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Also, by Bayes's theorem,

P, (N, )P(N„N„,~)
o~ i~

=
QN~PO(N')p(N', Np r) ' (A2)

Po(N) =Q,PO(N')p(N', N, 7). (Al)

APPENDIX

The condition of time reflection symmetry for a
system in equilibrium with a constant-temperature
heat bath specifies that no feature of the thermal
fluctuations as a function of time allows an observ-
er to distinguish between positive and negative
sense of time. Thus if the system is observed to
be in state N, at time t„the probability that it will
be in state N, at time t, +7. is the same as the prob-
ability that it was in state Ã, at time t,-v. Let the
former probability be p(NO, N„r)and the latter be
q(N„N„7).Furthermore let P,(N) be the uncon-
ditional probability of state N. Thus P,(N) satis-
fies

Using Eq. (A1),

)
Po(Ni)p(Ni~ No~ &)

0$ 1$ P(N)
The required equality of q(No, N„v)and P(N„N„r)
then immediately yields

P (No)p(N, N, T) = P (N )p(N, N, 7') . (A4)

In terms of p+ and p as defined by Eq. (1) we
have, in the limit of small y,

(A3)

p(N, N+1, 7') =7@ (N),

p(N + 1,N, r) = 7'p (N + 1). (A5)

Thus Eq. (4) follows from Eqs. (A4), (As), and (2).
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It is shown that the lack of condensation in partially finite geometries is not dependent on
the use of periodic boundary conditions or the symmetry-breaking technique for a class of
independent-particle Bose-gas models. Condensation in an ideal Bose gas in a finite ge-
ometry is studied for one-, two-, and three-dimensional systems. Explicit expressions
for the chemical potential in terms of the number of particles, the temperature, and the
dimensions of the system are obtained by using a contour-integration technique to express
sums as integrals plus corrections. Even though there is no true condensation, the range
of the reduced density matrix for an ideal Bose gas in a thick slab (L1& L2& L3 with L1,
L2 ~ and ~&LS && XT= the thermal

wavelength)
is found to go from order ) TToJ)/(T-Top)

to order Ls exp(s v w L 3/2(LS/XT) [ (Tzg/T) / -1]) as the temperature is lowered through
the bulk critical temperature T~g (fX is the Riemann g function. ) The range exhibits a
spatial asymmetry. The onset of this extremely long-range order is found to be reflected
in PVT diagrams and the specific heat in a manner very similar to that in bulk conden-
sation. It is conjectured that in calculations for infinite systems the existence of a long- but
finite-range order may be a more relevant criterion for superfluidity and superconductivity
than the usual criterion of an infinitely long-range order.

I. INTRODUCTION

The observations of persistent currents' and
Josephson effects' in liquid He4 and supercon-

ductors in thin film and pore geometries (i.e. ,
L x L x D or L xD xD with L ))D) show that "super"
behavior exists in these geometries. Measure-
ments of the onset temperature for persistent
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currents, ' the temperature of the specific-heat
maximum, ' the critical velocity' for liquid He',
and the energy gap' in superconductors for various
D values clearly show a geometry effect.

As a first attempt to calculate the observed
dependence on D it is tempting to keep D finite
and let L- ~ in analogy with successful bulk cal-
culations. However, it has been shown quite
generally that, for nonzero temperatures, this
leads to the vanishing of the quasi-averages'
usually associated with superconductivity and
superfluidity. '~' In Sec. II we investigate the
necessity of two of the assumptions used in Refs.
8 and 9, namely the use of periodic boundary con-
ditions" and the use of the symmetry-breaking
technique. " Without using these assumptions, it
is shown that for an independent Boson model
there is no condensation" in partially finite geom-
etries (i. e. , one or more dimensions finite and
one or more dimensions extend to infinity). This
is in agreement with the results of Hohenberg and
Krueger. Since there is nothing in the proofs of
Hohenberg and Krueger to distinguish between
noninteracting systems and those with arbitrary
local interparticle interactions, the above result
makes. plausible the conjecture that the symmetry-
breaking technique and periodic boundary conditions
are convenient, but not crucial for the validity of
the final general result.

