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Analytic Free Energy: A Basis for Scaling Laws
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Using the idea that the thermodynamic potential, whose natural variables are intensive, is
analytically continuable in all these variables from the liquid state to the vapor state, we
have arrived at a picture of a phase transition which is in accord with all currently observed
behavior in the neighborhood of a critical point. Using functions which are algebraic in
both the applied field and the temperature, we have shown for a magnetic system that (a)
Rushbrooke' s inequality holds with the equality sign as a consequence of the symmetry of the
free energy in the applied field, and (b) there is a set of relations between the critical ex-
ponents of derivatives of the free energy higher than the second. Although they only lead
to rational critical exponents, algebraic functions are uniquely suited to this problem since
they automatically satisfy the requirements of analytic continuation. The homogeneous
functions of Widom with rational critical exponents are shown to be a special case of these
algebraic functions, and several examples are given which illustrate some apparently
anomalous behavior, such as (a) the critical exponent P may have an odd denominator,
(b) the critical exponent 6 may have an even numerator, and (c) the primed and unprimed
critical exponents may be unequal.

I. INTRODUCTION

Recently, Griffiths' has made use of thermo-
dynamic potentials which are analytic in both
arguments to describe the behavior of idealized
ferromagnets and fluids in the neighborhood of
the critical point. Such a proposal has some far
reaching consequences which were only hinted
at in Ref. 1, mainly because full use was not
made of the consequences of analyticity in more
than one variable. The purpose of this paper is
twofold. First, to elaborate on the above
assumption and demonstrate its intimate con-
nection with the very existence of a phase tran-
sition with a critical temperature and what
van der Waals' termed the "continuity of the
liquid and vapor states". Second, to show some
of the direct consequences of Griffiths' assump-
tion with regard to the so-called scaling laws
relating various critical exponents. We shall
see that certain scaling laws are independent of
the particular function used to represent the
thermodynamic potential while others are not,
so that, in a very real sense, those scaling laws
which are invariant describe the "thermodynamics"
of the situation, since the force laws do not enter
into them. Our point of view, then, is
unashamedly patterned after that given by Chew'
with respect to field theory, that is, to regard
the generating function for the observables as
being analytic in whatever independent variables
there are, and deduce all the consequences
thereof. Analyticity is in this sense regarded
as a separate physical law, the object being not
to justify it, but to test its predictions. We
might add that in thermodynamics, at least, a
proof of the analyticity of the thermodynamic
potential for a given Hamiltonian assuming the
usual statistical mechanical correspondence
seems to be feasible, and in fact, a great deal of
work along these lines has already been done. 4

In Sec. II we state precisely what we mean by

analyticity of a thermodynamic potential in the
neighborhood of a critical point, and show the
relationship to van der Waals continuity of
states. For simplicity, this will be done in
magnetic language using the Weiss or molecular
field theory. This will be presented in a manner
which we believe has not been seen before and
which proves to be very illuminating.

Section II leads to an immediate generalization
of the form of the thermodynamic potential which
we present in Sec. III. The generalization is
restricted to those thermodynamic potentials
which give rational critical exponents, but the
sets of critical exponents include those which
are not necessarily equal above and below the
critical point nor on either side of the coexis-
tence curve. These functions include the homo-
geneous functions of Widom' with rational
critical exponents as a special case. It is shown
that the equality sign in Rushbrooke's inequality'
holds as a consequence of the symmetry of the
coexistence curve about the critical point, so
that the scaling law, n'+2P+y'= 2, is indepen-
dent of the particular choice of function for
magnetic systems, and hence independent of the
form of the interaction. Symmetry of the coexis-
tence curve does not guarantee the equality sign
in the other known inequalities, however, so
that equality holds only for particular choices
Of thermodynamic potentials. Finally, it is
shown that the scaling laws can be generalized
to include critical exponents of derivatives of
the thermodynamic potential higher than the
second.

In Sec. IV we present some specific examples
of the general class of functions given in Sec. III.
These are of value in elucidating the various
"schemes" which have been proposed, as well as
putting them in proper perspective relative to
the present analysis. Most of these schemes
have already been cited by Griffiths, ' but it is
interesting to see how the concept of algebraic
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functions, besides being a powerful analytic
tool, simplifies and unifies the practical proce-
dure of finding examples of thermodynamic
potentials.

II. ANALYTIC FUNCTIONS OF
SEVERAL VARIABLES

One of the great developments of the nineteenth
century was the invention of the complex plane
and the notion of analyticity of a function in one
variable. The twentieth century saw the exten-
sion of this concept to more than one variable
with a number of surprising theorems appearing,
which pointed up a fundamental difference between
one variable and several. One of the most
important for our present purpose is the theorem
that all isolated singularities of an analytic
function of more than one variable are remov-
able. ' An important corollary is that singular-
ities must have trajectories in the Cartesian
product space of the several variables. The
example of Regge poles is familiar in S-matrix
theory, but the fact seems to have been over-
looked as far as thermodynamics is concerned.
This theorem is, of course, not true for one
variable. A simple application of this theorem
yields the result that (a) the critical point alone
cannot be an isolated singularity, and (b) the
coexistence curve alone cannot represent a line
of singularities. In both cases, there must be
other singularities in the complex manifold
defined by whatever thermodynamic variables
we are concerned with.

