, (9)

f(k)f(k') (ID+(k) D+ (k') V„(k, k', k'+Ic)

+D *(k)D *(k') V„(k+Ic, k'+Ic, k')+Dp(k) D *(k') V„(k+Ic, k', k' —Ic)

+D *(k)D+(k') V,.(k, k'+Ic, k') Id'k d'k'. (10)
~e now make the approximation'

' that V..(k, k', k'+Ic) in the integral of k and k' over the Fermi sea takes on
the average value

V.,(k, k', k'+~) =V..(k' —k) =8~/(2nkp+E, )

»d th«Vdd(k'~Ic —k) ~8qr/(2nkp +K'+Ea ), where Es is an inverse screening wavelength and n is a factor to
be determined in the next section. "Defining

7f(Ic, &co) =4(qrK) ' D+(k)f(k) d'k, (12)

we have

e,d(Ic, co) =1+—s'Lx(ic, +co)+if*(Ic, —co) j——
2 x(~+~) +x*(~,—~)

(13)

where
A = z EK'/(2nkp'+Es') $
8=-',PK'/(2nkp'+ K'+Es")). (14)

To evaluate X(Ic, &co) we first must determine 3f(k) .
The Dyson equation of Fig. 2(b) is (first two diagrams
on right-hand side only)

S(k) = S()(k)+S()(k)M(k) S(k)
where

dd(d) =((2 ) 'f S (I+q)VI, (q)d'q de

=—(2qr)-I f(k+q) Vs(q) dsq.

Because iV(k) is to be integrated over the Fermi sea
in Eq. {12) we use the same approximation for
V&(q—k) as for V„(k'—k) )see Eq. (11)].This is
consistent with the fact that to this order neither con-
tains vertex corrections. Thus

dd(q)- —(qw)-~ fj(q) r(q —k)d'q

=—(4/3~) Lkp'/(2nkp'+Es') i.
Similarly M(k+Ic) =—(4kps/3qr) (2nkp'+K'+EB') and

t)), (qc) =M(k+IC) —3f(k)
4 K=- k. . . , , , (»)

3qr
' (2nkp'+K'+Es') (2nkp'+Es')

"This follows immediately from letting k+Ic-+k in the f(k+Ic)
terms and then letting x—+—x.

"Previously (Ref. g), following Hubbard (Ref. 7), we did not
have the factor 2n multiplying kg' in the denominator of
V„(k'—k+ Ic) .

=0
if co+A(Ic) &2Kkp —K' (20)

otherwise,

2 ('K'+6(Ic) —col s

!ys(qc, —co) = — kp' —
~

2K j

if Ks —2kp&co —b (Ic) &K'+2kpK (21)
=0 otherwise.

This X(qc, ~co) is identical to that in the SCF theory
except for the —sgnco factor multiplying xs in Eq. (18).
This factor leads to the Geld-theoretic e«obeying the
COnditiOn" edd(qc, +co) =e«(Ic, —co), WhereaS the true
(SCF) dielectric constant obeys e«(Ic, +co) =
e«*(qc, —co). Note that e, d of Eq. (13) also has the
PrOPerty ed((IC& +CO) =edd(IC& CO).

"P. Nozieres, Theory of INteraotirdg Fermi Systems (W. A.
Benjamin, Inc. , New York, 1964), Appendix A.

The integral (12) for

X(Ic, +co) =7ft(Ic, &co) i (sg—nco) Xs(ic, aco) (18)

yields q, '+d(v. )d: )'Xi Ic, +co = kp—
qrK 2K

K +6(Ic)+co+2Kkp kpX )», + —[c'+d(x) d: j),K 6 Ic +co—2Kkp

(19)
fK'+ dqd(IC) +CO& S

IC& CO = p—
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Now that, we have c„(K,co), the dielectric constant
appropriate to an average electron in the Fermi sea,
we can easily obtain the dielectric constant appro-
priate to a particular electron of wave vector k. From
Fig. 2(a) we have (dropping the contributions from
the incoming and outgoing propagat. ors)

V), ()cl =z)((c)+2zc)((() g V) ((c) S(k') $(k'+i()