If we believe (a) that nonzero quasi-averages
are not possible in partially finite geometries and
(b) that nonzero quasi-averages are necessary for
"super" behavior, then the experimental evidence
forces us to conclude that partially finite geome-
tries are not good approximations to the experi-
mental situation. However, the general proof
only implies that there is no strong off-diagonal
long-range order (ODLRO)" in the reduced density
matrix (i. e. , due to a macroscopic occupation of
one level), but does not imply anything about weak
ODLRO (i. e. , due to many very closely spaced
levels having moderately large populations as
suggested by Girardeau'4). Furthermore, the
general results say nothing about the existence
of an extremely long- but finite-range order.

In the absence of a necessary as well as suf-
ficient criterion for super behavior, me are left
with at least two reasonable alternatives: (a)
calculate for strictly finite systems and use "con-
densation" into a single state as a criterion or
(b) let L- ~ with D finite but use a relaxed cri-
terion for super behavior. This relaxed criterion
might take the form of an extremely long- but
finite-range off-diagonal order in the reduced
density matrices. In Sec. III we shall show that
in some sense both alternatives are possible for
the ideal Bose gas.

II. INDEPENDENT - PARTICLE BOSE GAS

The independent-particle model is studied be-
cause (a) there is no a priorz reason for the
effects of finite geometry to be absent in this
model; (b) rigorous results are possible so the
deviations from bulk results are due solely to
the finite geometry; and (c) the general results
of Refs. 8 and 9 may be verified without using the

symmetry-breaking technique or periodic bound-
ary conditions.

In the language of second quantization, the
Hamiltonian of the independent-particle Bose gas
is

H=Ze a a+
O'C 0' 0'

where ao (ao) is the creation (annihilation) opera-
tor for the single-particle state which has energy

The usual Bose commutation relations hold:

[a,a,+] = 5, ; [a,a, ] =0

-[a +,a, +]. (2)

In the grand canonical ensemble, the expected
total number of particles is given by

(
p6 +n I)—z

0' 0' 0'

where P-'= aT, T is the temperature, a is Boltz-
mann's constant, n=-Pp, and p, is the chemical
potential. The dependence on geometry is im-
plicit in the values and distribution of the q s.
The geometry will, in general, be characterized
by three lengths, L, ~ L, ~ L3.

Solving Eq. (3) for n(N, T, L„L„L,) allows
us to use the density (=N/L, L,L, ) a-s an indepen-
dent variable in place of a. If we denote the
lowest energy state by o =0 and choose our zero
of energy appropriately, we have zp 0 and
(en-I) '=no) n for o40. When I, is of "order
N" or equivalently n(N, T,L„L„L,) is of "order '

N '" it is customary to say that the system is
"condensed. " In the thermodynamic limit (N,L„L„I,,-~, with N/L, L,L, finite) this is made
more precise by defining Bose condensation as
the existence of a nonzero value of nJN. in this
limit. For strictly finite systems, many defini-
tions are possible. For the qualitative discus-
sion in the next paragraph, it is sufficient to use
n,/N) —, as the condition for condensation. " A
less restrictive definition will be used in Sec. III.

For a strictly finite geometry, it is quite plausi-
ble that as z-O, Z~&0n has an upper bound.
This follows if there is a finite separation between
adjacent energy levels and a degeneracy which
is finite for finite energies and increases with
energy less rapidly than exponentially. This is,
of course, true for the free-particle gas. Then,
for sufficiently large N, the o =0 term in Eq. (3)
will dominate and n,/N) —,'. Thus the independent-
particle Bose gas in any finite geometry at any
temperature will be condensed above a finite
density. Equivalently, for a finite geometry and
any given density, the system mill be condensed
below a finite temperature. Without further
assumptions about &z, we are not able to say what
the critical temperature is. In fact, it may turn
out to be an abnormally low temperature for
certain spectra. (See, for example, points (2)
and (3) in Sec. III. ) For the present investigation,
the simple existence of a condensation is the
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important point because it shows that the general
results of Hohenberg and Krueger are not applic-
able. An obvious possible reason is that they
considered infinitely large systems, whereas we
are considering strictly finite, though not neces-
sarily sma1. 1, systems. Since it is usually assumed
that large finite systems are well approximated
by a corresponding system in the thermodynamic
limit, it is worthwhile making sure that there are
not other causes for the general results; for
example, they may be due to the use of periodic
boundary conditions or may be spurious results
introduced through the use of the symmetry-
breaking technique. We now show that the latter
two conjectures are not true for a class of inde-
pendent-particle systems in partially finite geome-
tries.