Now, one of the characteristics of a critical
point is, as noted by van der Waals, the apparent
continuity of liquid and vapor states above the
critical temperature. If we replace the word
"continuity" by "analyticity", then what we are
postulating is the analytic continuation of, say,
the Helmholtz free energy in both its natural
variables for all values of these variables. Note
that this is not the same as the situation in the
van der Waals theory, where the pressure can
be analytically continued in the density alone for
all values of the temperature. Whether the true
thermodynamic potential can or cannot be ana-
lytically continued in any one of its variables is
an irrelevant question. The physics of the
situation dictates analytic continuation in all its
variables together, if we ar e to assume analytic
continuation at all. Thus, we replace Griffiths'
postulates 5 and 6 by the single equivalent state-
ment'. In the neighborhood of a critical point,
any thermodynamic potential used to describe
the system is a holomorphic function of all its
natural variables with singularities (at lea, st)
on the coexistence curve and at the critical point.
The physical states of the system correspond to
the smallest real values of this thermodynamic
potential for real values of its variables (mini-
mum principle) with the added proviso that all
the derivatives be real. In the language of S-
matrix theory, the physical values of the thermo-
dynamic potential are its boundary values on the
real axis. As we will make clear in an example,
it is not necessary to postulate the particular

analytic behavior of the coexistence curve itself.
This will follow naturally from the above state-
ment. We must also keep Griffiths' postulates
1, 3 and 4, which are the ordinary postulates of
thermodynamics. ' His postulate 2, however,
need not be kept, since, as we shall see, it is
contained in the minimum principle.

The example which we choose to illustrate the
foregoing general postulate is the so-called
classical theory of a critical point as exempli-
fied by the van der Waals equation of state or the
Weiss (molecular) field theory of ferromagnetism.
For simplicity, we shall use the magnetic
language. In the molecular field theory, the
magnetic free energy per spin is given by'

A(M, T) = —', kTln(1-M )+ 2MkTln
1-M

--',JM -kTln2 (1)
with the entropy per spin and magnetic field
given by

S = (sA/sT); H = (sA/sM)

In these, as in all subsequent equations, N is the
number of spins, M is the average magnetization
per spin, H is the applied field and J is the value
of the exchange integral. The symbols k and T
have their usual meaning of Boltzmann's constant
and temperature, respectively. The second of
Eqs. (2) yields the well known subsidiary con-
dition

tanh[(H+ ZM)/kT] = M (3)

where the magnetic moment per spin has been
set equal to unity. When Eq. (3) is used to
eliminate H in Eq. (1), the isotherms of A/fI
are seen to be those schematically shown in
Fig. 1. For T(T~, the physical values of A
must be obtained by the "double-tangent" con-
struction, which determines the coexistence
curve or curve of spontaneous magnetization.
The region inside the coexistence curve repre-
sents an unphysical or forbidden region for the

(2)
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FIG. 1. Molecular-field theory isotherms for A(M, 7}.
The dashed line represents the double tangent eonstruetion.
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magnetization variabl. From the mathematical
point of view this is somewhat unsatisfactory,
since we now have a function which is undefined
for certain values of the variables. To remedy
this, we look at the Legendre transform of
A(M, T) with respect to M. This will be denoted
by E(H, T) and has the properties that

S= (sz/sT); M= (sz-/sH) (4)

It is readily seen that the isotherms of F are
given schematically by Fig. 2. Thus, the coex-
istence curve has been "closed up,

" and the
function is defined for all values of the variables
in the neighborhood of the critical point. In the
case of the molecular field theory, it appears
that one must pay the price of having a triple
valued function, but we shall see that it is just
this multiple valuedness which provides a means
of representing the function most conveniently
in the neighborhood of the critical point. We
first note that our single postulate immediately
determines the physical values of E(H, T). These
are simply the values shown by the solid lines of
Fig. 2.

F+KTlnR

solutions for H = 0 when T & T . Thus, the
molecular field theory has a spontaneous
imaginary magnetization above the critical
temperature. Since F(H, T) is real for H= 0,
this gives an isolated real point which is the
acnode. (Actually, there is an infinite series
of acnodes, which do not converge as the crit-
ical point is approached. Since we are only
interested in a neighborhood of the critical
point, we shall ignore these in this paper. )
Returning to Fig. 2, we see that the isotherms
of E(H, T) have three branches and two branch
points (two cusps and a crunode or acnode) in
the neighborhood of the critical point. Such a
curve is an algebraic curve and is described by
an algebraic function. Recalling that an alge-
braic function f(z) with n branches is defined by
the equation

P(f, z) = a0(z)f" + al(z}f" +

+a (z}=0, (8)

where P(f, z) is an irreducible polynomial in f
and z, and the coefficients a~(z) are polynomials
in the variable z, we find by straightforward but
tedious computation that the molecular-field
free energy satisfies the equation

f~+&tmf'+(P6t +-'z t}f+—,
'z + z t =0, —(7)

tan[(H+ZM)/kT]= M, (5)

since J=kT&. Equation (5) has the single solu-
tion M=Ofor H=Owhen TCTz, and multiple

FIG. 2. Molecular-field theory isotherms for F(H, T).
The dashed portion of the curve represents the unphysical
region. The isolated point is the acnode for T&T .

