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Fully coupled Hartree-Fock calculations of the refractive in&ex, dynamic polarizability,
and Verdet coefficients of He, Be, Ne, and the corresponding 2-, 4-, and 10-electron
isoelectronic series are presented. The time-dependent Hartree-Fock perturbation equa-
tions are derived and solved using a variational method, in which the zero-order and the
perturbed wave functions are represented by analytical functions containing adjustable para-
meters which are optimized according to the variational technique. The numerical results
for both the refractive index and the Verdet coefficients are fitted. to polynomials in even
powers of 1/X, where X is the wavelength. In this work it is found that the computed refrac-
tive indices differ from the corresponding experimental values due to Cuthbertson and
Cuthbertson by a very nearly constant amount. That is, if the computed dynamic polariza-
bilities are adjusted so as to equal the experimental polarizability o. at zero frequency, then
the experimental and theoretical curves of refractive index versus frequency are nearly
identical. This adjustment in n is around 5% (for He) and 10% (for. Ne) of the experimental
static polarizabilities. Finally, the calculated transition frequencies are around 2% too
large for He, 17% too large for Ne, and 9% too small for Be.

I. INTRODUCTION

Interest in the theoretical prediction of the
refractive index, the dynamic polarizability,
and other related time-dependent properties
of atomic systems, involving harmonic pertur-

bations, has been revived. This is primarily
,because of the newly discovered techniques for
solving time-dependent problems. Two of the
most notable of these methods are the oscillator
sum rules which have been extensively exploited
by Dalgarno and his co-workers' and the vari-
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ation-perturbation approach. In this paper the
latter approach is used to obtain the refractive
index, Verdet coefficients, and the dynamic
polarizability for a number of closed-shell atoms.

The usefulness of the variation-perturbation
technique in the time-independent problems is
quite well known. ' Thus the natural extension
is to construct a similar approach for the
time-dependent problem. In 1963 Karylus and
Kolker' in a pioneering payer first presented
a method to solve a time-dependent problem
using a variation-perturbation technique. A
slightly different but equivalent formulation by
Yaris4 ayyeared at about the same time.

One of the most important requirements of
the conventional perturbation theory is that the
solution to the unperturbed problem for the ground
state as well as excited states be known. How-
ever, as is well known, one cannot obtain exact
solutions to the unperturbed problem for any
atom except hydrogen. Thus, an important prac-
tical requirement of a successful approach is
that the perturbation method be able to use only
an approximate unperturbed solution and the
excited states need not be explicitly obtained.
In the time-independent case several approximate
methods satisfying these requirements have been
formulated. ' Many of these same methods have
been carried over in the time-dependent case.
The Hartree-Fock method is one such approxi-
mation considered. From the computational
as well as purely theoretical points of view,
the Hartree-Fock scheme provides us with one
of the most widely extendable methods for solving
many-body problems. Several Hartree- Fock
models have been considered in the past. In
the same manner as in the time-independent
case there are two classes of schemes of approx-
imations within the Hartree-Fock framework-
the uncoupled and the coupled Hartree-Fock ap-

proximations. 6 Thus far extensive time-
dependent results have been obtained only for
helium and the isoelectronic series using these
various approximations.

Recently one of us has presented an alternative
formulation to the time-dependent perturbation
theory. 7 Following this approach we present
a formulation of the time-dependent coupled
Hartree- Fock theory for many-electron closed-
shell atomic systems. Using this formalism
we obtain first-order time-dependent wave func-
tions and the associated time-dependent prop-
erties for He, Be, Ne, and the corresponding
isoelectronic series. The results for the dynam-
ic polarizability of helium are in close agreement
with the previous coupled Hartree- Fock calcu-
lations. 8,9

In the present formulation, as in many other
semiclassical treatments of the interaction of
radiation with matter, we consider an atom to
be subjected to the influence of a ylane-polarized
electromagnetic radiation represented by a time-
dependent vector potential, from which an inter-
action Hamiltonian can be constructed. ' Under
such harmonic perturbations the time-dependence
of the perturbed wave function can be obtained
explicitly. This results in considerable simpli-
fications. In Sec. II of this paper we outline
our derivation of the time-dependent coupled
Hartree-Fock equations, and give exyressions
from which the index of refraction, Verdet co-
efficient, and dynamic yolarizability are obtained.
In Sec. III, the variation method, used to solve
the coupled linear integrodiffer ential equations
obtained in Sec. II, is described. The results
of our calculations are presented in Sec. IV
along with a comparison with the experimental
data. Finally Sec. V is a discussion and sum-
mary of the results.