In the limit of L going to infinity, the situation
is not so simple, because the separation between
energy levels is expected to vanish. Then it is
possible that limL (LIL2L3) 'Zo~0no diverges
as e vanishes. Basically the problem is how to
take the limit in Eq. (3) since the summand depends
on L through eo and implicitly through o.(N, T, L„L„X„).The results of deGroot et al."are
useful at this point.

They considered the independent Bose gas with
the following spectra for e~:

l1 -1 lg) -12

l '''l 8m L~ L2
1 so 1 sv

where 1&6&2, l =1, 2, 3, . . . , andso=l, 2, 3,
. . . . For 5 = 2, this is the spectrum of a free
particle in a se-dimensional box with box boundary
conditions; for 5=1, it is the harmonic oscillator
spectrum. Taking the limit N, L1, , L~ - ~ with
g =pp(LI. . .L~)2/~ remaining finite, they find

(a) w & 5: no condensed state exists
(b) so )5: (1) condensed state exists

(2) the critical temperature is

T =(v 11 /2m')(q/f &) [(5 )j], (5)

-X
where gz is the Riemann f function ~z 1n
They define condensation as the existence of a
finite value of nJ'N in the infinite-volume limit.

In Apyendix A it is shown that the condition for
condensation (i. e. , w )6) is valid even for
partially finite geometries, i. e. , for a spectrum

l '''l l l l '''l
1 se' zan+1 so+x 1 sv

+El
gg + 1 ZD + 0"

where E has associated lengths D1. ~ ~ D~ and has
(a) afinite separation between adjacent levels, (b)
a degeneracy which is finite for finite energy and
(c) a degeneracy which increases less than expo-
nentially with energy.

If, instead of fixing ri, we fix p =N(L1 ~ ~ ~ L
Dl ~ D~) ' in the infinite-volume limit, we see
that q-0 unless 5 =2. Eq. (5) implies that a
nonzero T„occursonly. when 6=2; i.e„,the free

particle in a box. In that case, statement (a) is
in complete agreement with the (ce+r)-dimensional
generalization of the results of Hohenberg and
Krueger. A p~io~i, the general proofs of Refs.
8 and 9 only point out some of the regions where
condensation can not exist. It is interesting that,
for the independent-particle model considered
here, the general results delineated all of these
regions. Thus it appears that neither the use of
periodic boundary conditions nor the use of the
symmetry-breaking technique is responsible for
the vanishing of the quasi-averages in partially
finite geometries.

III. FREE BOSE GAS

In the previous section it was argued that a
strictly finite Bose system will condense at some
finite temperature. For an ideal Bose gas, we
calculate this temperature and its dependence on
the size of the box. Comparison with the bulk
results" are made. Computer calculations"
have already shown that condensation does occur,
but analytic expressions seem desirable. Pre-
vious analytic work on finite two- and three-
dimensional systems has been carried out by
Osborne" and Ziman, "but it is difficult to esti-
mate the corrections to their results.

The Hamiltonian for a free Bose gas in a box
of dimension L, - L, - Ls is

e =Z- (I.'k2/2m)a-'a-
k k k

k = 2w(l, /L„I,/L2, Is/Ls); I f = 0, a 1,

2 j ~ ~ ~ j

where periodic boundary conditions have been
employed. Defining the thermal wavelength" as

XT =-[2v'P/m~T] "' (9)
we have Pal =AT'/LI'.

Condensation in a Finite Geometry

As noted earlier, the definition of condensation
in finite systems is not unique. The property
usually associated with Bose-Einstein condensa-
tion is a macroscopic occupation of a single state. "
For an ideal Bose gas this is the zero-momentum
state with occuyation number n, =(e~-1) . A large
value of n, implies n((1. Furthermore we
exyect that n, /n, = (eo'-1) I[exp(Pe, + n)-1]= 1
+n 1Pe, is "appreciably" larger than 1, where
e, is the energy of the first excited state and
Pe, ((1. This ratio n, /n, is much greater than
1 only if n(( Pe, . At this point an arbitrariness
enters. How large is "appreciably" larger than
one'? We arbitrarily take nJn, =2 as the point
at which condensation begins. This implies that
in the condensed state o, ~ n =-Pal. From Eq.
(3), we define the critical number Nc as

N (T, LI, I2, L3) -=Z fexy[P(e +el)]-lj .(10)

Since (BN/sn) T L L L &0, we see that the
system will be condensecf if and only if¹Nc.