Now V)» ()() = V)» „((c) is the screened potential matrix
element between states

~

lr') and
~
k'+K); it is summed

in (22) over lr' within the Fermi sea and therefore may
be replaced by its average value V, (K). Thus,

Vp((() =1)()c)—21)'((c) (2zr) 'Pe„(K, c»)) j
X e (k' dsk' 2~ -av «

i Q—Vi (~) V„(k, k', k'+)c) $(k') $(k'+)(). (22) X 0 k' V.. k, k', k' x d'k'. 23

Using

e(v) v..(x x', x'+ )x'v= f f(x)(D i)v) v"(x x.,.x'+»)+D, (x ) v,.(
—x, x'+, , )v)gx'x' (24)

and approximating V„(lr'+K+lr) when lr' only is in.egrated over the Fermi sea by

V„(1r'+K+k) gzr/E(k+ )'+c)(k '+Es'j

one obtains for c)»l (K, ce) =1)()c)/ V)»()c),

(25)

where

K~ GO

IC» f 4C~ GO 1c. (K, c»)) —2 '�(K,+cx)) +X*(K, —(x)) 3+2}»4.X*(K, —c0) +&)X(K, cx)) 3
'

»4) =-,'$)c'/(k'+rxkp'+Es') 1 B)x '})c'/Dk+——-K)'+uk''+E '$}

(26)

(27)

To obtain e«(K, c»)), the dielectric function with no vertex corrections ( this is the "standard" dielectric function)
we refer to Fig. 4. Taking diagram (a) = (b) + (c), we have

g V, ((c) S(k) $(k+)c) = Q V&(~) S(k) $(k+(c) i Q V, ()c') V„(k—, lr', lr'+K) $(k) $(k+)c) S(k') $(k'+(c) (28)

or
e'ec (lc, a)) =E(c (1c& (d) z6»( (K& (d) g V«(lr, lr', lr' +K) S(k) S(k+(c)S(k') S(k'+)c)/ g S(k) $(k+(c) . (29)

The sums in (29) have previously been evaluated in determining e„and thus we obtain

1»4(x'(K, +(x))+x*'(K, —ci)) ]+2Bx(K, +c»)) x*(K, —ci))
(30)

or

) &h'i»+ )+x"'i», —») j+&ex(», )x"(», —
»)I

'

&«K, cx) =1+1 X K~ +(x)) +X
2 X(K, +Ct)) +X*(K, -Cx))

(31)

Vc ((c) = V(((c) I 1 F(k, k+ (c) I . —

On the other hand, referring to Fig. 5, we see that

(32)

V,.(k, k', k")

= Vg (ic) I 1—F(k, k+ ic) }I 1—I( k", k"—«) }. (33)

To obtain @)x ( K, (d) we again refer to Fig. 4. We see
that diagram (a) = (f) + (g) + (h) + ~ ~ ~ can be written
in the form (dropping incoming and outgoing electron
propagators)

Replacing the various V's by the bare potential screened
by the appropriate dielectric constant and solving (32)
and (33) for e» (K, (x)), one finds immediately

@)»»» ('K, Ci)) =C))((lC~ M) C)»»»C(
—

1Cx (x))/6(((K, M). (34)

In the present degree of approximation we have shown,
and although we have not proven it, it seems likely to
be true in general, that c)», (K, ~) =e)'»((K, —c0) . Thus,

t)ii«('IC) (x)) =6)lc(K& C()) C))«g( K& (xi)/ccc(K& Cd) . (35)



LEONARD KLKINMAN

II
11
n

f II

II
II

Il
II
Il

+ g
II

II
1l
N
e

FIG.,4.[Diagrammatic integral equation for c&&',in term& of e«and
iteration of that equation.
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From)~(26) )and (27) we notemthat eg„(x, ce) depends on
k+x,' hence the minus sign may not be,dropped from
thee in (35).

rr.r. DrSCUSSroN

L= 1 crX+ ',PT—r) ', - (36)

where X=(Trkp) '. This is to be compared with the
value found by Geldart and Voto' from the
compressibility:

L=1—X—(1—in2)X'. (37)

This implies that in this limit a good choice for the
factor n appearing in (11) would be et =1.This is not
too surprising since for ~—4 only electrons at the
Fermi surface contribute to the dielectric screening
and the average value of (k—k')' when both are con-
6ned to the Fermi surface is 2k''. On the other hand,
for large x, all k and R' contribute equally and the
average value of (k—k')' over the entire Fermi sea is
6k''/5. We would therefore suggest that, n be taken
as a function of x, decreasing from its value 1 at
x =0 to —,

' at x)&kg. The preceding consid. erations follow
from the factor f(k) —f(k+R) in (7) and hence
apply to the V„(k—k') and V„(k+r.—k') terms to-
gether, i.e., the same value of n is used in A and 8
t Eq. (14)j even though A does not contain T» in its
denominator. Similar considerations show that the n
in Aq and B~ LEq. (27)j are identical to those in
A and B.

A good estimate of Eq' is to be obtained. from

K'eRp~(E) =E'+E e (38)

H we take Es'=pk& (the Fermi-Thomas value of p
is 4/Tr) we may evaluate the ratio of e«—1 to the RPA
value in the limit au=0, x—+0, k& —-~. We obtain

k" k"+k-k'
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FIG. 5. Diagrammatic equation for 67I7g in terms of egg.

"If one wishes to use only one value of E8' for all momentum
transfers, Ea'=1.03k' would be a good choice since for large x
the momentum transfer in 8 is greater than Hkp and in A is
less than 42k p.

5 This difference hoMs for positive frequency, i.e., it is not 3ust
the t:pjyjal one e(x, —co) =~(x, co) versus ~(x, —~) =a*(r., eo),

where E is the average momentum transfer, (2n)'~'k p,

(2Trkp'yTT')"' (nkvd'+k')'" and (nkp'+k'+K') in A

B, AT„and Bl„respectively. One finds for E=v2kp
that E8' 1.0——3k' (cf. the Thomas-Fermi Es' 4k——p/ Tr) ."
Note that the compressibility theorem cannot be satis-
fied to order X' except with a negative screening con-
stant. Since (37) is valid only in the high-density limit
where X' is small, this should not bother us too much.
Our choice for E8' is probably as good as one can do
over the entire range of the variables ~, x, and kg.
@The present results differ from the SCF results. '"
It appears that these differences are mainly due to a
loss of Hermiticity of the potential in Ref. 8 which
occured when ma, king the approximation (k—k') r~
kp' and (k —k'+Te)'-+kp'+~' This has been pointed
out by Langreth (to be published) along with a
prescription for obtaining a Hermitian self-consistent
potential. In any event, in those limits in which g is
real, the SCF and field theoretic results are identical.
In the limits x=0 and x—+ one finds x and hence
e,& to be real; the field-theoretic and SCF e, ~ are found
to be exactly identical in these limits. Equation (30)
for 1/e« is easily seen to be equivalent to Eq. (26)
of Ref. 8 whenever e,& is real; thus the SCF and field-
theoretic eii are identical when their e, & are. The evalu-
ation of the dielectric constants in these limits has been
performed in Ref. 8 and will not be repeated here.
IIn order to improve upon the present calculation,
one must both include more diagrams from Figs. 2(a)
and 2(b) in the integral equations and screen the
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Coulomb lines with the ps&(tp, cp) and cps (tp, tp) found
in this calculation. The inclusion of the fourth diagram
on the right-hand side of Fig. 2(a), which when iterated
contains Fig. 1(d) among its infinity of diagrams, is
needed to satisfy the compressibility theorem to order
)'. There is no reason for believing, however, that this
diagram is any more important than the fifth one,
which is of the same order. Although the above program
is too complicated to consider attempting, the calcula-
tion of I', the imaginary part of the self-energy M, is
pra, ctical and will be the subject of a later paper. "Ke
have, from Eq. (15),

+ C3 +-.

FIG. 6. Relationship between the four-point vertex function and
the el,f, screened Coulomb interaction.