II. THEORY

Consider an N-electron closed- shell atom acted upon by plane-polarized electromagnetic radiation.
The customary time-dependent Schrodinger equation then becomes:

[H'+ AH'(r, t)]C (r,t) = i 84'(r, t)/~t,

where

is the unperturbed Hamiltonian, and

H'(r, t) =Q. h'(r ,t).
is the perturbing Hamiltonian expressed as a sum of one-electron operators.

In the problem we are considering

I 1(~ t) 1
( )(

+2(dt -l(dt)

where co is the angular frequency of the incoming electro-magnetic radiation.
We now proceed to solve Eq. (1) within the framework of Hartree-Fock approximation. Following

Frenkel", Eg. (1) can be derived from a variational equation:

0J 0'*(r, t)[HO+AH'(r, t)-i —] 4'(r t)dr= 0,
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on which is imposed the condition

—J4 *(r,t)4(r, t)d 7 = P. (5b)

Now if 4 (r, t) is completely unrestricted, Eq. (5) will just give us the time-dependent Schrodinger Eq. (1).
Otherwise it gives an approximate form. In particular, if we choose 4' (r, t) as a single Slater determi-
nant» made up of N spin-orbitals, then we will get time-dependent Hartree-Fock equations. Hence we
choose:

4'(F, t)=(v'NI)-'I IX (1, t)X (2, t) ~ ~ ~ X (N, t)l I,

where X (i, t) is the time-dependent spin-orbital.
To insure the orthonormality of the resulting wave function, we require that Eq. (5) be evaluated to-

gether with the following restriction:
1'X *X d~=6".

z j v'

(6)

(7)

Using Lagrange's method of undetermined multipliers and taking advantage of the spin-orbit reduction,
we get the following orbital equation:

[h(1)-is/st-i Z (X le/Btl X.)]X +~~bh Xh=P,
i j j i kent

where byi are the Lagrange multipliers, and

h(1) = ,'VI' -Z—/rl-+Z~ & X~ l(1-P 12 r 12 IX~) +Xh'(I, t).

The term (X .I(1-PI )/r 12 IX.)used in Eq. (9) signifies

(X . I (1-P12)/r 12 IX .)f(1)=f (1)f X .+(2)r
12

'X .(2)d v2- X .(1)JX .(2)r12- &f(2)d7'2,

where f(1) is an arbitrary function of the spin and space coordinates of electron 1.
From Eq. (8) one immediately obtains:

Zb .X =-2 A .X +i. .+.(X.le/Btl X.)X.,llil l li l jpi j j i'
where

A . =& X Ih(1)-i&/et I X ) .li l i

Substituting Eq. (11) back in Eq. (8) one obtains:

[h(1)-is/st]X. =Et AI.XI.

(s)

(9)

(1P)

(13)

Now since Al is Hermitian we know there exists a unitary transformation which will diagonalize Al and
also leave the Eq. (13) invariant. " Hence we get the following equation:

where

[h(1)-ia/et]X. ' = P,

X. = ''Ii(t)X."
Z Z

(14)

(15)

X
'' in Eq. (15) is the set of spin orbitals for which AI in Eq. (13) is diagonal, and

q,.(t) = 1'A,.(t)dt.

Also h(1) X.' appearing in Eq. (14) is then given by:

h(l) Xi' ——(=,' VI' Z/r 1)Xi'-+g & X&' l r 12
—'(1-P12) X&' )Xi' +X&'Xi'.

(16)

(17)

We now proceed to obtain the perturbed one-electron Hartree-Fock equations. For this we introduce a
perturbation expansion. To simplify the notation, primes on X. are dropped in what follows. Then,

Z
writing

=e t+Xq '(t)+ ~ .~ . .i Z Z

x.= x. +~x.'+ "
i 2 Z

(18)
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and substituting into Eq. (14), we have to zeroth and first order in X, respectively,

[ho(1)—e.']X .'(r) = 0 (2o)

(ho(1)-e -i s/st)X '+(h'+v'-g. ')X. =0.
z Z

Here h'(1) is the zeroth-order Hartree-Fock operator,

(21)

where

ho(1) = —,'V, a —Z/r,-+no,

N
U = Q &Xj Ir12 '(1-P12) ixj ).

