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these changes are reversible, indicating clearly that the
e1ectronic structure of iron i' this lattice is determined,
among other things, by the stoichiometry of the lattice.

It may be of interest to note that Wertheim and
Remeika observed both Fe'+ and Fe'+ spectra in
A1203'. Co' sources, whereas A1203'. Fe" absorbers give
normally only Fe'+ spectra. The quadrupole interaction
reported by Wertheim and Remeika for both Fe'+ and
Fe'+ states in the Al&03.'Co57 system agrees very well
with that reported here for the vacuum-annealed
A1203.Fe" system. The observation of Fe'+ spectra in
addition to the normally expected Fe'+ spectra in the
A1203'.Co" system was explained as, among other things,
arising out of the Auger cascades that follow the
electron-capture decay of Co". Similar spectra attribut-
able to nonequilibrium charge states were reported by
several authors. ' ' However, the ingenious delayed-
coincidence experiments of Triftshauser and Craig" set
this controversy to rest. They showed conclusively that
the observation of Fe'+ spectra in both NiO and CoO
was not time-dependent within the time range accessible
to the experiment and may arise out of the deviation
from stoichiometry. Indeed, recently only Fe'+ spectra

have been observed in nearly stoichiometric NiO" and
CoO"'" sources. The observation of only the Fe'+
state in the air-fired A1203.'Fe" system and of the Fe'+
and Fe'+ states in the vacuum-annealed A1203. Fe'~ sys-
tem suggests that the Fe'+ spectrum in the A1~03'. Co"
system is at least in part due to the deviation from
stoichiometry, besides being due to the fact that Co
enters the A1203 lattice interstially and substitutionally
in the divalent as well as the trivalent state.
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A correspondence a;~n; between operators a=(a&, as, ~ - aug and c numbers n=Ln&, ae, . ~ ~ ay) together
with an arbitrary ordering rule e (e.g., in sequence from 1 to f) permit an association 3f(a) =ebf&'&(a)
between a general operator M(a) and an associated c number function M~'& (u) . A quasiprobability P (, t)
is then defined so that a general ensemble average can be written as an ordinary integration: (3II(a(&)) )=
fM&'&(n) daP (a, f) . The equation for BP (n, t) /Bt suggests that the n obeys a classical Markoif process. If
this classical MarkoG process is taken literally, multitime classical averages can be computed. Do these
correspond to appropriate quantum averages r For the case of field operators such that (b, br) = 1, important
in discussing laser statistics, we show that with a& =b t and ay =b, the classical multitime average is equivalent
to the average of the corresponding quantum operators written in time-ordered, normal-ordered sequence.
For the atomic operators in a laser problem, we obtain the desired correspondence, but 6nd that the
more complicated commutation rules necessarily lead to derivative correction terms when multitime
averages are taken. Our derivation of multitime averages is based on the quantum regression theorem. We
show that this theorem is equivalent to assuming the quantum system to be Marko%an, by showing that
it leads to an appropriate factorization of a multitime density matrix and to a Chapman-Kolmogorog'-like
condition on the conditional density matrix.

1. INTRODUCTION

N the two preceding papers in this series, ' QIX and
. . QX, we set up a correspondence between the
creation and destruction operators bt and b of a normal

' QIX refers to the ninth paper in the series on quantum noise
by M. Lax. The series is as follows: (QI) Phys. Rev. 109) 1921
(1958); (QII) ibid. 129, 2342 (1963); (QIII) J. Phys. Chem.
Solids 25, 487 (1964); (QIV) Phys. Rev. 145, 110 (1966); (QV)
M. Lax, in Physics of Quantum Electronics, edited by P. L. Kelley,
B. Lax, and P. E. Tannenwald (McGraw-Hill Book Co., New
York, 1966), p. 735; {QVI) Moment Treatment of Maser apoise,
with D. R. Fredkin (unpublished); (QVII) J. Quantum Electron.
QE-3, 37 (196l); (QVIII) H. Cheng and M. Lax, in Qgamfl&&e

Inode of the electromagnetic field and a pair of c num-
bers P* and P. This correspondence was based on the

Theory of &he Solid State, edited by P.-O. Lowdin (Academ&c
Press Inc. , New York, 1966); (QIX) J. Quantum Electron. QE-3,
47 (1967) (with W. H. Louisell); (QX) Phys. Rev. 157, 213
(1967); (QXI) the present paper; (QXII) Density Operator
Treatment of Field and Population Fluctuations, with H. %'.
Louisell (to be published); (QXIII) Six Class~ca/ Variable
Description of Quantum Laser Fluctuations, with H. Yuen, Phys.
Rev. 172, 362 (1968); Portions of QXI and QXII are contained
in M. Lax's 1066 Tokyo Summer Lectures in Theoretical Physics,
Part I, edited by R. Kubo and H. Kamimura (W. A. Benjamin,
Inc. , New York, 1967) and M. I.ax, 1~66 Brandeis Summer Insti-
tute Lectures (Gordon and Breach Science Publishers, Inc. , New
York, to be published).
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use of normally ordered operators or antinormally
ordered operators and it led to a correspondence
between the density matrix p(t) and a classical dis-
tribution function I'(P, P*,1). We also established that
with one choice of our ordering rule this correspondence
was identical to that obtained by Glauber, ' Sudarshan, '
and Klauder' by the use of the coherent representation.

In order to deal realistically with lasers of a general
kind, it is desirable to extend the discussion beyond
the 6eld variables to include atomic population variables
such as a~ a~ and a~~a2 and in addition off-diagonal
elements related to polarizations such as a~ta2 and
a2ta~ for the two active levels 1 and 2 of a laser. Gordon'
has recently found a way to generalize the coherent
representation procedure to include these new vari-
ables. The coherent representation makes explicit
use of the harmonic-oscillator character of the field
variables, and Gordon s generalization, in addition,
makes explicit use of the nature of the atomic variables.
Our own procedure does not make explicit use of the
nature of the variables but merely introduces an
ordering rule in order to obtain an appropriate quantum
classical correspondence. Our procedure is then some-
what more general, because it can be applied to oper-
ators that may not have the special characteristics of
the field and atomic variables mentioned above.

Our work in papers QX and QXII represented a
trivial kind of generalization. In addition to the field
variables we introduced the upper state population in
QX and both upper- and lower-state populations in
QXII. This generalization was trivial in that the popu-
lation variables commuted with each other and with
the field variables. Our calculation with Yuen, ' in
QXIII, makes use of all six variables however, and thus
must squarely face the problem of many noncommuting
variables. The calculation discussed in QXIII is based
on our understanding of associated classical distribu-
tion functions and their meanings established in the
present paper.