C

We now inquire into the means of representing
the function shown in Fig. 2. We mention in
passing that this type of behavior has already
been observed in analytic S-matrix theory, "
and is described by the Jaberwockian statement
that when two cusps come together in the neigh-
borhood of a crunode, the curve changes into a
continuous curve plus an acnode. In the molec-
ular field theory the acnode is actuallypresent,
as can be seen by taking M and H to be pure
imaginary. Equation (8) then becomes

f=0 for f)0,
f= ——,'t2 for t(0.

(8a)

(8b}

The fact that the function of Eq. (8b) happens to
be analytic at t =0 is a mathematical accident of
the molecular-field and van der Waals theories,
and has led to a great deal of confusion and
speculation on the analytic behavior of thermo-
dynamic functions at the critical point. The
situation, however, is quite clear when looked at
in the present light. The physical free energy,
as given by Eqs. (8a) and (8b) together, is
always singular at the critical point, even for
the apparently mell-behaved classical theory.
Thus, the classical theory as exemplified by

where f=E+kTln2, z=H, and t=(T Tc)/Tc-
enters as a parameter. We now observe that
Eq. (7) defines an algebraic function of the two
variables z and t. Since, by definition, all
branches of an algebraic function are analytic
continuations of each other (albeit in both vari-
ables), we see that the function defined by Eq.
(7) demonstrates van der Waals' continuity of
states, i.e. analytic continuation of states. We
also notice that, although the polynomial of Eq.
(7) is formally irreducible, nevertheless, for a
particular value of z (z = 0), the polynomial
regarded as a function of t alone is, in fact,
reducible. This means that the coexistence
curve consists of two pieces which are not
analytic continuations of each other, although
each piece separately has an analytic continuation.
These two pieces are given by
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the molecular-field free energy is no more nor
less analytic than any more general free energy,
and is (by way of an accident) the simplest
special case of the general functions which will
be presented in the next section. "

III. GENERAL FORM OF THERMODYNAMIC

POTENTIALS

With the example of Sec. II in mind, we now
show how to construct the most general alge-
braic function which represents the magnetic-
field free energy E in the neighborhood of the
Curie point. This function can then be used to
investigate the proposed theorems involving
critical exponents, the so-called scaling laws.

In order to construct the most general alge-
braic function representing the free energy, it
is first necessary to describe its boundary
(real) values on the real axes. These constitute
the physical values of the function. (Although it
is tempting to refer to that part of the Riemann
surface on which the function is real as the
physical sheet, this would not be analogous to
the situation in S-matrix theory where the
appropriate part of the Riemann surface on the
entire complex energy plane is so referred to. }
The boundary values are easily described by
fixing each of the variables separately and
making use of the convexity conditions,

(sz) ce
(Qa)

=-y(0, (Qb)

and 8H ~ —
H ~ &p. (Qc)

Thus, the two families of curves, E vs. ReH and
F vs. Ret are convex upwards. (Note that since
E is defined for all values of H and t in a neigh-
borhood of the origin, we can use the convexity
conditions Eqs. (Qa)-(Qc) as they stand without
having to. resort to a tangent definition of con-
vexity. ) However, the condition which charac-
terizes a critical point is that the first derivative
of F, (~F/aH)t, is double valued at H=0 for values
of t less than zero. A more physical way of
saying this, is that, for values of t less than
zero, there exist metastable states of the system
which may be given by analytic continuation of
each phase (a phase being defined as the state
of the system for either positive or negative
values of H}. Thus, the family of curves of
E vs. ReH exhibits a crunode at H = 0 for values
of t less than zero. It is this crunode which
constitutes the essential feature of a phase tran-
sition with a critical point, and which enables us
to characterize the free energy in terms of alge-
braic functions.

We now examine the polynomial which defines
the algebraic function representing the free
energy. We subtract the appropriate non-

singular part of the free energy from F(H, T)
to form the function F*(H, t), which is zero at
H=t=0. (In the molecular field theory this non-
singular part is -kTln2. ) Because the free
energy has a crunode at H=- 0 for t less than
zero, the function E* is double valued there.
Denoting the defining polynomial by P(E';H, t}
and dropping the asterisk, we see that it must
be of the following form when H= 0:

P(F;0, t) =R 2(F, t)R (E, t)Qi(F, t) (10)

so that the critical isotherm is given by F
= ——43'~'H ~'. The second form is more inter-
esting, however. It shows that, even though the
critical isotherm is symmetric, the exponent
governing the behavior of E with respect to H
need not necessarily have an even numerator
An example is

R~(E, H) =F'+H

Rm(E, H) =E-H'-
Q, =1.