j=l

(22)

(23)

Also v' appearing in Eq. (21) contains coupling terms and is given by:

N
[(X.'I~ '(1-P,2) I x.') + (X.'I~,

2
'(I-P ) I x.'&] . (24)

g. ' appearing in Eq. (21) can very easily be obtained as:
Z

j ' =& X 'lh'-e. '-iS/St IX.'&+& X.'lh'+v'I X '&. (25)

If the perturbing potential h' has odd parity, then g. ' vanishes and we get:

( h-oe. —is/St)x. '+(h'+v')X. o=o,
Z Z Z

7

as the first-order one-electron time-dependent Hartree-Fock equation. It is of interest to note that

Eq. (21) with rj~' defined by Eq. (25) is equivalent to Dalgarno and Victor's' result, though the assumptions
are slightly different.

Before formulating a variational functional to solve Eq. (26) we first obtain an equivalent equation in

terms of the atomic orbitals rather than the spin-orbitals in which it is presently expressed. Ne define

(27)

where X's are the spin-orbitals and P's are the atomic orbitals. Clearly then,

n = 2N=total number of doubly occupied orbitals.

In terms of these orbitals we can rewrite Eq. (26) as follows:

(26)

(h,.'—e.'-is/st)y. '+ ( y. 'I~12 'lp,.') y.'+ (h'+v, .')y,.'=0,

where
N

h, '= 2&I' Z/~1 +-Q [(p-'I (2-PI2)/~12 I yj')+ (y I (1+PI2)/rl21y & ]
j~g

(3o)

N
[(P.'l(2-P12)/&12 I& ')+& P 'l(2 —PI2)/~, 2lq '&] (31)

If the electric field of the radiation is polarized in the z direction, we have

F(t) &P (eliot e-'l(ot) (32)

(33)

The exact form of the perturbation potential necessary to calculate the dynamic polarizability, refractive
index, etc. , of an atomic system, can then be written as

N N
XI@(~ t)=X Q h~(j t)=P'z Q Z (e' +e ' ).

j=1 j =1
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Since we have assumed the perturbing potential h' to be of the harmonic type, we can write:

(34)(f) = m (r)e'"'+ V (r)e '"'
After substituting Eqs. (34) and (4) in Eq. (29), and collecting the coefficients of e~~f and e ~~f, one

obtains:

(&f e-f +&)9'f~ +& 9'f~ lr12 IPf )0'f'+ [p&(rl)+&f ]If ——0

where

(36)

'I(2-PI2)~~12I4''& +&& I(2 P12)~~12I&.
J~g

(36)

Equations (35) are a set of two coupled, time-independent, inhomogeneous integrodifferential equations.
These have to be solved to obtain the first-order steady-state wave function of the system. The vari-
ational method that we use to solve these equations is described in Sec. III.

Once we obtain the first-order wave function we can calculate many physical properties of interest such
as the index of refraction, optical rotatory power of a dilute medium, etc. We now give the expressions
for these various properties in terms of the first-order wave function.

1. Dynamic Polarizability and the Refractive Index

The electric dipole moment P is defined as:

P= & e(r, f) IZ.Z. I e(r, f)&.
Z Z

Now 4(r, t) can be expressed in a perturbation sequence as follows:

4'(r, t) = CO(r, f)+ 2Fze~~f@ I+ +se i~t4 1+ (higher-order terms)

Substituting Eq. (38) in the expression for P, and keeping terms up to first order in Fz we get:

P(4'IZ. ZI @')+F(f)((4'IZ Z I +')+(+'K.Zf I @ ') )

where F(t ) is defined by Eq. (32).
The dynamic polarizability o. (&o) is defined as the coefficient of F(t) in the expansion of the dipole-

moment operator. Thus from Eq. (39) we obtain:

o.(w)=(4 'I+fZ, I &)+(&IQ~Z, I 0 ')

(37)

(38)

(39)

(40)

(41)

In the Hartree-Fock approximation we deal with the atomic orbitals Q defined by Eq. (27) . In terms
of these, Eq. (40) for the dynamic polarizability becomes:

n
o(~)--4 g ((V ' IZel' &+(V' IZtl. &).

i= 1

In cgs units the refractive index n for a dilute gas is given by

n2- I = 4mNn(u),

where N is the number of atoms per cubic centimeter at STP.