214 DAVID A. KRUEGER 172

Also since (8n/8T)N L L L & 0, an equivalent
definition is T ~ Tz(8, Li, X2, L3), where the
critical temperature Tc = (aPc) is given by

N=Z (exp[P (e + @i)j-ij

mL 1L2 XT
+ ln

nL3'
)n) (13b)

L3 L2

This definition is similar to that used by London" ~"
for the bulk system (I.,=L, =I.,- ~).

Qur definition requires n0/ni = 2 at Tc but there
is no reason why one could not arbitrarily choose
nJn, = 10 or 100 or 1000, etc. , as the onset of
condensation. In terms of "macroscopic" occu-
pation of a single state, this ambiguity is reflected
in the question: For what n is 10 nN macroscopic?

The important question is: How is this arbitrari-
ness reflected in the values of the critical temper-
ature. If there is a rapid variation in n(N, T,L„
I,

„

I.,) as a function of T in the region n = Pe„then
n will take on all values from Pe, to 1000 Pe, in a
small temperature interval. Then the critical
temperature will be insensitive to the details of
the definition. From the calculations of o.(N, T,L„I.„L,) to be described later, we can see that
this is the case when L& =L2 =L3 ))XT. At the
other extreme, L g)) XT)L2) L3, the varia-
tion of Q. with T is not rapid, and the critical
temperature is sensitive to the details of the
def inition.

To calculate N~ or T~, we must carry out a sum
over k. Because we are primarily interested in
Lz. & ~, we can not make the usual replacement
L Q~-fdic/2m. This difficulty is circumvented
by use of a contour integration technique, which
is described in Appendix B and which is applied
to Eq. (3) in Appendix C. Expressions for N are
given for one-, two-, and three-dimensional
geometries (i. e. , Li)) XT &L2 &L3, Li & L2

T& L3 and L1 I'2 - L3))XT respectively" ),
but we will focus our attention on the three-dimen-
sional geometry.

The result for L1 & L2 - L3 ))XT is

L1L2L3 mL 1L2 L2
N= vs~' F ) (0) +

'T 'T 3

wL1+; )n) (13c)
ATvn L ' L1

L1L2L3 &L1L2 L~
N= v'~' F,~~(0) +

S'T 'T 3

) o. . (13d)
L1

N 2w

P —= = F3/2(A. T2/L12) +
L1L2L3

x F(i2 Lv3L/i) +
2wL1

(
2w

1)
L1L2L3

(i4)

Equation (13dj implies that in the condensed state
n,(=o. ') increases linearly with N. &aking a = pq,
and dividing by L,L,L, in Eq. (12) gives the criti-
cal density

+ ','G(oL '/X ')+2m& ' [exp(2vL1

xnan/X )-lj '+R3, (12)

If one wishes to use a definition of condensation
which differs from ours, Eqs. (12), (C20), and
(C21) provide a useful starting point.

From Eqs. (12)-(14)we note the following six
points.

1. If L,=L„the critical temperature (or,
alternatively, the critical density) is very close
to the bulk critical temperature T~~,

123F (o.) n) X '/L '
Q/2 T 3 (i3a)

L1L2L3
N= v+ F~~,(0)

where F,z, F„G,and R, are discussed in Appen-
dix C. This expression simplifies for n/XT'
away from L, , L2, and L, to give approximately

T R=(2mB'/ma)[ /NLL, L sF& 3(2)j0'~3

2. However, if L,))L„the F, and G terms in
Eq. (14) give an upward shift in the critical density,
pc = (L,L,L )-s'N cfor a given temperature (alter-
natively, a downward shift in the critical tempera-
ture at a given density). This gives pc a term
linear in T in addition to the T'/' term present in
the bulk expression. "

3. In the extreme situation where ln(L, /L, )- ~ in the infinite-volume limit, one can verify
that condensation does not occur at any finite
temperature and density.
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4. Until now we have been discussing the criti-
cal density as a function of T, but for finite geome-
tries p~ depends on L„L„andL, as mell. For
applications to physical problems, where L, is
varied, it is interesting to note the critical L,
as a function of p, T, L„andL,. That is, a
system can condense only if L3) L3~. From Eq.
(14) and analogous results for one- and two-
dimensional systems, one finds the necessary and
sufficient conditions for condensation (defined as
nJn, ) 1+y).