(14a)

(14b)

(i4c)

Putting P(E;H, O) =0, we get two distinct odd
functions of H which, like the coexistence curve
of the molecular field theory, are not analytically
continuable into each other in H The minimum
principle guarantees that we take the smaller
real value, however, so that the physical values
of the free energy form an even function in H
given by E=-IHI't'4.

where R denotes a polynomial which has at
least one real root and Q denotes a polynomial
which has no real roots smaller than those of
the R's. The minus and plus signs on the poly-
nomials R in Eq. (10) indicate that the roots
determine the branches of E representing the
free energy for negative and positive values of
t, respectively. The polynomial R is squared
to show explicitly the double real root (crunode)
at H = 0. As an example, we again quote the
molecular field result where P(F; 0, t) is given
by

P(F, O, t) =Fs+ &t'F + , t4F=(F—++t2}2F. (11}

For this case we have R =E+ 43t2 R+ =F and

Q, =l. Thus, the equation P(F;0, tI=Ohas the
roots F=-4t and F=0, which determine the free
energy for negative and positive t, respectively,
on the coexistence curve H=O. The critical
isotherm contains less information. For the
magnetic case, it is symmetric in H. There-
fore, P(F;H, O) can be written either as

P(F; H) 0) =R,(F, H )Q~(E, H'), (i2a)

or P(F;H, 0) =R,(F, H)R, (E, H)Q, (E, H'-), (12b)

where R and Q again denote polynomials with at
least one real root and no smaller real roots,
respectively. The molecular field theory
illustrates the first form (12a) where
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where g =z, n is the degree of the algebraic1 n

function (degree of the defining polynomial), and
x is a positive or negative integer. In the pres-
ent case, the critical point is a singular point
in both variables, whereas the critical curves
are singular in only one of the variables. There-
fore, the free energy can be expanded about a
point (not the critical point) on either the coex-
istence curve (H= 0) or the critical isotherm
(t=o) as follows:

F=a(t)+b(t)H+c(t)H3+. .~,

or E=d(H)+ e(H)t+f (H)t3+ ' ' '

(isa)

(16b)

where the coefficients a to f have the form given
by Eq. (15). The leading term of each coeffi-
cient (j =r) determines the critical exponent for
the corresponding power of II or t which repre-
sents a particular thermodynamic uantity. For
example, using Eqs. (16a) and (isb and standard
thermodynamic notation, we have

Equations (10) and (12) constitute a general
representation of the boundary conditions on the
real axes for the function F, with the added
proviso that it be convex upward in both vari-
ables. The most general algebraic function can
now be found by writing down a polynomial
P(F; H, t) which reduces to the form of Eqs. (10)
and (12) for H = 0 and t = 0, respectively. Although
this cannot be done explicitly, nevertheless, we
can draw some important conclusions with
regard to the scaling laws from the forms of the
boundary conditions. (We can, of course, give
particular forms for the polynomial P which
are equivalent to the various schemes extant,
and which are also useful in analyzing experi-
mental data. " This will be done in the next
section. ) In order to find the consequences of
Eqs. (10) and (12), we try to find those aspects
of the free energy which are invariant with
respect to the choice of function. To do this, we
examine the critical exponents which are deter-
mined by these functions. In the neighborhood
of a singular point, an algebraic function of one
variable can be expanded in the following way. '

f(z) = Z a.g~, (18)

equal powers of 0 or t. Using the molecular
field theory [Eq. (7)] as an example again, we
find the following set of equations for the
coefficients a to f.

as+ 2t 2a2+ ~ t4a = 016

3aib+ 3t'ab+ —' t 4b = 0
16

3ab'+ 3a'c + 2t'b'+ 3t'ac

+—'t'c+ ta+~t' = 0
16 8

b'+ cab'c+ Sa'g+ 3t'bc

+3«'8+—'t'g +"I=0

d34~81 4 0

3d2e+ 27II2d = 0
8

Sde'+ 3d'f+ 3d'+ "H'e = 0

(isa)

(isb}

(isc)

(lsd)

(19a)

(isb)

(19c)

a =0 (2Oa)

b =0

C =-2t1

+

(2ob)

(20c)

For negative t, the solution to Eq. (18a) for a
makes the coefficient of b in Eq. (18b) zero, so
that this equation becomes an identity. The
coefficient b is then determined from Eq. (18c),
where the coefficient of c is seen to be zero,
while c must be determined from Eq. (18d),
where the coefficient of g vanishes. The
results are

where g is the coefficient of the II' term in Eq.
(isa}. The need for Eq. (18d) will become
apparent when we solve for the coefficients. The
solutions of Eqs. (18) fall into two categories
depending on the branch of the algebraic function
we wish to be on. We shall denote by a sub-
script + or —the coefficients referring to the
branch of the algebraic function which deter-
mines the free energy for positive or negative
t, respectively. For positive t, the solutions of
Eqs. (18a)-(18c}are

CH 0=-Ta"(t),

~(t) -=~(t, H=o)=-b(t),

}t=- }t(t,H=O) =-2c(t),

18(H) =M(t = 0, H) = d'(H), -
S(H) -=S(t=O, H) =-e(H),

CH CH(t = 0) = -2T f (H——) .

(i7a)

(i7b)

(17c)

(17d)

(17e)

(i7f)

a = --', (- t)',
1 1

=+3'(-t) '

c = --', (-t)-'.