2. The Verdet Coefficient

(42)

It is a well-known fact that when a magnetic field is applied parallel to the direction of linearly polarized
radiation incident on a dilute medium, the plane of polarization is rotated. This is the Faraday effect.
Unlike the natural rotation, (i.e. , rotation in the absence of the magnetic field) which occurs in a very
special class of media, such as crystals with helical structure, the Faraday effect is quite a general
phenomenon. It has been used to study the molecular structure. The Faraday effect is of the first order
in the magnetic field strength H. The rotation Bin a length / is given by the formula:~

e= vs. (43)

The factor of proportionality V is called the Verdet constant. H. Becquerel first obtained an expres-
sion for V, which is commonly used in the experimental work. We will use the Becquerel formula, as
given by Van Vleck, ' for our calculations:
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V= (e/2mc )A. (Bn/N)(rad/Oe cm).

172

Where X is the wavelength of the incident radiation, n the mean index of refraction, and e theelectronic
charge, m is the mass of the electron and c is the velocity of light in vacuum.

For the purpose of comparing our results with the experiment, we express V in the following units (at
STP):

V = 1.007 x 106(XBn/BX)(dmin/Oe cm} .

III. METHOD OF COMPUTATION

(45)

The differential Eqs. (35) are solved by a variational technique; that is, the P + are varied so as to
extremize the functionals J (pf, ), which are given by the following:

'&+2&V '~J'+~ '~m'&+2&v; 't(m; '~~12 'im &le &.

The zeroth-order Hartree-Fock orbitals P ' used in the calculations are expressed in terms of an
analytic basis set. " The first-order trial orbitals P +' are chosen so as to contain the same angular
symmetry terms as h'P o. The radial part is chosen to be of the form:

1( } g C
+ nis -Zzs&

i+ s is

(48)

(47)

where cis+ are the variation paramet rs an nis and ~is are chosen so as to make the functions suitable
for representing the first-order orbitals. Similar functions have been used in the time-independent case,
among others, by H. Radt. ' In the time-dependent case, Sengupta and Mukherji' have used similar func-
tions to calculate the dynamic polarizability of helium.

Thus the explicit forms for the first-order trial orbitals are:

a) S orbitals V;, '=fl;, '(~)YI 0(8, V) (48a)

P. '=R. '(r) Y2 (8, y)

q. '=Z. '(~)Y 0(e, q)+P. '(~)Y2 (e, q).

Here P '(y) in Eq. (48c) contains variation parameters D +instead of C +; that is,

(48b)

(48c)

(50a)

geese ss
i+ S is

Also Yf m(8, Q) used in Eqs. (48) are the normalized spherical harmonics. "
In the calculation for neon there is one difficulty which is not present in the case of He or Be. This has

to do with our method of solving Eqs.. (35). As indicated above we use a variational technique to solve
these equations. Implicit in this method is the requirement that the first variations 5pf+ be all linearly
independent. '8 However, because of the ortho-normality relations, P +' are not all independent; that is,
we have the following relations:

(~,. 't
V,.'&+(e,.'~ W,,'&=0

and) &p,. 'Iy. '&+&p,.'lp ')=o (50b)

Now, in the case of He and Be, Eqs. (50) are automatically satisfied because of the odd parity of the
perturbation potential. In the case of neon, however, there are 4 orthogonality Eqs. (50) that are not
automatically satisfied. To impose these requirements we use the Lagrange's method of undetermined
multiplier s.

Thus we form new functionals:

L (p. ') =4 (p. ')++,.
& ~," ((P; 'IV ')+(P IV&

')}
The variational condition

(51}

BL (y. ')=0
gk

leads to a set of coupled linear inhomogeneous equations which we solve for the variation parameters
Ci@ and Dis '

A FOHYRAN program written by the authors is used on an IBM-7044 computer to calculate the matrix
elements and then obtain solution to the linear equations. The first-order wave function so obtained is
then used to calculate the various physical properties mentioned earlier.
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IV. RESULTS

In Tables I-III we present the results of our calculations for He, Be, and Ne. In each of these tables
we give the frequency v of the perturbing electric field and the corresponding values of the dynamic polar-
izability, and the index of refraction. The range of frequency considered in each case is from v =0. 0
(static case) to the first transition frequency. In addition, in these tables the wavelength found for the
first transition is indicated along with the corresponding experimental result. '

