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Carboni and Richards have performed exact numerical calculations of the time-dependent two-spin cor-
relation function (Si*(t)Si'(0) ) as T +~ f-or a finite one-dimensional Heisenberg system. The non-
Gaussian character of their result was characterized by a steep rise near zero frequency for the Fourier
transform. We show here that these characteristics result from the inclusion of a Lorentsian form for S(h, oi),
the paramagnetic scattering function at small wave vectors. We also prove that (Sp(t) Si*(0) ), the time
Fourier transform of (Si*(t)Si'(0) ) in the T~ I limit, obeys the inequality (Sp(t) Si*(0) ) )constX
ln

~
1/oi

~
as &o-+0 for a one-dimensional system. We discuss the probable divergence of the same quantity

in two dimensions.

I. INTRODUCTION

NTERPRETATION of experimental investigations
.. of magnetic resonance linewidths, and neutron
inelastic magnetic scattering requires knowledge of the
time dependence of the spin-spin correlation functions.
Recently, Carboni and Richards' reported exact
numerical calculations of the two-spin correlation
functions (Si'(l) Si'(0) ) for finite linear chains of spin--,
particles coupled by a nearest-neighbor Heisenberg
exchange interaction. They used certain extrapolation
procedures to predict results for the infinite one-
dimensional system. The results for the frequency
transform (Si*(l)Si*(0))„showed a clearly non- Gaussian
form, contrary to the predictions of Kubo and Tomita'
and, in particular, a very steep rise near zero frequency
(see Fig. 1) .

In this paper we do three things. First, we show
qualitatively that one expects the steep rise obtained by
Carboni and Richards at zero frequency, coming from
the inclusion of a Lorentzian form a,. small wave vectors
k in the paramagnetic scattering function S(k, co) from
which one obtains the function (Si'(l) Si'(0) )„by
integration over k. Next, we assume 5(k, co) to be a
properly weighted superposition of modified Gaussian
and Lorentzian forms yielding the correct infinite-tem-
perature values for the second and fourth moments of +.
A subsequent numerical calculation of (Si'(t) Si*(0))„
from this assumed form of S(k, co) is shown to agree in
general with results of Carboni and Richards. Finally,
we prove (Si'(t) Si'(0) )„&constX ln

~
1/co

~

for a one-
dimensional anisotropic Heisenberg system.

II. SCATTERING FUNCTION AND CORRELATION
FUNCTION

The frequency transform of the time correlation
function (Si'(l) Si'(0) )„ is related to 5(k, co), the para-
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magnetic scattering function, in the following way.
5(k, co) is defined to be

S(k, ) = pe' "(S (t).S;(0))„, (1)

where

2sr(S (t) .St(0) )„= e'"'(S (l) S;(0))dt. (2)

Above the Curie temperature, for the isotropic Heisen-
berg magnet, the x-x, y-y, and s-s components of the spin
correlation functions are all equal, hence

S(k, co) =3 g e'~'&(5,*(tl 5 *(0))„. (3)

Integration of S and k leaves only the autocorrelation
function

&~")s= tomS(k co) dec

These values are, for s = ~ and in units where 5= 1,

(co')s = 2J'(vs —vs),

Here ys ——gee's' is summed over nearest neighbors B.
For large values of k, the ratio (co')s/(&o')s' is quite
close to 3, the result for a Gaussian 5(k, &o), so that in

' P. G. de Gennes, J. Phys. Chem. Solids 4, 223 (1958).
4W. Marshall, U.S. Dept. Comm. , Once Tech. Serv. , P. B.