The basic idea of our generalized correspondence pro-
cedure is quite simple. The only distinction between
operators and c numbers is that the former do not
commute. If, however, an arbitrary function of our
set of operators is always written in such a way that
these operators appear in a chosen or selected order,
then this leads to a unique form of the quantum-me-
chanical operator, and a classical function can then be
associated with this particular form. This is the natural
generalization of the correspondence between an oper-
ator function of b and bt in normally ordered form
being associated with a corresponding c number func-
tion as discussed in QIX. This correspondence between
an operator function and a c number function valid for a
set of noncommuting variables at one time is spelled out

' R. J. Glauber, Phys. Rev. 131, 2766 (1963).' E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).
4 J. R. Klauder, Phys. Rev. Letters 16, 534 (1966).' J. P. Gordon, Phys. Rev. 161, 367 (1967).
'M. Lax and H. Yuen, following paper Phys. Rev. 172, 362

(1968). This paper will be QXIII in the series of Ref. 1.

in Sec. 2. We find there that it is again possible to
introduce a c number distribution function such that
the mean of a general quantum-mechanical operator
is obtainable by an ordinary integration of the c-num-
ber function corresponding to the operator against the
distribution function.

In our specific calculations pertaining to lasers, we
And the equation of motion for this c-number distri-
bution. This equation of motion takes the form of a
generalized Fokker-Planck equation. Thus it is natural
to assume that the classical random process which
would give rise to this Fokker-Planck equation for the
purpose of calculating one-time averages can also be
used to calculate multitime averages. To what extent
is it legitimate to make this literal interpretation of the
associated classical random process? That is one of the
main questions to which we address ourselves in this
paper.

One of our principal conclusions relates to the case
of the field variables b, bt (either for the single-mode
or multimode case). In this case, we show that the
assumption that the quantum-mechanical system is
a Markoffian one establishes that the associated
classical random process is MarkoKan. In this case,
as is well known for classical MarkoS. an systems, all
multitime averages can be computed in terms of the
two-time conditional probability, and the latter is the
Green's-function solution of the one-time equation.
Thus the single-time correspondence serves to determine
all of the stochastic properties by the process of taking
the single-time equation as the literal description of a
classical MarkoB process. These conclusions justify
the work of Mandel and Wolf' and of Glauber' on
photodetection Quctuations. These authors avoid the
question of the proper determination of multitime
averages by simply assuming that the field variables
obey free-field equations. We have referred to our
quantum classical correspondence as a dynamical one
in order to imply that this correspondence is valid when
our system variables interact with reservoirs, and not
merely when they are free-field variable.

For the case in which atomic variables are present
in addition to field variables, we establish that multitime
averages over the field sariages can still be computed
by using the one-time equation to define a Markoff
process. We also show that certain atomic multitime
averages can also be computed under the same assump-
tion. However, not all multitime averages can be com-
puted by taking the classical process literally as a
Markofhan process. Indeed, we And that to calculate
certain atomic correlation functions it is desirable to
use a classical distribution function based on a certain

7 L. Mandel and K. Wolf, Rev. Mod. Phys. 37, 231 (1965).
8 R. J. Glauber, in Qgantlm Optics and Electronics, edited by C.

Dewitt, A. Blandin, and C. Cohen-Tannoudji (Gordon and
Breach Science Publishers, New York, 1965), p. 658. For a de-
tailed review of quantum optics including photocounting problems,
see also J. R. Klauder and E. C. G. Sudarshan, PNndamentals of
Quantum Optics (W. A. Benjamin, Inc. , New York, to be pub-
lished).
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order of the atomic variables, whereas to calculate
other averages it would be more convenient to use a
different selected order. In summary then, one cannot
take the associated classical process literally as a
Markoffian process, but must investigate specifically
how multitime averages are to be taken in each case.

The properties of our associated classical random
process are derived under the assumption that the
quantum system is describable in a Marko%an manner.
This raises the question as to what is the most appro-
priate way of defining a Markoffian system in quantum
mechanics. In papers QIV and QX, we found it con-
venient to define a Marko6 process by the require-
ment that a Langevin force at time 3 be uncorrelated
to any information at earlier times. From this assump-
tion, we were able in QIV and QX to give a short
derivation of the quantum regression theorem, which
we had formulated earlier in paper QII.

For readers who do not like a Langevin description,
it might be more appropriate to use the quantum
regression theorem as a definition of a quantum Mark-
offian process. The appropriateness of this definition is
verified in Sec. 5 for the field-variable case, because it
leads to an associated classical description that is
MarkofIian. For a completely general case, we intro-
duce multitime density matrices to permit the calcula-
tion of multitime averages. We then show in Sec. 7
that the quantum regression theorem forces such multi-
time density operators to factorize into two-time
averages, in analogy to the classical MarkoIIlian case.
Moreover, we find that the conditional two-time
average obeys a consistency condition which is the
precise analog of the Chapman-Kolmogoroff equation.
Indeed, this latter equation has recently been chosen
by Bausch and Stahl' as their definition of a quantum
Markman process.

2. ONE-TIME MULTIVARIABLE
CORRESPONDENCE

M(a) = 8M&'&(n) = 6M(n) (2 1)

The operator 6 implies that each c number 0.; should
be replaced by the corresponding operator a; and the
operators should be placed in a chosen order. As a
convention, we shall assume the order is from 1 to f
going from left to right. We use the superscript c when
we wish to emphasize the chosen-order nature of this
relationship. If we merely wish to emphasize that the
associated function is classical, we shall use a bar as a
superscript. Using the abbreviation do,=de~do. 2 ~ de~,

R. Bausch and A. Stahl, Z. Physik 204, 32 (1967).

Let us consider a set of system operators a-=

far, a2, ~ .afj and an associated set of c-number vari-
ables e—= fn4 n2, ~ ~ .nfl. A general operator function
M(a) can be set into correspondence with an asso-
ciated classical function by means of the relation

Eq. (2.1) can be rewritten in the equivalent form

M(a) = de M' (e) b(nr —ai) B(n2—a2) ~ ~ ~ 8(nf af)

(M(a(t) ))= dn M'&(n) P(n, t), (2.4)

where the associated distribution function E(n, t) is
defined by

E(n, t) —= (8(ni —ai(t) )8(n2 a2(t) ) ~ t'&(nf af(t) )).
(2 5)

Thus we have established that the mean of a general
operator can be obtained by a c-number integration
over the associated classical distribution function.
We understand that the time dependence of the oper-
ator a;(t) in (2.5) includes not only interactions with
the system but interactions with reservoirs. An alter-
native definition that avoids the use of 5 functions by
using their integral representation is

E(n, t) = (22r)-f dg e-'& a

where
)( (Cet2ee2O&Cehee2(0 ~ ~ ~ Cebeef(O) (2 |&)

g e—= Q$fnf.