Three-Dimensional System L&& L2& L&)) X&.

T~ TcB

L ~ I = [1-(T/T )si~]
3 Sc cB

x [a(L /IL2)+2mln(L2/L3 )+b] . (15)

Two-Dimensional System L & L &) X & L:

The difference N-N is

N-N=n ' 1))o.)& '/L'
T

=0 o. &X '/L, '

and may become |Iuite large (= Lm/X 2 &) 1) as the
transition temperature is approached from above.
However, the fractional error (N-N)/N is less
than XT/[Lm'i'F3/2(0)] « 1. Thus, for a cubic
geometry the usual replacement of Zl (&0) by an
integral is quite good except for corrections close
to the transition temperature. It is evident from
Eq. (14) that this replacement is less satisfactory
if L, WL„and actually leads to an incorrect criti-
cal density (or temperature) due to the (2LIL2/Xp)
In(L, /L~) term which is absent from (21). Similar
conclusions hold in one- and two-dimensional
finite geometries. Then the relevant approxi-
mations are

~ nk k 0 n0+LIL2(2m)
k kl~ 2

x fdkldk2 nk„k„0, (22)

L3o-L,3, =~ '[F;(o)] ' 'p (TITea)

x [a(L,/Lm) + 2mln(L2/XT) + b ] ~k k„0,0 0 Ll(2v) fdkl k 0 0. (23)

0 e Dimensional system L ))X &L )L

L3-L3,=v '[F.(O)) '*p "'(T/T, Z)

x [a(L,/L, ) + b], (13)

The fractional errors in the one- and two-dimen-
sional cases are, in general, appreciably larger
than in the three-dimensional case. The extreme
example is in one dimension where the fractional
error iN-g I/N can be as large as 30%.

6. Our results were obtained for periodic
boundary conditions, and the question arises as
to mhat differences, if any, would be obtained for
box boundary conditions. Using box boundary
conditions and L, = L» Ziman" has calculated N
for n « Ap/L 13. Zi.man' s Eq. (9) may be com-
pared to our Eq. (13d) if we use o. =-p& +

o'giman+l3 man and n2, iman=XZ /(47+ and

PZiman=&T 4L3~). The difference in densities
is

»T i L3i ~T
s(p -p . )= 11+ i ln

T box periodic L ( L j
3 1 3where a=ry i2 +2my +[exp(2zy|ia)-I]

Ib l & 15." Our definition retluires y = 1. It is
evident from these expressions that no condensa-
tion is possible in partially finite geometries
(remembering our convention that L, )L, )Ls).

5. The results in Eq. (13) for L, =L, =L, can
be compared to the usual result" obtained by
replacing sums by integrals

Since XT «L3, L3 (LI, and p&T') 1, the differ-
ence will be small and the fractional difference is
small. We know our exgression for X&'P erjodic
has errors no greater than order XT/L3 & 1 and

Xppboz has errors at least of that order so the
above difference is meaningless except when ln

(L3/XT) ))1. Unfortunately, because of the trunca-
tionof the terms inthe Jacobitransformation, it is
very difficult to determine the errors in Ziman s cal-
culation; so it is not possible to say whether the
above difference is real or due to approximations
in the calculation of X&'pbox Using the contour-
integration technique, a precise comparison for
a one-dimensional system is possible, and we
find'F for e«XQ/Lm«1:

(19)

which gives

N =(e -1) '+(L m /XT )F3 2(a)
3 3/2 (20)

N = ot '+(Les+/XTs)F3 2(0); a«1. (21)

N =n +La(2v) ' fd'k~~ = N, —
0
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N . . =- Z [exp(isX */L '+n)-1]periodic T p