Rept. NBS 27'3, 135 (1965).' M. F. Collins and W. Marshall, Proc. Phys. Soc. (London) 92,
390 (1967).
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55k, co) d"k=3(Si'(t) Si*(0) )„,(2sr}"

where v is the volume of the unit cell and e is the dimen-
sionality of the crystal, st = 1, 2, 3. Equation (4) estab-
lishes the desired connection between the spin correlation
function and the paramagnetic scattering function. de
Gennes' and Marshall'' have reported exact inlnite-
temperature values of the second (rtt=2) and fourth
(rm=4) moments for co:
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Fig. 1. The spin correlation function (Sr*tt) Sr*(0) )„for a one-
dimensional Heisenberg chain of s=2 spins at in6nite tempera-
tures. Dashed line is Carboni and Richards' results extrapolated
to E~~. Solid line is the combined result of Lorentzian and
Gaussian forms, which are plotted separately in Fig. 2.

this large-k region S can be adequately expressed as a
modified Gaussian. ' s The resulting (5'(1)5'(0) )„will
be Gaussian-like as a function of cv and quite different
from the small-co behavior shown in Fig. 1. However,
for small values of k, the ratio &or')s/&or')ss differs
drastically from the Gaussian value, as follows from
Eq. (6), which predicts this ratio will go like 1/k for
small k. In this region the Gaussian is replaced by a
Lorentzian form, ' which represents macroscopic spin
d&ffuszon:

sional lattices compared to three dimensions, since in
the former the number of paths leading from a given
spin site to far distar t sites corresponding to small k are
much reduced over the number of such paths in three
dimensions.

To make a quantitative comparison of these ideas
with the results of Carboni and Richards, we take
S(k, co) as a superposition of Gaussian and Lorentzian
forms, with weighting functions chosen to make S(k, ro)

essentially Gaussian at large k and Lorentzian at small
k

5(k, co) =Sz,(k, or)+Sg(k, or), (10)

where the Lorentzian form is given in terms of the
previously defined 5&'(k, or) as

51,(k or) =[(vs+vs)/2ysjSz'(k, co). (11)

The factor (go+ps) /2ys is largest at k=0 and goes to
zero for k approaching the boundary of the Brillouin
zone. For the one-dimensional s= —', case treated in
Ref. 1, the Lorentzian width parameter I'& is given by

I'„=2'r' Jrr( ].—coskg) /(4 —3 coskg) 'r (12)

with a the lattice spacing. The Gaussian contribution
Sg(k, or) is taken to be

X exp( —ors/2o') I 1+a&(ors/os 1)

+4 (~'/g' —6~'/g'+3) j ( 13)

The factor (ys —ys)/2ys is largest for kg=rr, at the
boundary of the Brillouin zone, and agreement with the
exac'. second and fourth moments of or is guaranteed by
the choices

Sz'(k, or) =s(s+1) I'sjrr(ors+I' '),
=0

co +coc

or) orq (7)

where the choices

~.= L3 &~')r/&~')s2" (9)

' A numerical test of the adequacy of Gaussian and Lorentzian
forms in the cluster model of the Heisenberg system has been
carried out by T. H. Kwon and H. A. Gersch, Phys. Rev. 167, 458
(~968).

are required to fit the two moments. From Eq. (6) we
have the low-k behavior I's k', so that Sz'(k, or) gets
very large in the limit or—+0 for small k, i.e., Sr,'(k, or) ~
1/O'. Since the spin correlation function &Si*(f)Si*(0))„
is obtained by integrating S over k, it follows that the
spin correlation diverges in one and two dimensions as
oJ—+0, and must be the source of the steep rise in this
function at zero frequency found by the numerical
analysis of Carboni and Richards. Such a dimensional
effect is perhaps not too surprising. The rate of macro-
scopic diffusion for the long times corresponding to
small or should be much slower in one- and two-dimen-

Equation (14) shows that the choice os = &ors)& will yield
uI,

——0, and this is the usual choice. However, this choice
complicates the integration over k of Sg (k, co) .A simpler
procedure results from putting the parameter 0-'=
&or') . =8J', which occurs for kg =rr. Then we approxi-
mate the fourth moment by its maximum value,
achieved for ka=rr, &or')s=1.75&or')r, '. Although this
latter approximation becomes poor for small k, the
contribution of this Gaussian par, to the total 5(k, or)

is also small in this region, and the approximation has the
virtue of giving the integral of Sg(k, or) over k in closed
form. This int.egral yields, according to Eq. (4), the
contribution to &Si*(f)Si'(0) )„.Written in terms of the
variable or'=or/J, it is

exp —or" 16)
&5*(t)5*(0))g =

X$1+—'(or "/8 —1)+0 028 (ro"/64 —6or "/4) ]. (, 15)