The use of the exponential operator in (2.6) is a
natural one for us, in that we obtained the equation
of motion of our distribution function in papers QIX
and QXII by first obtaining the motion of a general
operator in exponential form.

Let us emphasize that the definition (2.1) above can
be more general than the definition (2.2), in that the
rule for placing the operators in some selected order
can be a more complicated one than merely writing
them in the order 1 to f, for example, we can introduce
an ordering procedure which can be associated with the
name of Wigner":

M(a) = WMi"&(n)

de2r~ '(e& (2e) e f die '2 e'2 (2.7)

The Wigner-Moyal" association between operators
'0 K. P. Wigner, Phys. Rev. 40, 749 (1932).
2' J. E. Moyal, Proc. Camb. Phil. Soc. 45, 99 (t949l.

(2 2)

since the order of the 8 functions specifies the appear-
ance of the order of the operators in M(a) . The ensem-
ble average of our general operator M at the time 3

can be defined by

&M(a(t) ))=TrPM(a) p(t) 3 (2 3)
the trace of M against the density operator at the time
t. Taking the ensemble average of Eq. (2.2) we then
obtain
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and c numbers makes use of a completely symmetric
arrangement of the operators. The ensemble average
of Eq. (2.2) leads to

&M(a(t)))= M( )(e, t)deP„(e, t), (2.8)

a c-number integration as before, but over a diferent
distribution function, the Wigner distribution function:

r (a t) = (2 ) & f d( e 'K (e't)' (2.9)

Haken, Risken, and Weidlich" have made use of
ordered exponential operators of the form (2.6) and.
Gordon' has calculated the equation of motion of the
Wigner distribution function for a laser.

and the mean of a three-time operator is given by

&Q(t', t")M(t) j)t (t', t") )= QO„(t, t')

X &Q(t', t")M„(t')X(t', t") ). (3.3)

Here iV and Q are understood to be any system oper-
ators. In general, j()r and Q can be functions of system
operators at an arbitrary number of times as long as
these are times that precede the time t. These equations
tell us that the time dependence in the variable t of
these multitime averages is the same as the time
dependence in the variable t displayed in the single-
time equation (3.1). The only distinction between
the values of these averages resides in the initial con-
ditions when for example in (3.2) the time t is set
equal to the earlier time t'.

In papers QIV and QX we started from a Langevin
description of the form

dM„/dt= A„+P„(t) (3 4)

» H. Hakcn, H. Risken, and %. Weidlich, Z. Physik 206, 355
(1967).

3. QUANTUM REGRESSION THEOREM

The basis of our treatment of multitime averages
will be the use of the quantum regression theorem as
the simplest definition of a quantum MarkoKan sys-
tem. This theorem describes the motion of system
operators in interaction with a reservoir. If M is a
member (or a linear combination) of a complete set of
system Markogan operators M„, then the time evolu-
tion of such an operator can be written in the form

&M(t) &= ZO (t t') &M (t') ) (3 1)

where t)t'. If the numerical coefficients O„(t, t') are
known for the single-time motion described by Eq.
(3.1), then the mean of a two-time operator is given by

&Q(t') M(t) X(t') &= QO„(t, t') &Q(t') M„(t') l~i(t') &,

(3 2)

and adopted the assumptions,

&Q(t') P„(t)z(t') )=0,
&Q(t', t")F„(t)1V(t', t") )=0, t)t')t" (3.5)

the lack of correlation of the Langevin force P„(t) with
information at earlier times, as our definition of a
Markoff process. We then found that the quantum
regression theorem was an immediate consequence of
this assumption. The steps of this proof could also be
taken in reverse order. The quantum regression theorem
could be used as the definition of a MarkoG process
and theproperties Eqs. (3.5) and (3.6) of the Langevin
force would then be a necessary consequence of this
assumption.

4. CLASSICAL EQUIVALENCE BETWEEN
MARKOFF PROPERTY AND THE

RZGRESSrom THEOREM

In this section, we shall establish the complete
equivalence between the classical regression theorem
and the usual de6nition of a MarkofBan system. This
proof is a slight generalization of one sketched in Sec.
5 of our Japanese lecture notes. '3

We can take as our definition of a classical Markofhan
process the factorization of the multitirne probability
density:

P(e„, t„; e„ i, t„ i,' ei, ti) =P(e„,t ( e„ i, t„ i)

XP(e i, t„ i, ~ ~ ei, ti). (4. 1)
where the O,„are values taken by the random variable
e(t ). For a non-Markoff process the first factor, the
conditional probability, would depend on all earlier
times. We rewrite Eq. (4.1) in the completely equiva-
lent form

P(en, t» et& ti)

P(e, t
~
e', t„ i) de'g(e' —e„,)
XP(en i, t„ i, ~ ~ ~ et) ti), (4.2)

multiply both sides by M(e„)l((r(e„,, e„,, ...e,)
integrate to obtain

&M(e(t„) )lii'(e(t„,), ~" (t,) ))

M(e„)de„P(e„, «„~ e', t„,) der

X &3(e e(t —i) )iV(e(t i), ~ e(ti) )). (4.3)
For any process, Markoff or not, the two-time corre-

lation function can be written

P(en' tnt en iq tn—i) P(en' tn
~

en —iq tn ——i) P(en i& tn i)
=P(e, t

~
e„ i, t„ i)

X&3(. —(t. ,))), (4.4)
» M. Lax, in D'l6 Tokyo Summer Lectures ie Theoretica/Physics,

Part I, edited by R. Kubo and H. Kamimura (W. A. Benjamin,
Inc. , New York, 1967).
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since this is merely the definition of the conditional
probability. I.et us multiply by M(a ) and integrate
over both variables O.„and e„~. If we change the
name of the integration variable e„~ to 0.' we obtain

gS(a(t„) ) ) f=m(a. ) da.Z(a., t )a', .t ,) e.a'

X(~(a' —a(t. ))). (4.5)

The set of functions b(a' —a(t i) ) for all a' is the
complete set of variables M„referred to in the regression
theorem. The comparison between Eqs. (4.3) and
(4.5) is essentially the statement of the regression
theorem, since Kq. (4.3) may be obtained from (4.5)
merely by adding the factor S under the ensemble
avera, ge on each side of Eq. (4.5) .