Expressions for n(p, T, Ls) may be obtained from
Eq. (12) where the third and fourth terms vanish
in the limit L„I,~ with p finite. The result is

g2L
p=—+ -1.460

3A.T

lm L fnL
& +0 I

XTsp = P~sF&/2(n) + (2vXJL&)FI(2vL8v'n/XT)

+ o[(~JL2)e~(-v»sL2/nT)]. (28)

(nL ')
(24) Since A. «L2, the correction term will be

droppe . For n(&XTs/L2s, this reduces to

XTsp = vs~sF8/2(0)-(vXQL2) In(nL&s/XTs)

Nb -=Z {exp[(l —1)XT /(4L& )+n]box

3L~2
=—+ -1,460

'T'

v'mL~ (nL~4 l
~+O(I)+O~ ~ I. (25)

XTs

Long-Range Order in a
Partially Finite Geometry

Even though there is no condensation in partially
finite geometries, we now show that there is still
a strong similarity between slab and bulk geome-
tries. In a three-dimensional slab (i.e. , I 1, L2- ~ with ~ )L8 )) A. T), there is a fairly sharp
transition in the range of the off-diagonal order
in the reduced density matrix as the temperature
is lowered through the bulk critical temperature. '8

From Eq. (12) we know that limL L - ~ n(p,L„L„L„T)is finite, so there is no dhfficulty in
taking the I »L,-~ limit in the reduced density
matrix, (gj(~x)g(0)), for a slab

1 dk, dk~

& y (x)y(0)& =—j
„

J
„

L3 2n' 2m

For equality of the number of particles outside
the condensate to leading order in L/XT, we must
have 3Lbox = mL&eriodic. Thus changing the
boundary conditions does have a quantitative effect,
but the qualitative effect is unaltered, i.e. , con-
densation does occur for both periodic and box
boundary conditions.

which shows that n may become exponentially
small but remains finite at finite (p, T, Ls).

First consider temperatures greater than the
bulk critical temperature given by Eq. (15). If
0. 5~(T Tc )/T-z~~&T/L8 we obtain n from
Eq. (28) by K'opping the F, term and keeping just
the first two terms in the expansion (C17) of Fs&s
(n). With an error of less than 5%%uo we have

s = ,'(XP—&v)T B/(T-T ~). (29a)

x [(T /T)s~s -1]). (29b)

Thus, for T&0.9T~&, the range is exponentially
larger than L,. Since lengths in the L, direction
are modulo L„wesee that there is a spatial
asymmetry in the range of the reduced density
matrix below the bulk critical temperature.

In Appendix D we find explicit expressions if
T(Tcff) L2)) XT[(TcII/T)s '-1] ' and x=(x„
xs, 0),

&Ts & g (x)tj(0))=&Tsp ) 1; x &XT (80)

Next consider temperatures less than the bulk
critical temperature. If 1 ~ (Tc&-T)/Tc ~ XT/L2,
we obtain n from Eq. (28) by taking F„,n) = Fs~s
(0) = f„sand keeping just the first term in the
expansion (C15) of F,. With an error of less than
1% we have

s = L&exp{&&/2(v'v/2)(L2/XT)

-ik x
(26)

ks Pks/2m+ ne

( T )sls
= XTsp 1-

/

&T i
cr3

A.

+2m

L3 x

Since Eq. (26) is a Fourier transform we can
obtain the range of (tfij(x)g(0) ) from the uncertainty
relation hk Ax=5.29 Taking 4k as the half width
of nk at half maximum we find P (4k)s/2m = n = P
I p, t. Thus the range x is given by

y = Ex=f1/4k =5(p/2 )m"'n=Xp(2 v'
v) n(27).

Note that t decreases monotonically as T increases
at fixed (p, Ls).

«x « ~ (21)

=(X /L ) {r/2'] its z x/x x) z -(82F/

where x = txl. It is interesting to note that the first
term in the expression for A[(TcII/T)s~s-I] '&&x
&&r is the same as that due to the k =0 term in
the bulk result.