The refractive indices for He and Ne have been measured by Cuthbertson and Cuthbertson. " Their
experimental values appear to differ from our computed results by a very nearly constant amount. Thus
Figs. 1 and 2 compare for He and Ne the measured refractive indices with our computed refractive
indices, adjusted so as to be equal at zero frequency. That is, the plotted refractive indices correspond
to an adjusted dynamic polarizability o.'(&o), where n'(&o) = @II'(&u) + hn(0) In. this case oIfpe) is our
computed coupled Hartree-Fock result and hn(0) is the difference between the experimental and coupled
Hartree-Fock static polarizabilities. For the case of helium, shown in Fig. 1, hn(0) is around 5/o of
o.(0) exp and for neon &o.(0) is about 10%of n(0) exp.

Since no experimental values for the refractive indices of Be are available, we compare our calculated
values with the configuration interaction calculations of Kolker and Michels. " This is shown in Fig. 3.

In the following, our numerical results for ~ -1 are least-squares-fitted to polynomials in even powers
of 1/X. In each case an increasing number of terms is added to the polynomial until it is found that includ-
ing successively more terms does not improve the fit or appreciably change the coefficients of the poly-
nomial containing fewer terms.

Thus we obtain for:

He: n2-1= 6. 6186 xlp ~[1+2. 18 xlp~X 2+ 5. 656 xlp'0X 4+ 1. 596 xlp'6A. 8+ ... . ] (55a)

Li n'-1=9. 4872 xip '[1+ 2. 887xlO~A. 2+ 9. 515 xlp'X 4+3. 37xlp~X '+ ~ ~ ~ . ]

Be'+: n'-1 = 2. 5971 x 10 ' [1+7. 339 x 10'X-'+ 6. 388 xlp'X-'+ ~ ~ ~ . ]

(56)

(57)

B+

n'-1= 1. 1196xlp [1+6.561 xlp'X '+4. 639 xlp'9. +3. 249x10'% '& ~ ~ ~ . ]

n'-1=2. 284'4xlp '[I+6.495xip'X '+4 259xlp"X +2. 799xlp"X 'E- ~ ~ ~ . ]

n'-1= 5. 7027 xlp 4[1+2.064x108X 2+4. 464 x10"X 4-t 9. 723 x10'~X 8+ ~ ~ ~ . ]

(58)

(59)

(eo)

C'+ n'-1= 2. 2565 xlp-4[1+ l. 059 xlp'X-'+ l. 198 xlp"X-4+ 1.367 xlp"X-'+ ~ ~ ~ ] (61)

F

Ne-

n'-1=5. 1112xlp 4[1+1.243 x10'X '+ 2. 360xlp"X 4+5. 298xlp"X '+. .. ]

n'-1 = l. 1926 x lp-' [1 + 1.783 x lp X- + 4. 780 x10 "X- + 1.561 x 10'9.— + ~ ~ ~ . ]

(62)

(63a)

Na+: n'-1 = 0. 4724 x 10-4[1~ 5. 384 x104X-» 4. 010 x10'1-'+ 3. 536 xlp'4X-'i. .. . ] (64)

For He and Ne Eqs. (55a) and (63a) are to be compared with the semiexperimental results of Dalgarno
and Kingston. "
He:

Ne:

n'-1=6. 927xlp —'[1 2. 24xlp'X 'w 5. 94xip"X—'+ l. 72xlp"X '+ ~ ~ ~ . ]

'-1=1.335xlp '[1+2.24x109. '+8. 09xlp"X '+3. 56xlp"X '+ ~ ~ ~ )

(55b)

(63b)

Finally for He, Be, and Ne the Verdet coefficient results are:

He:

Be:

Ne:

V=1.454 xlp'X '[1+5.189 xl09. '+2. 196 xlp"X '+ ~ ~ ~ ]

V=1.490xlp'0A. 2[1+1.311xl07X 2+1.293xlp''X '+ ~ ~ ~ . ]

V= 2; 6459 xlp'X-'[I+ 5. 362 x10'X-'+ 2. 626 x ip'9.—4+ ~ ~ ~ . ]

(66)

(e7a)

Again the results for He and Ne are to be compared with those of Dalgarno and Kingston. "
He

Ne:

V= 1. 564 xl07X [1+5. 31 x109. ~+ 2. 30xIO~~X 4+ ~ ~ ~ . ]

V= 3.013 x 10'X ' [1+ 7. 23 x 105K—2+ 4. 77 x 10'9—4+ ' ' ~ ]

(65b}

(e7b)

In Eqs. (55a} through (67b) X is expressed in A units, and the Verdet coefficients V in Eqs. (65a)
through (67b) are expressed in the units of p, min/Oe cm.
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TABLE I. Computed refractive index and dynamic
polarizability of helium.