The dependence on co' of this correlation function is
shown in Fig. 2.
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The corresponding contribution from SI (k, o!),carried
out by numerically integrating over k, is tabulated in
Table 1 for the values co' utilized by Carboni and
Richards in their calculations. Figure 2 shows the
Lorentzian contribution to (S~*(t)Sr*{0))„.~. The total
spin correlation function obtained by adding Gaussian
and Lorentzian contributions is also depicted in Fig. 2
and is compa, red with Carboni and Richards's results in
Fig. 1. Considering the arbitrariness both in our choice
of the weighting factors (pp+ps) /2' and in the choice
of the parameters for the modified Gaussian, the agree-
ment between our results and those of the exi.rapolated
exact numerical calculations seems quite satisfactory.
Certainly our results reproduce the sharp rise in the
correlation function near zero co.

III. PROOF OF DIVERGENCE OF (Sg'(t)Sr*(0)) IN
ONE DIMENSION

TABLE I. Values of the contribution of the Lorentzian para-
magnetic scattering function SL, {k, &a) to the spin correlation
function {S!'{t)S!*{0))„s, for various values of reduced fre-
quency, a&'=ca/ J.

{S!'{t)S!'{0))

0.1
0.4
1.0
1.8
2.6
3.4
4.2
5.0

0.0614
0.0257
0.0131
0.0071
0.0045
0.0031
0.0015
0.0007

The integral can be rewritten in terms of averages:

(o!'){o!r,o!s) (S*(k!o!))(o!r!o!s) (o!s—o!t) ~(ak'! (18)

where

GP GOy& GD2

(16)

We derive here a bound for S*{k,o!) for a, one-dimen-
sional system with Hamiltonian given by

H= Q J,,(S,*S,*+Sp Sv) +Q J; S;*S
o!'S'(k, o!)d(0 S*{k, o!)do!

co'S'{k, o!)do! ~&ak', (17)

under the assumption l.hat, in the T-+ao limit, S*(k, o!)
is a monotonically decreasing function of

~

o!
~

for small
k. Notice that the Hamiltonian used here is more general
than the one considered in the previous sections.

Equation (6) and the fact that S'(k, &o) &~0 yield the
inequality

and

(S'(k! o!) )(o!t, o!s) = S'(k! o!)do! (o!s o!r). (20)

Now (o!')(o!,:, o!s) )o!t' and (S*(k, o!) ) (o!r, o!s))S' (k, o!s),
as follows from the assumption that S*{k,or) is a de-
crea. ing function of

~

o!
~
. Choosing o!s——2o!r, Eq. (18)

becomes

where co&, ~2 are any finite frequencies and a is a constant.
o!g'S'(k, 2o!g) ~(ak'

S*tk, o!)~(b ks/o, !s

(21)

(22)

P.0$—

0.0$—

where b is a constant. Next we utiliz(; the sum rule

S'(k o!)do! =-s,s(s+1) =c. (23)

0.07-

0.06 I-

co 0.05

co 0.04

0.03

0.02

We break up the region of integra', ,ion into two parts:

S'(k o!)do!+
4LI0

S'(k, o!)do!=c, (24)

where oro is arbitrary. In the second integral on the
left-hand side of Eq. (24) we use the inequality obtained
in Eq. (22), and also the assumed monotonic character
of S, to write

0.01

0 I I I I I- ——-I- —- -I
0 .6 1.4 2.2 3.0 3.8 4.6 5.4

(25)

S*(k, o!=0) &~ /cc' k (b/2c"k). — (26)

o!oS'(k, o!=0)+bk'/2o!s'&~c.

The choice co&=c'k gives the strongest inequality:

Fxe. 2. Lorentzian and Gaussian contributions to the spin
correlation function {S!*{t)S!*(0)) for a one-dimensional
Heisenberg chain of s=-, spins at infinite temperature. Line of
short dashes is the Lorentzian contribution as given in Table I.
Line of long dashes is the Gaussian contribution as given by Eq.
(15).The solid line represents their sum.