From Eqs. (19) we get

d=-(3 '/4)H4 '

e = (3313/2}H ~3,

2

(2ia)

(2ib)

(21c)

(22a)

(22b)

(22c)

The coefficients themselves are determined by
inserting Eqs. (16a}and (16b) into the defining
equation for F and equating the coefficients of

The behavior exhibited in computing the coef-
ficients a, b, and c (having to use the next
recurrence relation because the second one
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a,(t) = F(H, t) I

b,(t) = sE(H, t)/BHI

c (t) = 2&'F(H, t)/BH I H

(23a)

(23b)

(23c)

vanishes identically) is symptomatic of the most
general function, and leads at once to a theorem
concerning the inequality first derived by
Rushbrooke. Before stating the theorem, we
first note that the function F(H, t) will be homo-
geneous in HP and P, if and only if the defining
polynomial P(F; H, t) is homogeneous in F, FP,
and t&. (This follows directly from the defi-
nition of homogeneity. ) For the molecular field
theory p = 4 and q = 2, and the degree of homo-
geneity of the defining polynomial is 3. The
coefficients can be computed formally by
observing that the following relations hold:

= BP(F; H = 0, t)/BF I b = 0E=a

which is identically zero on the branch of the
function E, which determines its behavior for
negative t, since a satisfies the equation
R (a, t) =0. Hence, &F(H, t)/SHIH 0=b is
undetermined from Eq. (27), and we must look
at the next equation in the set. This is

O'P(E; H, t)

BIP H=o

BP(F;H = 0 t) 82F(H, t)
E=a H=0

&'P(F H=o, t) &E(H, t)
E=

H
H=0

and d(H) = F(H, t) I (24a) 2P (E )
BP(E;H=O, t)

BF E=ac

e(H) = BE(&, t)/etl

f(H) = —,'s2F(H, t)/etml

(24b)

(24c)
b'+ 2P (E, t) = 0,

BF2 F=a 2 (26)

Consequently, the coefficients are solutions to
the set of equations given by

8~P(F; H, t)/8H I H 0
—0

and O'P(E;H, t)/8t' I t 0 =P

(25)

(26)

=[2R (F, t)(BR /&F)R~(F, t)Q, (F, t)

+R '(F, t)(BR+/8F)Q, (F, t)

+R '(F, t)R+(F, t)(&Q,/&F)j —(H, t) I

where i = 1, 2, 3, .. . and F is regarded as a
function of H and t. E uations (25) and (26)
become Eqs. (18) and 19) for the molecular
field theory. If we first generalize to homo-
geneous free energies, then the defining poly-
nomial P will be homogeneous and so will all
the P„'s. As a result, the leading exponent
governing the behavior of the coefficients a to f
will not depend on which branch the algebraic
function E(H, t) is being expanded on. There
fore, the exponents governing the behaviors of
a+ and a will be equal, as well as the expo-
nents governing the behaviors of c+ and c
(The coefficient b+ is always identically zero,
so that its exponent is undefined. ) Moreover,
only two of the exponents can be chosen indepen-
dently. This can be seen by computing the expo-
nents from Eqs. (25) and (26). Since these
equations are homogeneous, the exponent govern-
irg the behavior of the appropriate coefficient
can be obtained by examining the first term of
Pt(F; H, t) which is proportional to F~ ~. First
note that

BP(F; H, t)/BHI H

sP(F;H=O, t) 382P(E;H=o, t)I
BE~

BP (F, t)
b

83P(E;H=O, t)
b 0 (29)

BF BE3

Again, the first coefficient vanishes on the
branch determined by negative t, so that c
is determined from the equation

s P(F;H=O, t)~
E=a

&'P(F; H = 0, t)
i

BF3 F a

BP,(E, t)
=0. (3o)

Since P(F; H, t) is homogeneous, all the poly-
nomials in Eq. (30) are homogeneous and of the
same degx-ee. Therefore, it is sufficient to
look at the term which arises from F in P(F;
H, t). This contributes to the coefficients of c
and b ' in Eq. (30). The two relevant terms are

where P,(F, t) is the (polynomial) coefficient of
H' in P(F; H, t). As in Eq. (27), the coefficient
of c, BP(F; H=o,

t)/ALFIE

a, vanishes on the
branch which determines the free energy for
negative t. Thus b is independent of a, since
P,(F, t) can be chosen independently of P(F;H=O,
t). The next recurrence relation shows that c
is not independent of a and b . We have

e3P(E; H, t)
H=O



236 M. H. COOPERSMITH

2n(n-1)a n 2c and n(n-1)(n-2)a n-sb 2 and
we immediately get

a c -b

Using Fisher's notation,

(sl)

a, (t) - t

2a (t)-(-t)

(32a)

(32b)

b (t)-(-t)

c,(t)-t y,

c (t)-(-t)

(32c)

(32d)

(32e)

we find n'+2P+y'=2. Similarly, for the coef-
ficients governing the behavior of E along the
critical isotherm, we have

P(d; H, t=0) =0,

BP(F;H, t)~ BP(F;H, t=o)
)=0 &E F =d

(33a)

+III(d, H) =0, (ssb)

s2P(E;H, t)~ s2P(E;H, t-O)~
s p t = 0 sE2 F= cf

sP(E;H, t=O) sil, (E, H)
sE E d &E E=d

+11,(d, H) =O, (33c)

Q=Q =2 -q,

P =~(p-I)/p,

y = y' = q(2-p)/p,

6 =I/(p- 1),

& =pb-I)/e,

0 =p(2-q)/e,

where 6, e, and Q are defined by

d(H)-[Hi '
e(H)- [Hi',

f(H) - IH I

(S4a)

(s4b)

(34c)

(s4d)

(34e)

(s4f)

(S5a)

(35b)

(35c)

Equations (34a) to (34f) constitute the scaling
laws of Kadanoff" and, in fact, the quantities
p and q represent the two independent scaling

where II, and II, are the (polynomial) coefficients
of t and t2 in P(F; H, t). It is evident from Eqs.
(28), (30), and (33) that if P(E; H, t) is homo-
geneous of degree n in F, KP, and tq, then the
critical exponents will be given by

parameters. Upon elimination of these two
scaling parameters, one finds relations
among any three of the six exponents given by
Eqs. (34a)-(34f). Only four of these relations are
independent, however. They can be written as

n'+2P+y'=2,

2t+Q-I/O= 1,

n'+ P(5+ 1) = 2,

e(2 —n')/(1 —n'} -5 '=1.