Since the steps in the proof presented in this section
can be stated in reverse order, the regression theorem
implies the MarkoG property as well as the converse.
It was this full equivalence between the regression
theorem and the MarkoQ property that suggested to
us the natural use of the regression theorem as the
simplest way to generalize the MarkoG property from
classical systems to quantum-mechanical systems.

S. REGRESSION THEOREM AND MARKOFF
PROPERTY IN THE COHERENT

REPRESENTATION

We consider now the important special case in which
we have only two variables taken in the normal order,
in other words, ai= bt and a2 ——b, where P, b"j= l. Our
associated distribution function for this special case
is then defined by

P(P, P*, t) = (~(p*—b'(t) )b(p —b(t) ) ), (5 &)

and the mean of a general operator can be written as
an integral:

&W~ ~))) f~a&u)")=~) ~()) )", ~)(~.». ,

where d'P—=dReP dImP. We use the superscript I on
M to emphasize that the chosen order in this particular
case is the normal order. Since Eq. (5.2) is true for a
completely general operator M and since Glauber~ and
Sudarshan' have established this equation by the
methods of the coherent representation it is clear that
their I' function is identical to ours. We can now gen-
eralize Eq. (5. I) to define an ii-time distribution
function by means of

p„=p(p, p„*,t„;p i—, p i*, t i, pi, pi*, ti)

—= (8(pi*—bt(t, ) )b(P2*—bt(4) ) ~ ~ ~ 8(p„* bt(t~) )—
Xb(p.—b(t.) ) "~(p~—b(t2) )~(pi —b(ti) ) )

Let us now define an operator T~ which places oper-
ators in normal order and in appropriate time sequence.
If we use A; as an abbreviation for A(bt(t;)) and

B,=B(b(t,) ) then our operator T~ can be defined by

M(bit ~ ~ b t b ~ ~ .bi)

=—T~(AiBiA2BiAHB3 ~ ~ A„B )

=AiAgA3 ~ .A B„B„i ~ .BiBi. (5.4)

With this normal-ordered time-ordered sequence under-
stood as part of the definition of operator 6 we can set
up a multitime association

M(bit ~ b„) b ~ b~i)

=~A (P.*)A.(p.*) ~ ~ A.(p.*)B.(p.) ~ B,(p,)
= ~M(p. , P.*; ~ ~ P., P.*), (5.5)

in which the c numbers P;, P,* are replaced by the
operator b, , b, t and the results are placed in the time-
ordered normal ordered sequence de6ned by Kq. (5.4) .
In precise analogy to Eq. (2.4) the ensemble average
of this multitime operator can be written as a c-number
integration over the associated multitime distribution
function:

(M(bit, ~ ~ b„";b„, ~ ~ bi) )

M g*) ~ ~ ~ n*, ~ ~ ~
g d'

g
~ d'

Xp(pn, p *, t; .pi, pi*, ti). (5.6)

Our single-time distribution function obeys

(b(p-* b'(t-) )—~(p-—b(t-) ) )

P (P~, P,*, t„~ a, a*, t„ i) d'a

X (&(a*—b'(t„,) )8(a—b(t„,) ) ), (5.7)

since this is merely the definition of the conditional
probability distribution. We shall now apply the
quantum regression theorem using this single-time
motion to simplify the e-time distribution function
P„of (5.3). The regression theorem then yields

X &b(pi* —bi') ~ ~ ~ b(p. i*—b. i') &(a*—b. ,t)b(a —b„,)
X(pb. i—b. i) ~ ~ ~ &(P-,—bi) ). (5.8)

Inside the ensemble average in Fq. (5.8)
make the replacements

8(a—b. i) b(P. i—b. i)

~~(a P. i) ~(p i b—. i)-, -—-
8(P i*—b it) 8(a*—b it)

~~(a' P-i*)b(p i* —b i') (5-9)—-
since the operator underneath the ( ) is in the chosen
order and could be evaluated with the help of Kq.
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(5.6). The result,

P(p„, p*, t„; ~ ~ p, p*, t)
=P(P- P-* «-

I P=i P- i*-t--i)

XP(P~ i, P~ i*, t~ i, Pi, Pi*, ti), (5.10)

is simply the definition (4.1) of a classical Markoff
process.

In summary, the time-ordered normal-ordered se-

quence used in our definition by Eq. (5.3) is just that
appropriate to evaluating the means of time-ordered
normal-ordered quantum-mechanical operators by
means of c-number integration. Moreover, such multi-
time averages can be performed by assuming that the
process is a Markoff process whose conditional prob-
abilities are obtainable from the Green s-function
solution of the single-time equation. Also, as we have
previously emphasized, it is the time-ordered normal-
ordered operators that are appropriate to measurement
processes in which photons are destroyed.

In order to show that not all results are as simple as
the above, let us consider the case in which we wish to
obtain a photon number correlation:

(bt(t, ) b(t, ) bt(t, ) b(t, ) ).
For convenience in evaluating this average, it is useful
to introduce the two-time distribution function

P(P2) P2 l «2«Pil Pl ~ tl)

= (&(Ps*—bst) 8(Ps—bs) &(Pi*—bit) b(Pi —bi) ). (5.11)

of avoiding these difhculties. If one starts with an
initial d.istribution that is independent of the phases
of the p's then all subsequent distributions will remain
independent of such phases. Thus it is possible to
introduce the variable b~b itself as a fundamental
variable and discard all phase information. A multi-
time probability distribution function can then be
defined by means of

P(~i, ti, " s.„,t.)
= (8(ir„—b„'b„) ~ ~ ~ 3(ss—bs'bs) &(ai—bi'bi) ), (5.13)

where
b, —=b(t,).

The regression theorem can be used to establish the
MarkoG character of this process so that the random
process is completely defined by the one-time equation
of motion for generalized Fokker-Planck equation.
Such an equation was developed in paper QVII for
the probability distribution of the number of photons
and the population difference. The present discussion
justifies the literal use of this classical equation in
determining photon number Quctuations.