I'(k) = Imi(2v) P d4qSp(k+q) v(q)/e&&(q, qp). (39)

Using the fact that 1gesg(q, qp) is analytic above the
real axis for positive q0 and below the real axis for
negative qo, one obtains

r(k) =~-s Im d'q (q—k)- IL1—y(q) jfiPp —~(q) j
—f(q) f(L~(q) —kp3I/;, Lq—k, ~(q) —k,j, (40)

where 8 is the unit step function. If, as is usually the
case, one is interested in the self-energy of an electron
on the energy shell, one has kp= pp(k) . Note from Eqs.
(31) and (13) that the effect of exchange is generally
to increase e«and decrease eI, &. Hence, if one attempts
to improve the self-energy by including exchange
effects in ~«, he actually obtains a result less accurate
than that of the RPA unless at the same time he also
includes the contribution of the infinity of vertex cor-
rection diagrams displayed in Fig. 3. Thus we demon-
strate the usefulness of ej,~, which, without being any
more complicated than e«, automatically includes this
infinity of vertex corrections.

Perhaps the largest errors in our dielectric screening
functions are due to the use of static vertex correc-
tions. Had we treated everything dynamically Pi.e.,
not dropped the kp dependence of M(k) and
V.,(k, k', k'+It) j, we would have found effective-
mass corrections from the cp dependence of 6(lt) of
Eq. (17) and renormalization corrections due to the
residues of the integration over kp and kp' in Eq. (2).
Heine, Nozieres, and Wilkins (HNW)" have studied
the dielectric constant of a quasiparticle ep, (s:, 0),
where

~
k~+tp ( =kg. Our dielectric screening function

in this limit appears to be equivalent to theirs. They
find es, (tp, 0) in terms of a vertex function and re-
normalization factor. In the limit x—Q, the renormaliza-

"F.Vernon and L. Kleinman (to be published).' V. Heine, P. Nozieres, and J. W. Wilkins, Phil. Mag. 13, 74I
(1966).

tion factor is canceled by one contained in the vertex
function and ep, (x-+0, 0) approaches the RPA result
but with m* replacing m. Our static approximation
also yields the RPA result in this limit but without
the m* correction. For the denser metals (2(r,(3) m*

is within 2% of m so this correction is small. On the
other hand, the cancellation does not occur for larger
x, since the renormalization factor s is believed to be
about 0./ for these metallic densities, " errors of this
magnitude could be present in our dielectric function.
Wc note, however, that the numerical values of s were
obtained' using the Hubbard approximation and could
conceivably be much closer to unity. Although our
es(tp, tp) appears to be equivalent to that of HNW,
our electron-electron screening functions are not.
Theirs refers to the full four-point vertex function,
whereas ours merely screens a single Coulomb inter-
action line. The relationship between the four-point
vertex function and the screened electron-electron
interaction is shown graphically" in Fig. 6.

The Hubbard~ approximation has been widely used
because it is the only one that gives the dielectric
screening function for all values of wave number and
frequency. '0 In this paper we have corrected Hubbard's
error of double counting the (k—k'+tp) momentum
transfer while neglecting the (k—k') momentum
transfer altogether. We have also included the self-

energy corrections which Hubbard neglected. As we
have thoroughly discussed, there are still grave un-
certainties in the approximation; it is our feeling,
however, that the SCI" method, to which the present
approximation is equivalent, is inherently more ac-
curate than these uncertainties would indicate. The
cancellation of the renormalization factors in the
co=0, x—+0 limit and the fact that the exact plasma
frequency is obtained indicate that this may be the
case.

» T. M. Rice, Ann. Phys. (N.Y.) 31, 100 (1965)
'~ The relationship between the four-point vertex function and

the Landau quasiparticie interaction function f(k, k ) is given in
Eq. (6-246) of Ref. 13.