(S6a)

(s6b)

(36c)

(36d)

Thermodynamic inequalities which reduce to
the equalities of Eqs. (36a)-(36d) have already
been derived. '~ "~" (Note that the critical expo-
nent f defined by Griffiths is equal to cb-l. ) We
have just seen that the assumption of homogeneity
is a sufficient condition for the equality sign or
scaling laws to hold. It is not a necessary
condition, however. Consequently, the remainder
of this section will be devoted to the determina-
tion of the (weaker) conditions under which
some or all of Eqs. (36a)-(36d) will hold. In the
future, we shall refer to these equations, rather
than Eqs. (34a)-(34f) as scaling laws. Exam-
ining the previous demonstration of Eq. (36a),
we shall show that it is not necessary to assume
homogeneity in order for the argument to be
valid. Indeed, it is a direct consequence of the
fact that there is no Hs term in P(F; H, t), which
is due to the fact that the magnetic free energy
is symmetric in H. To see this, we again
examine Eqs. (28) and (30) which determine b

and c . Since b is determined by the magnitude
of P,(F = a, t), the last two terms on the left
hand side of Eq. (30) will be of the same order
of magnitude in t and this order of magnitude
is given by the order of magnitude of a -' x
[8 P(F'H= 0 t)/&F jF b The rea, son is that
the terms of lowest order (largest size) in t in
the polynomial P(E; H =0, t) must include a term
of the form Frt~ where r~ 4. This follows from
the form of P(F; 0, t) given by Eq. (10) and the
fact that a is a root of this polynomial. As
befox'e with the term M, the term E I; contrib-
utes to the coefficients of c and b ' in Eq. (30).
The relevant terms are 2r(r-1)a r 2tsc and
r(r-1)(r-2}a r t b ', so that Eq. (31) again
holds. We have therefore shown that the
scaling law of Eq. (36a) holds as a consequence
of symmetry of the free energy in the apped
field, when the critical behavior of thermo-
dynamic functions is given by power series
expansions of the type of Eq. (15) with rational
exponents. If, for example, the three dimen-
sional Ising model could be shown to have such
expansions for its free energy, then the
equality sign would be guaranteed in Rushbrooke's
inequality. (The two dimensional Ising model is
excluded from the present discussion because
of the logarithmic singularity in CH. ) Unfor-
tunately, the other scaling laws are not conse-
quences of such simple considerations. However,
by extending the concept of critical exponent to
the behavior of derivatives of the free energy
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higher than the second, we can find relations
similar to Eq. (36a). These relations may be
referred to as super scaling laws to distinguish
them from the scaling laws of Eqs. (36). In
order to find them, we first establish a more
convenient notation for the expansion of the free
energy on the coexistence curve and critical
isotherm. Corresponding to Eqs. (16a) and
(16b) we write

(10asa,'+ 15amma, )
BSP(F; O, t)

E=ao

10B4P(F;0, t)+ 10 8F4 a2al
E=ao

B6P(F;O,t), 2»P,(F, t)t 9 a 5+2 P aS
E=ao F=ao

F= Z a (t)H'.
i=0

(3Va) 24BP4(F, t)+24 4
E a, =0 ~

E=ao
(4o)

(37b)

Q.
a,+(t) -t (Saa)

or F= Z b,(H)t',
i=0

where the coefficients ai and bz again have the
form given by Eq. (15). The exponent of the
leading term, which is the critical exponent,
will be denoted by n or P, so that we have

a, a, )(a, )'

or a, -2~2 +os -O.

(41)

When E=a, , the first term on the right hand
side of Eqs. (38) and (40) vanishes. The
magnitude of a, is determined by P,(ao, t) when
it is the term of lowest order in Eq. (38). We
therefore get

a,. (t)-(-t) ', (sab)
However, since P,(a, , t) =0, the magnitude of
a~ is determined in Eq. (40) by the previous
a's and we get

b.(H) -
I Hl (3ac)

a4 al as a2 (43)

where the + and —signs have the same meaning as
before. The relationship to the previous notation
is obvious. %'e now compute these critical
exponents using the recursion relations of Eqs.
(25) and (26). We have already seen that the
presence of a term of the form Pz(F, t)K' in
P(F; H, t) determines the order of magnitude
of the coefficient az 1 (t) when x=o, 1, 2.
It is evident that this is true in general. When
the term is absent, however, as in the magnetic
case when r is odd, the order of magnitude of
the corresponding coefficient is then determined
by the coefficients with smaller subscripts.
Examination of the recursion relations (25) for
i =4, 5 will show how this works in general. We
have