6. PHOTODETECTION FLUCTUATIONS

Photodetection Quctuations are not a primary sub-

ject of the present paper. We mention, however, the for-
mula of Mandel "Glauber "and Kelley and Kleiner "
for the probability p(m, T) for obtaining m photocounts
in a time T:

With the help of the relation (5.7) and the use of the
quantum regression theorem, this two time average
can be rewritten in the form

where
p(m, T) = (T~(Q /m!) exp( —0) ), (6.1)

bt(s) b(s) dsz. (6.2)

Ps= P(Ps*, Ps) ts
~

rr*, ii, ti) d'cr

X (8(n*—bit) b(a bi) 3(Pi*——bit) b(Pi —by) ), (5.12)

where the first factor, the conditional probability, is
the same as that obtained from the Green's-function
solution of the one-time distribution function. Unfor-
tunately, the operators at the single time t& underneath
the ensemble average in Eq. (5.12) are not in normal
order. Thus the replacement used in Eq. (5.9) is no
longer valid and the ensemble average is not simply
the single-time probability distribution P(a, n, ti).
The time dependence on the variable t2 is, of course,
the same as before but the initial conditions have been
changed. In terms of the decay eigenvalues of the
single-time equation these will remain unchanged,
but the extent to which each decay eigenvalue enters
the two-time average is diferent for photon number
Quctuations than it is for the intensity Quctuations
which are measured by time-ordered normal-ordered
operators. Even worse difficulties will occur if we ask
questions involving photon numbers at three times.
Fortunately, for this particular example there is a way

This formula is a complicated one involving time-
ordered normal-ordered operators at, in general, an
infinite number of times. The previous section has
established, however, that such an average can be
taken for the associated classical process. Namely, if
we define 0 by

(6.3)

then the probability distribution is given by the clas-
sical average

p(m, T) = (I (0)"/m!7 exp( —0) ),i. (6.4)

It is often convenient to rewrite the preceding result
in the form

p(nz, T) =L(—1) /m!7(d/dX)"(exp( —)Q) ),i i i, i,

(6 5)
"L.Mandel, Proc. Phys. Soc. (London) N, 233 (1959); and

Ref. 7.
"See Ref. 8."P. L.Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964).
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because general methods for evaluating means of
exponentials of time integrals have been developed. '~

A discussion of these methods has been given in III.'8
Moreover, evaluations of the exponential average have
been given for a simple linear model of a laser below
threshold by Bedard" and Glauber. ' Our own results
in the region below threshold are summarized in Chap.
18 of our Brandeis lectures. In addition an approximate
technique based on 6tting the 6rst two moments has
been introduced by Rice'0 and applied by Mandep' to
a laser below threshold. An extension of this method
to the region above threshold is also given in our
Brandeis lectures. "We also evaluate the mean of this
exponential for a simple relaxation model of a maser
that properly takes into account the steady state
distribution of the number of photons in the laser.

7. QUANTUM REGRESSION THEOREM AND THE
CHAPMAN-KOLMOGOROFF CONDITION

them. Hence, if the operator a, t(t)a;(t) is expressed
in terms of similar operators at an earlier time t' the
equation necessarily takes the linear form

( "(t);(t) )=Z.', (t I
t') ( .'(t ) (t') &, (7 4)

which is the precise transcription of Eq. (5.13) of
QII with the numerical function Os„t' of that paper
replaced by a numerical function p,„&' in this paper.
If now Eq. (7.2) is simplified by using the quantum
regression theorem in conjunction with Eq. (7.4), we
immediately obtain the result

p(iP„, J lt. „mnt„„")
= P p;„t"(t„ I t„ i)p(pit„„mnt„„" ), (7.5)

which displays a factorization similar to that of (4.1)
characteristic of classical Markoff processes. If this
factorization is iterated once we obtain

M= QMtsa;tat,

Q= ZQ-a-'a. ,

(7.6)
and if it is iterated twice we obtain

p(ij t„, kit » mnt„s, pqt„s, ~ ~ )
= Q p;„' (n I

n 1)p„„' (n—1
I n —2)—

then the mean of a multitime product can be written
in the form

Pr Vs)E

Xpg,"'(n-2
I

n 3)p(-Aqt " ) (7 7)&M(t.) JV(t. )Q(t- .) ~ ~ )
= gM;;1V&tQ „~ p(ij t„; Alt„ t, mnt„s, ~ ~ ), (7.1) In general, we can iterate enough times to express the

results entirely in terms of a product of conditional
density matrices and density matrix at the earliest time.
Applying Eq. (7.6) directly to the three-time case we
obtain

in which we have introduced. a kind of multitime
density matrix dined by

p(ij t„, Jtlt„„mnt„„" )

If we write a set of operators MXQ ~ ~ in the second p~i jt„,Alt„r, met

quantized form = Z p'."(t
I t=t) p"'"(t. tI t.-s) p(-~«--s; ~ ~ ),

= ( "(t-) (t-) '(»-- ) (t-- )

&&a„t(t. ,)a.(t. ,) ~ ~ ~ ). (7.2)

As established in paper QII, any function of the oper-
ators a; a, is necessarily reducible to a bilinear form in
those operators by means of

p(ij3, kt2, mn1) =g p;„"(3
I 2)p„„™(2

I 1)p„„(1).

butts &s=1, (7.9)

(7.g)
If we set k=l and. sum on this variable and use the
condition

a„agaI, a)= b),I,a„a). (7 3) we obtain

Thus the bilinear operators a,~a; constitute a complete
set and any operator is linearly expressible in terms of

"D. Slepian, Bell System Tech. J. 3'7, 163 (1958); U.
Grenander, H. J. Pollack, and D. Slepian, J. Soc. Ind. and Appl.
Math. 7, 374 (1959)."III refers to the third paper in the series on classical noise by
M. Lax. The complete series is as followers: (I) Rev. Mod. Phys.
32, 25 (1960); (II) J. Phys. Chem. Solids 14, 248 (1960); (III)
Rev. Mod. Phys. 38, 359 (1966); (IV) ibid, 38, 541 (1966);
(V) Phys. Rev. 160, 290 (1967); (VI) ibid 161, 330 (1967).
(with R. D. Hempstead).' G. Bedard, Phys. Rev. 151, 1038 (1966).

~0 S. O. Rice, Bell System Tech. J. 24, 46 (1965)."L.Mandel, Ref. 14; G. Bedard, J. C. Chang, and L. Mandel,
Phys. Rev. 160, 1496 (1967).

"M. Lax, in 1966Brandeis Sgrarpter Instttrtte Lectlres (Gordon
and Breach Science Publishers, Inc., ¹wYork, to be published).

p(ij3, mn1) = g p;„'"(3
I 2) p„,s™(2

I 1)p,„(1). (7.10)

On the other hand, Eq. (7.5) used for two times implies

p(ji3, mn1) = Q p;„"(3
I 1)p„„(1). (7.11)

If we compare Eq. (7.10) and (7.11), we obtain a
condition

p""(311)= Z p'. '"(3
I 2)p"'"(2

I 1) (7.12)

which is the precise quantum analog of the classical
Chapman-Kolmogoroff condition. This condition, in-
deed, was assumed by Bausch and Stahl' as the appro-
priate de6nition for a quantum MarkoQ process.
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where the symbol
~ ) is defined by

A
~

B)—=TrAB. (7.18)

We emphasize that Eq. (7.14) is identical in content
to (7.13) . Indeed, it was so constructed that when all
of the necessary traces are taken Eq. (7.13) is obtained
identically.