TABLE II. Computed refractive index and dynamic
polariz ability of beryllium.

Dynamic
Frequency Wavelength polariz ability

(a. u. ) (L) (a. u. )

Refractive
index

(n-1) x 10

Dynamic
Frequency Wavelength polarizability

(a.u.) (A) (a. u.)

Refractive
index

(g2-1) x102

0. 00
0. 01
0. 02
0. 03
0. 04
0. 05
0. 06
0. 07
0. 08
0. 09
0. 10
0. 110
0. 120
0. 126
0. 1269
0. 127
0. 128

7257
3629
2419
1814
1451
1210
1037

907
806
726
660
605
575. 9
571.8
571.6
567

l. 322
l.327
1.344
1.373
l.417
l.478
1.562
1 ~ 678
1.842
2. 086
2.482
3.256
5.841

31.05
2555. 06

— 520. 080
— 21.245

3309.6
3322.. 0
3364. 6
3437. 2
3547. 4
3700. 0
3910.4
4200. 8
4611.3
5222. 2

6213.5
8151.2

14622. 5
77731.5

6 396416. OC s d

— 1301 983. 0
— 53 185.3

0. 0
0. 008
0. 009
0.010
0. 012
0. 014
0. 016
0. 018
0. 020
0. 021
0. 022
0. 023
0. 024
0. 025
0. 026
0. 027
0. 028
0.029

9071
8063
7257
6047
5183
4535
4032
3628
3456
3299
3155
3024
2903
2791
2688
2592
2502

45. 624
49. 538
50. 694
52. 053
55. 500
60. 216
66.770
76. 191
90.479

100.679
114.196
132.888
160.330
204. 394
286. 436
491.938

1933.777
946. 774

0. 2284
0. 2480
0. 2538
0. 2606
0. 2788
0.3015
0. 3343
0. 3815
0.4430
0. 5041
0. 5718
0. 6654
0. 8027
1 ~ 0234
1.4341
2. 4630
9.6821 '

— 4. 7404
Zero-order Hartree-Fock wave function; E. Clementi,

J. Chem. Phys. 38, 996 (1963).
bAt STP, N= 2. 68 9x 10 ~ atoms/cm3.

Calculated frequency of first transition: 572 A.
0

Experimental frequency of first transition; 584 A;
See Ref. 19.

aZero-order Hartree-Fock wave function; E. Clementi,
J. Chem. Phys. 38, 996 (1963) .

bAt STP, ~= 2. 689x10 ~ atoms/cm .
Computed first transition wavelength: 2592 A.
Experimental wavelength of first transition: 2249 A;

See Ref. 19.

TABLE III. Computed refractive index and dynamic
polarizability of neon. a 3566

Dynamic
Frequency

'

Wavelength
(a. u. )

polariz ability
(a. u. )

Refractive
index

(n-l)~ 10' 3546

0. 0
0. 01
0. 02
0. 03
0. 04
0, 05
0. 06
0. 07
0.08
0, 09
0. 10
0. 11
0. 112
0. 114
0. 116
0. 118
0. 120

7257
3629
2419
1814
1451
1209
1037

907
806
726
660
648
637
626
615
605

2. 3820
2. 3901
2. 4150
2. 4581
2. 5227
2. 6249
2. 7408
2. 9194
3.1815
3.6009
4. 4069
6. 9338
8.3794

11.2165
19.5271

832. 1
—144.5059

5963. 2
5983.4
6045. 8
6153.7
6315.4
6571.3
6861.4
7308. 5
7964. 7
9014. 6

11032. 4
17358.3
20977. 2
28 079. 7
48 884. 7

2083104 oc d

—36 176.0

aZero-order Hartree-Fock wave function; E. Clementi,
J. Chem. Phys. 38, 996(1963).

At STP, N = 2. 689&& 10~ atoms/cm .
0

Computed first transition wavelength: 615 A.
Experimental wave length of first transition: 726 A,

See Ref. 19.