B~P(F; H, t) BP(F; 0, t)
aII'

H 0
BE E

+ 2
B P(F;O, t) (4a,a, + 3a,')

E= ao

BSP(F; o, t) B4P(F; 0, t)
+ aE'3 a2al'+ BE'

' al'
E= ao E=ao

2 ~ +24P ( t)=O
E2 E=a,

BSP(F;H, t) BP(F; O, t)
and

H=O E=ao

+ B~
' (5a,a, + loa~a, )

B'P(F; 0, t)

E=ao

01 &l -&2 -Qs +&4 = 0. (44)

In general, we have

Q1 Q2 -Q
1 ++ ~~0~ n=3q 5q ~ ..s

=O;n=4, 6, .. ., (45a)

or, since &, -2&, + 02 = 0,

n0 o1 + -1 ++ ~0; n=3, 5, . .. ,

=0; n=2, 4, . .. . (45b)

We shall refer to equations of the type of Eq. (45)
as super scaling laws when the equality sign
holds. They are implied (but do not imply) the
equalities given by Essam and Fisher" for homo-
geneous functions. For large n, the presence
or absence of the equality sign becomes a moot
point, but for small n verification of the super
scaling laws is within the realm of possibility.
For example, Kouvel and Rodbell" have already
measured a4 for nickel and CrO„and Baker
et al."have made numerical calculations of O,n
for n =4, 6, 8 for the Heisenberg model. There
has also been some discussion of these higher
exponents more recently by Fisher, ' who refers
to the difference nn-en 1 =-& as the "gap expo-
nent. "

For the a+'s and p's, symmetry of the free
energy in H does not guarantee the equality sign
in relations of the type of Eq. (45). Since a„+
is determined by the nth recursion relation
rather than the (n+ 1)th, we immediately get
an+=0 for odd n, as indeed it must for a
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symmetric free energy. By the same argument
which led to Eq. (45), we have

coefficients but, rather, write down the simplest
polynomial which leads to the indicated critical
exponents. This is given by

2
+n ~0; n=4, 6, . ... (46)

For the p's, since all the II (F,H)'p may be
present, we have

P(F'H t) =F'(F+ts)s+H»

+ 2tH E'+ t~'B' = 0. (46)

PO Pl P -1+P ~0; n=2, 3, . ..

from the above arguments applied to Eqs. (33a),
(33b) and (33c). Equations (45), (46), and (47)
constitute all the unmixed relations among
critical exponents for a magnetic system. (We
use the word "unmixed" to denote the fact that
each relation involves only exponents of the same
type. ) The analysis of mixed relations of the
type given by Eqs. (36c) and (36d) is more
complicated, except when P(F; H, t) is homo-
geneous, and will not be done here.

In the case of fluids, one has the choice of
using the grand potential per unit volume (P)
whose natural variables are the chemical
potential and the temperature, or the Gibbs
function per mole (chemical potential) whose
natural variables are the pressure and the
temperature. For the purpose of co~parison
with experimental results, it is preferable to
use the latter since the pressure is the natural
variable for measurement. However, before
the above analysis can be applied, a transforma-
tion to the variable which describes the coexis-
tence curve must be effected. Thus, the function
to be examined can be written as p. = Iu(m, t),
where m=p-pv(t), with p~(t) the vapor pressure
for t(0. Because of the complications which
this singular transformation introduces (for
example, difficulty in treating isobars which
are currently in vogue experimentally), "we
shall reserve the analysis for the future.

IV. EXAMPLES OF ALGEBRAIC FUNCTIONS

We have already presented the algebraic
function which coincides with the Weiss (molec-

, ular) field theory in the neighborhood of the
critical paint. In this section, we give some
examples of homogeneous algebraic functions
which have the same sets of critical exponents
presented by Griffiths' in a recent paper as
well as one example of an inhomogeneous alge-
braic function. " Inhomogeneous functions are
more useful, as there is experimental evidence
that the primed and unprimed exponents are not
equal, ss and (for a fluid) that the liquid and vapor
exponents are also unequal. ~

Example 1. p=&, 5=15,y'=f, n'=0.

These are the recognized indices for the two-
dimensional Ising model. Since we are using
functions which are algebraic in both H and
t, e =0 denotes a discontinuity in the specific
heat rather than a logarithmic singularity. We
shall make na attempt to fit the critical point

The last two terms are needed to assure the
convexity conditions on E. Note that the coef-
ficient 5 (t) which determines P is found from
the eighth recursion relation [Eq. (25)] rather
than the second, as the first seven are identi-
cally zero.

Example 2. p =-,', 5 = 5, y'=~, n' = 0.

P(F;H, t) =F (Fits)s+H»

-2PIPE + t~oP' = 0. (49)

Since 1/P is an odd integer and F is symmetrical
in H, we find that E is also symmetrical in t.
Hence, there 'viQ be a spontaneous magnetization
for t&0 as well as for t(0, but, if we start on
the branch of E which has a spontaneous magne-
tization for t (0, then analytic continuation along
the real H and t axes will lead us to the branch
of E which has zero magnetization at zero applied
field for t)0. However, if we stick to the mini-
mum principle, then this example shows that it
is impossible to construct a homogeneous alge-
braic function with the given exponents, and which
satisfies the minimum principle wherever it
yields a physical free energy.