We can also obtain Eq. (7.14) by a direct appli-
cation of the quantum regression theorem. For example,
we can rewrite Eq. (7.14) in the form,

(a;t(3)a;(3) )=g pep'~(3 ( 2) (apt(2) ai, (2) )
pX

=a"(3)a (3) Z I
a "(3)a.(3) )

7,S,PiX

Xp,„'"(3
i

2) (a„(2)ai (2) )
= (a;t(3)a;(3) U(3

~
2) ). (7.19)

Thus, for purposes of taking averages, we make the
replacement

M(3)~M(3) U(3 i 2) . (7.20)

It is to be emphasized that the operator on the left-
hand side of Eq. (7.20) is an operator at the time three,
whereas, after the traces implied by U are taken, the
operator on the right-hand side of (7.20) is an operator
that acts at the time two. The quantum regression
theorem then tells us that a relationship such as (7.20)
can be bordered. by operators on the right-hand side
so that, for the purpose of taking a two-time average,
one may make the replacement

M(3) U(3 ) 2) X(2)—+M(3) U(3
~
2) X(2) U(2

~
1) .

(7.-21)

If we combine Eqs. (7.1) and (7.8), we find that
the mean of a three-time operator can be written in the
form

(M (3)E(2)Q (1) )= QM, ;Xi,iQ„„

Xp;„'"(3
i 2) p„„'"(2

i 1)p„„(1). (7.13)

If we wish to avoid all subscripts, the same result can
be written in purely operator form:

(M(3)X(2)Q(1) )
=Trt'M(3) U(3

~
2)$(2) U(2

~
1)Q(1)p(1) j, (7.14)

where the density matrix p(1) can be written in the
form

p(1) = Za-'(1)a. (1)p-(1), (7 15)

to conform with the notation introduced in QII. Our
general operator at the time f3 can be written in the
form

M(3) = QM, ,a;t(3) a;(3), (7.16)

and the propagator U(3 i 2) can be written

U(3 I 2) —= Z I a.'(3)a.(3) )P v "(3
I

2)a.'(2) ai(2)
7|8qP qX

(7.17)

p(3) = U(3 I 2)p(2), (7.23)

in other words, that the propagator U also describes
the propagation in time of the density matrix.

These results can be immediately generalized to
take an average of a product of e distinct operators
taken at n different times:

(B~(&)B.-i(&—1)"'B2(2) Bi(1) )
=Tr(B„(N) U(e

~
N —1)B„ i(e—1)U(e —1

~
e—2) ~ ~ ~

XB,(2) U(2
i 1)Bi(1)p(1) J. (7.24)

If we wish to take an average of the set of operators
in the reverse time order, it is convenient to rewrite
Eq. (7.19) in the form

a"(3)a (3)~Z a."(2)a~(2) p*""(3 I 2)
pX

~V(213)a"(3)a~(3) (7»)
where the new propagator V is defined by

V(2
~
3) = ga, '(2) aX(2) p,p'"(3

i 2) (a.'(3)a, (3) ~

= U(312) '. (7.26)

An average of a product of e operators in the reverse
time order is then given by

(Ai(1) A2(2) A„(e) )=Tr/p(1) Ai(1) V(1 ) 2) A2(2)

X V(2 i 3) ~ ~ ~ V(m —1
i e) A (m) j. (7.27)

A more complicated kind. of time average, of the sort
that previously appeared in connection with electro-
magnetic field operators, can by the same arguments
be written in the form

(Ai(1) ~ ~ ~ A (N)B (e) ~ ~ Bi(1))
=TrLp(1) Ai(1) V(I.I 2)

X ~ ~ ~ V(s—1 ) 5) A„(s)B„(s)U(s (
tl 1)—

X B2(2) U(2 i 1)Bi(1)]. (7.28)

More complicated time orderings can be handled by
the same methods. We leave to the reader the working
out of any new special cases.

In this section, we have developed a completely

Indeed, if we repeat this process and. add one more
propagator and the Q operator we obtain an operator
that acts only at the time one so that, when the average
is taken, we immediately obtain Eq. (7.14).

The significance of the propagator U is dined by
the last line of Eq. (7.19). Alternatively, we can use

Eq. (7.19) to write

(M(3) )=TrM(3) p(3) = Trt M(3) U(3
~

2)p(2) ).
(7.22)

Since the operator 3f is arbitrary, we learn from Eq.
(7.20) that
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general method for taking the averages of products
of operators at several times. This method, however,
requires a knowledge of the propagation of the full
density matrix of the system. Often, however, we are
concerned with a description that is far less complete,
e.g., in terms of a smaller number of variables. Indeed,
it was just this simpler problem which led us to intro-
duce the correspondence between quantum and clas-
sical variables. The problem in the remaining sections of
this paper is to show that we can exploit this quantum
classical correspondence to simplify the calculation of
multitime averages without the full knowledge of the
evolution of the density matrix of the complete system.

Our result (7.24) is similar to a result derived re-
cently by Haken and Weidlich. "Their result (35) has
the same form as (7.24) with a set of projection oper-
ators inserted after each operator 8;. Their result is
correct if the multitime average consists of a sequence
of measurements at each separate time. Our exact
result (7.24) contains no projection operators and thus
should be interpreted as a single measlrememt of the
correlation product. If n measurements are understood,
the right-hand side should contain the Haken-Keidlich
projection operators —but so should the left-hand side,
to indicate that a different correlation function has
been measured. The diGerences should be slight when
the reaction of the measuring apparatus on the system
is weak, e.g., when light Quctuations are measured
far from a laser source.

8. MULTIVARIABLE, MULTITIME CASE

In the present section, we investigate the extent to
which, in the multivariable case, the literal use of the
Marko6 random process implied by the one-time
equation of motion, can be used to calculate multitime
averages. LThis procedure was found successful for
the variables b and bt in Sec. 5.] We start by writing
the Green's-function solution of the single-time equa-
tion in the form

P(n, t) = P(e, t
i

n', t')dnP(e', t'). (8.1)

We then take the average of a general operator M(t) —=

M(a(t) ) by integrating the associated chosen-ordered
function against Eq. (8.1). After replacing the initial
distribution P(n', t') by its definition, we obtain

be applied immediately to yield

(()(&')~(t)&(t')) f=~.~( )&(., ~l ~ )&''

If the operator inside the ensemble average on the right-
hand side of Eq. (8.3) requires no rearrangernent to
be placed in chosen order, then this ensemble average
can also be written as an integration. For example,
if the operators Q and X are functions, respectively,
only of a& and af, then no permutation is needed to
obtain a chosen order, and we can write

(Q(ai(t') )M(t) &(at(t') ))

de3f 0. I' e, t 0.', t' do.'