'p The HNW screening function (Ref. 17) is written in terms
of undetermined vertex functions and renormalization factors.
Only in the co =0, x-+0 limit is a numerical value obtainable.
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We here show that the 8(k) of (7) is identical to
that defined in (6). To save writing let W(k) =
&o(k)+M(k). Using

(X—a~irt) '=P(X—a) I+is5(X—a), (A1)

we have immediately from (6) that

R.e ~ =~ ~(") f("+'
W(k+E) —W(k) —~ '

Ime(k) =isr[ f(k)+f(k+E) —2f(k)f(k+ )]

(A2)

XSLW(k) —W(k+E)+co]. (A3)
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APPENDIX

Because f(k) is either 0 or 1, f(k) =f'(k), and thus

Lf(k)+/(k+ ) —2f(k)f(k+ )]=Lf(k)—f(k+ )]'
=~[)(k) —f(k+-E)].

(A4)

Im0(k) =iIr sgn&of f(k) —f(k+tc) ]
&&~~W(k) -W(k+.)+.]. (A5)

(A2) and (A5) combine, using (A1), to yield

e(u) = f(k) -f(k+&)
W (k+E) —W(k) —co—irt sgnco

(A6)

If k and k+E are both greater or less than kr,
L f(k) f—(k+Ic)]=0 and the & sign is immaterial. If,
however, k) kr and k+v. (ks, the minus sign holds
and if k(ks and k+E) )'t», the plus sign holds. In the
first case a&=W(k+E) —W(k) is negative and in the
second, positive. Thus,
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Specific Heat of a Spherical Type-II Superconductor*
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Specihc-heat measurements on a spherical 7.05 wt'%% Pb—In alloy Ltype-II superconductor with «(T,) =
0.72j are discussed, with special emphasis on the difference in the eBect of irreversibility on the determina-
tion of Maki s parameters aI and ~2 in calorimetric and magnetization measurements. Evidence is presented
to show that a& can be extracted reliably from specific-heat measurements even in the presence of severe
irreversibility. e&(T)/e&(T, ) showed a much stronger temperature dependence than that predicted by
current theories for the case of noninfinite mean free path of the electrons.

t LIE specific heat of a superconducting spherical..sample of 7.05 wt% Pb—In alloy in constant applied
magnetic Gelds at temperatures between 1.6 and 4'K
has been measured. The alloy was prepared by the
Indium Corporation of America from 99.999% pure
indium and 99.999% pure lead. A sphere of 2-in. diam
was obtained by vacuum-casting the material into a
spherical graphite mold. After a 10-h cooldown the
sample was annealed at 135'C for 10 days. A vacuum
calorimeter with a mechanical heat switch was used in
conjunction with carbon resistor thermometry.

The results are presented in Fig. 1 as Pc(Hp, T)—
c„(T)]/T versus T, in which Hp is the applied field
and c„ is the specific heat in the normal state. The
Geld was always applied after the sample had been
cooled down to the lowest temperatures.

The value of the normal specific heat at temperatures
below 2.5'K could be fitted to c„=1.75T+1.704T'
(rnJ/mole 'K) with a standard deviation of 0.5%.

*%ork supported by the U.S. Atomic Energy Commission and
the V/isconsin Alumni Research Foundation.

The coefficient of the electronic term y=1.75 mJ/mole
('K) ' is larger than the value of y = 1.60 mJ/mole ('K) '
for pure In. Ninth-order polynomials in odd powers
of T were used to fit both c„and c, over the whole tem-
perature range of the measurements. About 70 points
were used for each Gt, and the standard deviation was
less than 0.6%. No systematic deviation of the rneas-
ured points from the Gts could be detected. The lattice
specific heat ci c„yT Lwith y=1.75——mJ/—mole ('K)']
was compared with the Debye expression and, an effec-
tive temperature-dependent Debye temperature Oi&(T)
was determined. It has an approximately constant value
of 104.5'K at temperatures below 2.5'K and then drops
rapidly to 99.5 at O'K.

The critical temperature was 7,=3.65'K. It is not
inconsistent with the data to assume a zero-field transi-
tion width of less than 15 mdeg. Assuming zero tran-
sition width, the fits for c„and c, were used to calculate
the thermodynamic critical field H, (T) from the re-

' C. A. Bryant and P. H. Keesom, Phys. Rev. 123, 491 (1961).