ExamPle 3. P=-,s, 5=5, y'=s, n'=~~.

This set of critical exponents and those of the
next example are close to the estimates for the
three-dimensional Ising model based on series
expansions. The present case is simple because
1/P has an even numerator and 5 is an odd
integer. The defining polynomial is therefore

P(F; H, t) =F (Fs+ txs)s+IPs

+ 2POFPE" + t 'H E' = 0. (50)

The fact that 5 is not an odd integer, or even
that it does not have an odd numerator, poses no
difficulty. The defining polynomial is

p(F. H t) Fso(Fxs+tsx)s Hss

+ st»H E~+ 2t 2H2E =0. (51)

Equation (51) illustrates the form of Eq. (12b)
since P(F; H, 0) = (F"+H")(F"-IP'). Note that
in these first four examples, the coefficient
c+(t) = 0, so that y is undefined.

These indices are close to those found for a
number of fluids and ferromagnets. The simplest
defining polynomial is
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Examp/e 5. &=s, & =-, ; p=v, y=-, , y = 8;
1 g 1 1 8 & 11

g-7 g-4 q)- 2
7y 7'

This set of critical exponents does not corre-
spond to any known system but was chosen to
illustrate how inhomogeneous algebraic functions
can easily generate unequal primed and unprimed
critical exponents. The defining polynomial is

P(F'H, t) =(F +t' )5(2F +t )+H~

+ t2IPF 18 + tH2OF2 0 (s2)

Solution of the recursion relations, Eqs. (25)
and (26), yields the following for the coefficients
a to f:

15
a =-(-t)',

j.

t =+-,'(-t)',

9
a

+

b =0

(ssa)

(ssb)

11 8
c =-~( t) 8, c =-~t ';

+ 5 7

8
d =-H7;

(53c)

(5M)

= -IF ~

21
2
7= -g'a

(53e)

(sm)

The critical exponents obtained from these coef-
ficients satisfy the following equations:

o."+2P+y'=2

2e+P —1/6 =,—') 1

&'+P(S+ 1) =-", )2

~(2- o.')/(1- o. ')-1/6 =„)1.

V. CONCLUSION

(S4a)

(54b)

(S4c)

(s4d)

The foregoing analysis provides the following
picture of a phase transition with a critical
point. First, the critical point itself is a
branch point in the naturally intensive variables
of the appropriate thermodynamic potential.
Second, the coexistence curve is (at least) a line
of crunodes. Third, by the theorem of continuity,
this line of singularities is extended above T = T,
but disappears from what we may loosely refer to
as the physical sheet and appears on a non-physical
branch of the thermodynamic potential. This is illus-
trated specifically by the presence of a line of acnodes
in the classical theory as exemplified by the
Weiss field theory of ferromagnetism. Thus,
the idea of Douglass, "that the two phases of a
system may be distinguishable above the critical
point, is partially vindicated, but the distinction
exists on a non-physical portion of the function
representing the appropriate free energy.
Finally, we have seen that for algebraic functions
at least, the thermodynamic potential, although
analytically continuable in both variables from
liquid to vapor, splits into two separate functions
of the temperature on the coexistence curve

(H =0 for a magnetic system). This behavior is
illustrated even in the classical theory. The
thermodynamic potential may split into two
separate functions of the applied field or the
pressure on the critical isotherm. This provides
an explanation for the fact that the critical
exponent 5 need not necessarily have an odd
numerator.

As the title of this paper implieg, we have
demonstrated the need and usefulness of the
theory of functions of several complex variables
in the treatment of equilibrium critical phe-
nomena. Actually, the subject has just barely
begun since we have restricted the analysis here
to a particular class of functions, namely those
which are algebraic in the thermodynamic vari-
ables. Whatever is the nature of the true thermo-
dynamic potentials, these functions may be
thought of as being asymptotically equivalent to
them and, in the region in which they fit the
experimental information, the relations derived
above among their critical exponents must hold.
It might be interesting, however, to speculate
on the effect which the introduction of other
singularities might have on the behavior of
various thermodynamic functions in the neighbor-
hood of a singular point of the free energy. An
example of this is the proposal by Fisher, "
based on an extension of the droplet model, "
that the coexistence curve may consist of a line
of essential singularities, although, by the
theorem of continuity of singularities in several
complex variables, there must then be essential
singularities elsewhere. Another problem is the
apparent lack of what we may call symmetry-
destroying terms in the defining polynomial
for the algebraic function representing a fluid.
Experimentally, one finds that the thermo-
dynamic inequalities corresponding to Eqs. (25)
are satisfied with the equality sign to within the
limits of experimental error. Thus, there are
a number of directions in which one can proceed.
One is to try to use algebraic functions in the
analysis of other singular thermodynamic points
such as the triple point and the & point. Another
is to generalize the concept of algebraic function
to include functions with irrational critical expo-
nents as well as other types of singularities.
Finally, there is the problem mentioned earlier
of justifying the use of analytic thermodynamic
functions by means of statistical mechanics
applied to certain classes of realistic
Hamiltonians. In the final analysis, however, it
is really nature which can justify this concept,
so that the main burden is to deduce as much as
possible to compare with known results, be they
actual experiments or solutions of statistical
mechanical models.
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