XQ(ni') P(a', t') E(nr'). (8.4)

The right-hand side of (8.4), however, is precisely the
way the corresponding average would have been cal-
culated in the associated classical random process,
so that we can rewrite (8.4) in the form

&Q( (t'))M(t)&( (t')))
= (M( (t) )Q( (t') )&( (t') ))' (8 5)

It is clear, however, that if Q were a function of a2,
and a2 did not commute with a~, then the operator
beneath the ensemble average on the right-hand side
of (8.3) would not be a normal-order, and the result
could not be written as a c-number integration without
erst producing some commutator corrections. Similar
remarks occur if the operator Sdepends on the variable
af ~. Thus we see that, even for quantum MarkoQ
processes, it is not legitimate to compute all averages
by taking the associated classical random process
literally.

If we make use of Eq. (8.1) in the form

1'( ', f) fP(a', t
~

n"=, t")dn"8( ", t"), (8 6)

then we can apply the quantum regression theorem to
Eq. (8.4) to obtain the three-time result

(S(t")Q(t') M(t) X(t') R(t") )

(M(t) )= dn M" (n)P(n, t
~

n', t')dn' d ed n'de"M ( n) P( n, t
i

n', t')

The quantum regression theorem of Eq. (3.2) can now

~~ H. Haken and W. Weidhch, Z. Physik 205, 96 (1967).

XQ(ni') X(nr') P( n', t
i

n", t")

f
X (S(t")II b(,"—a, (t") )Z(t") &. (8.7)

Again the last ensemble average in (8.7) can be
reduced to an integration when no rearrangements are
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9. SIX-VARIABLE DESCRIPTION OF A LASER

If we introduce the population operators by means of
a sum over atoms m,

E,= Q (a, ta;)„, (9.1)i=1 2

and the polarization operator by means of

M = g(aita2) (9.2)

we obtain the commutation rules

I b, X~]= Pb, 1V ]=$b, M]= $b, M ]=Pl, E ]=0,

required. For example, we obtain

(~( (t"))0( (t'))M(t)&( (t'))&( (t")))
=&~( (t ))Q( (t))M( (t))&( (t))~( (t )))..

(8.8)

It is clear from the above results that the first and
last variables in our sequence have an especially favored
status. All multitime averages involving only these
two operators written in the order in which a1 appears
before a~ can all be evaluated by using the usual literal
Markoffian interpretation of the associated classical
random process. It is for this reason that in our work
with Yuen' on the six-variable description of the laser
we have placed the variable b~ to the extreme left and
b to the extreme right.

We have omitted the subscript cl on the right-hand
side, since the averages in question are clearly classical.
Since at any one time the polarization variables com-
mute with the field variables, averages involving only
the polarization and field variables in normal and time
order are clearly reducible to the corresponding aver-
ages of the associated classical problem. For example
we have

(Mt(t) M(0) )= (5K*(t)5K(0) ), (9.10)

&bt(t)M(0) )= (P*(t)OR(0) ), (9.11)

&bt(0) M(t) tb(t) M(0) )= (P*(0)P(t) OR*(t) OR(0) ).
(9.12)

On the other hand, if we wished to compute moments
involving population Quctuations these would be diK-
cult to obtain since the populations do not commute
through the polarizations, so that

($,(t)E,(0) )Q &K, (t) OI, (0) ). (9.13)

Since a computation of the commutators leads to
considerable algebra, if we were interested in popula-
tion correlations it would be simpler to introduce a
new classical distribution function based on the new
order of variables:

~1 ~ ~2 +1 ~3 ~ ~4 ~ ~5 +2 ~6

P „M]=M, LX2, M]= —M,
(9.3) (9.14)

LMt, M]=~,—g, (9 4) For this new choice of variables, we would indeed have

In accord with the discussion at the end of Sec. 8,
a convenient choice of order for our six operators is
given by

~1 ~ p ~2 ~
p ~3 +1p ~4 +2& ~5 ~

p ~6

(9.5)

The associated classical variables can be denoted by

ny= P) n2= OR ) cL3=K ) n4= Ã2| ng= ORi n6=P.

&Eg(t)Eg(0) )= &OIg(t)X2(0) ). (9.15)

It may be that, because of other averages that we
wish to compute, we do not wish to adopt a change in
the order of variables given in Eq. (9.14), but prefer
instead to retain the original choice of ordering given
in Eq. (9.5) . How then are we to compute the average
of Eq. (9.13)? From Eqs. (8.3) we can write

(9.6) &Xg(t)Ey(0) )= dnOIgP(n, t
I

n', 0)dn'

In view of the remarks at the end of Sec. 8 all time-
ordered normal-ordered averages involving only photon
operators are given by the associated classical averages.
In particular, the most important of these averages are

&b'(t) b(0) )= &P*(t)P(0) ) (9.7)

(b'(o)b'(t)b(t)b(o))= &IP(t) I IP(o) I ), (9.8)

t+T
T~ exp —X bt(s) b(s) ds

t

X (g b(n/ —a, (0) )1Vg(0) ). (9.16)

The difficulty now is that the quantities underneath
the averaging bracket are not in the chosen order.
We must therefore somehow commute E1 through
b(OR' —M(0) ). To accomplish this, we make use of the
commutation rule

t+T
exp —X s 2ds . 9 9

t

e&MXg EgetM &Met~—— —

= (kg —MB/BM) e&~. (9.1/)
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The second form of Eq. (9.17) is suff(ciently general
that the exponential operator involving M can be
replaced by a completely general function of M. In
particular, if we make use of the correspondence

in paper QXIII. These relations

N)e&~t= e&~tNg $M—terat,

e&~Ng N)——e&~ &M—e&~,

Q(b', M', %, N2, M, b)=&Q"(p*,on*, xi, x~, on, p), N(v t=(&j(rt+~Mt, wt

(9.18) e&~Ng ——Ngd~+$3A&~,

(9.23a)

(9.23b)

(9.23c)

(9.23d)

then Eq. (9.17) permits us to write the new corre- Me =& M k(' Nm+& %—PM (l~

spondence
(9.23e)

Q(bt, Mt, Ng, N2, M, b)N)=8(xg —ona/aon)Q('j.