We can choose c' large enough to make the right-hand
side of Eq. (26) positive, so

S*(k, o!=0) &~n/k, (27)

where a is some constant. The bound expressed by
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Kq. (2'/) yields a weaker divergence for S* than the
Lorentzian form, which we previously showed leads to
S(k, co=0') ~1/k'. Our bound indicates a divergence in
(Si'(/) Si*(0))„as or—i0 for a one-dimensional Heisen-
berg system but not for a two-dimensional system.
More physical information than the zeroth and second
moments of co are required to sharpen the inequality.

To establish the divergence of (Sr*(/) Si*(0)) we now
define a test function So*(k, oo) which we suppose actually
achieves the bound on S*(k, or) expressed by Eq. (27):

c~&&n. Then we have

So*(k, co) dk& const+ ln
) 1/oo [ . (35)

lim S'(k, o~) &~ lim So'(k, co) (36)

and

That the same inequality must hold for the para-
magnetic scattering function S'(k, oo) follows, since

lim So*(k, co) =a./k. (28) lim
co~0 0

S'(k, oo) dk&~ lim
co-+0 0

So'(k roldk

At the same time, So'(k, ro) is required to have the same
zeroth and second moment. s of co as does S'(k, co), so that
it also satisfies the inequality expressed by Eq. (22):

So*(k, to) «(bk'/o~'.

For this test function, we establish the inequality

(29)

So'(k, co) dk&~ ci ln
( 1/oo (

. (3o)

This is accomplished by utilizing the zeroth moment, or
normalization condition, with the range of integration
over co subdivided,

t
(0]

So (k, ro) de+
0

So'(k, to) doi

+ So*(k, ro) dko =c, (31)

So'(k, ~) &~d/k, (33)

where d is a constant. Now integrate So*(k, to) over k:

with c a constant. Use of the inequality expressed by
Eq. (29) in the third interval of integration gives the
inequality

coiSo'(k, 0) +So*(k, cot) (ops —cot) +bk'/2ois'&~ c (32).
If we choose ross))bk' and &or«k/cr, then the first and
third terms on the left side of Kq. (32) are numbers

very small compared with unity, yielding

& const&( ln
~

1/oi( . (3'/)

This establishes the logarithmic divergence of the s-s
correlation function (Si*(/) Si*(0))„. The proof holds

equally well for the correlation function between
diiferent sites (S (t) S,'(0) )„as can easily be shown.

The same proof can be used for the quantity
(p(x, t) p(x, 0) )„ for a one-dimensional, many-particle
system independent of the form of the Hamiltonian.
Here p(x, t) is the particle-density operator. We would
have to use, instead of Eq. (6), the sum rule for the
second moment of S(k, ool for this system, first derived

by Yvon. ~

Our rigorous inequality becomes an equality in the
simple case of a free-particle system ( with the appropri-
a,te constants inserted), as a simple ca,lculation will

show. Because of the analogy between the anisotropic
Heisenberg magnet and the many-particle system, ' we
should expect this to be the case for the J' =0 model, the
so-called x-y model. This is indeed the case, as GriS.ths
has shown. '

The bound we have derived does not predict a diver-

gence of the correlation function in two dimensions.
However, since the bound becomes the exact answer in
the free-particle case, we are led to think that if we have
collisions, i.e., J'&0, the particles cannot move away
from their initial positions so fast, [((x,(t) —x,(0) )')
goes as 12 for large t for free particles, whereas in the
diffusion case it goes like t$ and the diffusion equation
should be applicable for long times, which implies a
Lorentzian form for S'(k, co) and therefore a divergence
in (Si'(1)Si'(0) )„as~0 in two dimensions also.

&max

So'(k, oi) dk&~
&max

)cmax

k0

So'(k oo) dk

(d/k) dk
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&~d ln(k /ko). (34)

We now choose the arbitrary lower limit kp ——coc&, where
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