3535

"3526
I

3515

3506

3475
.01 .012 .014 .016 .01& .02 .022 .024 .026 .02&

FIG. 1. Plot of refractive index
of helium as a function of the fre-
quency. The solid line gives the
computed results adjusted so as
to equal experimental refractive
index at zero frequency. The
circles denote the experimental
results of Cuthbertson and
Cuthbertson, Ref. 20.
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6844 . 100i

6828 S2,

6812
84

6796
76

6780i

"
6764l

6748,

6732!

6716'

67001

.O'I .O'I2 .014 .016 .018 .02

v ln a.o.

I I I

.022 .024 .026 .028

68

-60',
I

CV

52'

44

36'

28'

FIG. 2. Plot of refractive in-
dex of neon as a function of the
frequency. The solid line gives
the computed results adjusted so
as to equal experimental refrac-
tive index at zero frequency. The
circles denote the experimental
results of Cuthbertson and
Cuthbertson, Ref. 20.

20'
.01

I I I I I I I I

~012 .014 .016 .018 .02 .022 .024- .026 .028
~ tn a.u.

FIG. 3. Plot of refractive in-
dex of beryllium as a function of
the frequency. The upper curve
gives the results obtained in this
paper. The lower curve denotes
the computed results of Kolker
and Michels, Ref. 21.

V. DISCUSSION AND SUMMARY

The results on the static dipole polarizability
(v =0. 0 case} for the atoms under consideration
agree very well with the previous" coupled
Hartree-Pock results. However, as noted in
Sec. IV, the agreement with the known experi-
mental values of the static dipole polarizabilities
is within the range of about 5-10%. Thus, for
example, the experimental polarizability of He,
extrapolated from the refractive index data, is
reported to be 1.384 a,.u. ,

' whereas we obtain
1.322 a. u. , the error being approximately 4. 5%.
It is interesting to note that the discrepancy
between our computed values for the refractive
indices for the various wavelengths and the cor-
responding experimental values of Cuthbertson
and Cuthbertson for He is also approximately the
same as the error in the static yolarizability re-
sults. We find a similar situation in the case of
Ne as well. The experimental static polariz-
ability of Ne is reported to be 2. 66 a. u. ,"
whereas we obtain 2. 382 a.u. , the error being

*Work supported by the U. S, Air Force Office of
Scientific Research, Grant No. AF-AF0SR-191-67.
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approximately 10% Again we find that the dif-
ference between the experimental results and our
results for the refractive indices of Ne is about
10%also. This fact is well borne out in Figs. 1
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pared our adjusted theoretical values with those
of the corresponding experimental values.
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and that obtained by Kelly" using Goldstone per-
turbation method. However there is some dis-
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Hartree-Fock calculations of Levine and Taylor"
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The atomic g& factors for the two levels composing the lowest term of atomic fluorine have

been calculated utilizing the theory of Kambe and Van Vleck and wave functions resulting
from Hartree-Fock treatments of varying accuracy. For the high-accuracy wave functions,
the results of our calculation are in exact agreement with the measured g&(Ft~; tps)/'gg{H; tS ~)

= ~2-(497 y 1) &&].0 8, to within the experimental error. The contribution to g&(F 9; 2&~) aris-'. 2.
ing from the Breit interaction is found to amount to 49 x10 . This sizeable contribution,
and the excellent agreement obtained, substantiate the validity of the theory and, in particu-
lar, of the Breit interaction to the order of 0. . For the upper level, the value gg(F 9; P&)
= &-(1072+2) x10 is obtained. For this, no experimental test of adequate sensitivity has
been made.

I. INTRODUCTION

The various effects affecting the simple atomic
Landd gg factors have been considered by several
authors. ' ' The corrections which are produced
arise from the anomalous magnetic moment of the
electron, '~'~' isotopic effects caused by the motion
of the nucleus, 4~' relativistic and diamagnetic ef-
fects, '~' and departures from Russell-Saunders
coupling. ' The anomalous magnetic moment is
known to the order of a', therefore its inclusion

in the calculation is readily accomplished. The
theories for the isotopic and departures from I.-S
coupling effects are well established and can be
calculated to the accuracy permitted by the avail-
able wave functions. Concerning the so-called rel-
ativistic and diamagnetic effects, it is convenient
to make the following remarks. Abragam and Van
Vleck' have shown how these effects can be de-
rived from the Darwin-Breit Hamiltonian, "which,
as it is well known, is of an approximate nature and