(9.19)

In accord with the general procedure derived in Eq.
(2.4), the average of any operator at one time can be
written as an integral over the product of the associated
classical function and the distribution function. For
the present case, we obtain

(Q(bt, Mt, N„N„M, b) N, )

erat =Mt e&~ $N2e—™+)N~e™ PMe—&~

ege)N

e&N23f t = e—&3fte&N&

e&'bt= bte&'+Pe&',

b(,Pt =ePt+(gr&t

(9.23f)

(9.23g)

(9.23h)

(9.23i)

(9.23j)

(9.23k)

(9.231)

xd~ ~(pt, on*, xi, x2, on, p)

c dc Ky 8 85K BR I 0!p$ o (9.20)

(x,—on(a/aon))Q(p* on* x x on p) are sufFiciently complete to permit us to perform all of
the necessary rearrangements to place a set of operators
in the chosen order. Kith the help of these commuta-
tion relations, we can show in the manner above that
our six operators, when added as factors to the right,
can be treated by making the replacements

(»), p*-a/ap,
The second form of (9.20) is obtained after an inte-
gration by parts. When Eq. (9.20) is inserted into (Mt)„~exp(a/ax, —a/ax, )pp+(a/a9Il)g,
(9.16) with Q standing for the product of b functions,
we can rewrite (9.16) in the form —(a/aors) x&+ (a/aon) 'on,

(9.24a)

(9.24b)

())) (t)Ni(0) )= f dnR ('(a t( a', Ojt)n'

x (xi'+(a/aon') on')z(~', 0).

The result has almost the form expected for a classical
two-time average. Instead of replacing the operator
X& by K&, we obtain the slightly different replace-
ment

(N),),—+xg+ (a/aon) on,

(N2) „-+x2—(a/aon) on,

M„—+5K,

b,~p.

(9.24c)

(9.24d)

(9.24e)

(9.24f)

Conversely if we wish to add factors at the left
must make the replacements

(Ng) „-+xg+(a/aors) on.
(b') ~~p'

(9.22)

%e have written a subscript r on the operator E~ to
indicate that this is the appropriate replacement when
the operator in question appears as a right-hand
multiplication factor. If it had appeared as a left-hand
multiplication factor, it would have had, to commute
through a different 5 function, and a diferent replace-
ment would have been necessary.

A complete set of commutation relations was derived

(Mt) ~on*,

(N, ) x~,+(a/aon*) on*,

(N, )~x, (a/aon*—)on*,

(M) )~exp(a/ax, —a/ax, ) on

+ (a/aon') (x,—x,)+(a/aon*) 2on*,

(b) r P alaP*—

(9.25a)

(9.25b)

(9.25c)

(9.25d)

(9.25e)

(9.25f)
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For example, a four-time average can be written in the form

(2) &) (i) () &) (0)

(b (3)&«&(2) N, (1)(& &(0) )= ((&&'&(K&+ BR Bt&
—

D&&
~

(&"——
~

BBR 85K i Dpi

f ~
(&)

d n'd e'd n'd e'P("P ( n', 3
)

n', 2)
~

5ti+ 5K
~

P ( n', 2
(

n', 1)
85K i

(i) ( 8 &
(')

X(%2— 5R P(n', 1] e', 0)(P*——
(

P(e', 0). (9.26)
85K 8 i

We use superscripts to denote the time at which the
variable acts. The first form on the right-hand side of
Eq. (9.26) is symbolic, and the fully displayed version
is given in the second form. The variables n are of
course the six variables of our problem defined by Eq.
(9.6), so that, for example, we can write

( g ) (2)

(Xi+ 5K) P(n', 2) e', 1)
85K i

=in'+ n52 )P(e', 2 [
e' 1), (9.27)
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where the subscripts run from 1 to 6 in accord with
Eq. (9.6).

In summary then, the average of any product of
operators at several times can be computed if one
knows the steady-state distribution function and the
two-time conditional distribution function. The latter
is the Green's-function solution of the equation obeyed
by BP/Bt This equ. ation of motion, which has a gen-
eralized Fokker-Planck form, is derived in QXIII.

10. SUMMARY

In Sec. 4 of this paper, we have established. a com-
plete equivalence between the MarkoB property of a
classical system and the regression theorem. We have
therefore found that the simplest definition of a Mark-
ofhan quantum system is one that obeys the regression
theorem. Indeed, in Sec. 9, by defining an appro-
priate multitime density matrix, we have shown that
the regression theorem implies a factorization of this
density matrix, which is analogous to the factorization
of a multitime probability in classical stochastic proc-
esses. Moreover, we show that the two-time conditional
density matrix obeys a Chapman-Kolmogoroff con-
dition quite analogous to the one obeyed by probabil-
ities in classical random processes. The factorization of
this multitime density matrix permits us to calculate
arbitrary multitime averages in terms of the conditional
two-time density matrix in a manner that is somewhat
analogous to that used in classical Markman processes.

The above procedure applies to the full density

matrix of the system. Often, however, we are satisfied
with less information. We are only concerned with a
certain limited number of operators, and we only
wish to answer questions concerning these operators.
One of the main contributions of the present paper,
then, was to set up a correspondence between a set
of quantum-mechanical operators and an associated
set of c-number variables. This correspondence, using
ordering rules, was so devised as to permit the cal-
culation of the average of any function of these quantum-
mechanical operators to be written in terms of a c-
number integration over an associated classical dis-
tribution function. In this way, to a given quantum-
random process, an associated classical randomproc-
ess was set up. The problem that remains is the extent
to which the associated classical random process can be
taken literally for the purpose of computing multitime
quantum averages. In Sec. 5, we showed indeed that
for the field operators b and b~ this literal interpretation
is in fact correct. The average of any multitime func-
tion for the associated classical random process yields
an average of the corresponding quantum operators,
providing that those operators are written in normal
order and in the appropriate time sequence. For the
atomic operators appropriate to a laser problem, we
found that a similar classical correspondence could be
set up. Single time averages, again, are given by ordi-
nary integrations over the associated classical distri-
bution function. Some multitime operators can be
obtained by taking the associated classical random
process literally. More generally, however, we found
that the commutation rules, associated with the atomic
operators, forced the calculation of multitime, averages
to introduce a more complicated correspondence in
which certain quantum-mechanical operators were
replaced by c-number variables with extra terms
involving derivatives of the c-number variables. With
these corrections that arise from the computation
rules, we have shown in Sec. 9 that it is indeed possible
to calculate all of the desired multitime averages, in a
relatively simple way, in terms of the distribution
function and the conditional distribution function of
the associated classical random process.