It should be emphasized that this extremely long-
but finite-range order occurs even though there is
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neither the usual Bose condensation nor a general-
ized Bose condensation. '~

From calculations of the specific heat and PvT
diagrams for a three-dimensional slab, we find
that the onset of this extremely long-range order
is reflected in a manner very similar to the onset
of true ODLRO in the bulk system. Our results
for Cv are qualitatively similar" to those of
Goble and Trainor who used box boundary condi-
tions. Relative to the bulk results, the two basic
effects of reducing L2/XT are to shift the peak in
Cv to higher temperatures and to broaden the peak.
The Pv T diagrams show little deviation from the
bulk result. For 1/p=v &vcr =-1/peg, the bulk
pressure is independent of v. For the slab geom-
etry, there is a very slight dependence of P on v
for v(v~~, which may be characterized by the
derivative (&P/8v) T,

dimensional slab,"an increase in the range in
temperatures over which the transition from
short- to long-range order occurs, the complete
disappearance of the specific-heat peak, and a
large increase of the slab pressure over the bulk
yressure for a given T and v&v~~. Since L3&
A. T implies that motion in one direction is essen-
tially frozen out, it is not surprising to find
deviations from the bulk results.

IV. DISCUSSION AND CONCLUSIONS

In an attempt to understand recent general
yroofs of the vanishing of quasi-averages usually
associated with superconductivity and super-
fluidity in partially finite geometries, we have
done three things. First, we have tested two of
the assumptions of the general proofs, namely
the use of periodic boundary conditions and the
symmetry-breaking technique, and found that
they were not crucial in an independent Bose-gas
model. Second, we found the necessary and suf-
ficient conditions for condensation in a strictly
finite ideal Bose gas. These turn out to be the
same conditions as for the bulk system, if the
dimensions of the finite system satisfy L1 = L2
= L3 » XT. And third, we have shown that,
even though a partially finite ideal Bose system
will not condense, it does undergo a transition
from a short-range order (= A. T) to an extremely
long- but finite-range order (= L2 exp((f .../2&mLS/
2XT)[ (TcE/T)s~'-1] ) with L2 ))XT) whicja might
be "experimentally indistinguishable" from a
condensation in the bulk system. This last possi-
bility suggests that it may be useful to relax the
criterion for suyerfluidity or superconductivity.

Even though most of the results have been
obtained only for the ideal Bose gas, one might
conjecture that the qualitative features have their
foundation in the existence of a long-range order
and are not simply reflections of the idiosyncrasies
of the ideal gas. At present, the validity of this
conjecture remains an open question.

eP) Lsvv23 c +
(sP &

I
—

J'" T, v=v

2m'" ~-L2 v'v&2/2 (v E
2/2 T

with v+ & v&&, v &v~, and v~g the bulk critical
volume per particle. 9tnce L2 ))XT, this ratio
is very small. The pressure for v & v~& is also
very close to the bulk value. Thus the onset of
the long- but finite-range order in a three-
dimensional slab is reflected in Cv and Pv T dia-
grams in a way very similar to that for the onset
of true ODLRO. Further, it is conceivable that
the theoretical predictions for the slab would be
the same as those for the bulk or the strictly
finite geometry calculation within some small
error; and for comparison with experiment the
three theoretical models would be equivalent.
It is in this syirit that one would say that the onset
of extremely long- but finite-range order in a
yartially finite geometry is equivalent to conden-
sation.

If the thickness of the slab is decreased suf-
ficiently (L2 & XT), there are qualitative differ
ences between the slab and bulk results. The
effects are: an increase in the range of the re
duced density matrix compared to the three-
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APPENDIX A

In this appendix we show that the results of deGroot et al, "may be extended to partially finite geome-
tries (i. e. , Ll x . ~ ~ x L~ x Dl x x D~ with Lz- ~ and D) & ~). Consider the independent Bose particle
energies to be a sum zo+E ~, where zo is the energy given in Eq. (4) (with associated lengths Ll ~ ~ L~)
and E~ I is the energy associated with excitations in the finite directions (with associated lengths D~ ~ D2) ~

Actually all we need assume is that the levels E i have a finite separation and a degeneracy which xs
finite at finite energies and increases less rapidly than exponentially with energy. The number of par-
ticles is the

N= Z,{exp[P(z +E,)+ n]-1)-'. (Al)

Now s 0, 0and, by a suitable shift in n, we may take E,=O also. Defining the quantities g&(z) and qE(e)

n„()-=(L,~ ~ ~ L ) / &,(.f"o"-1) (A2)
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n~(o.)=-~ ) 0n~(~+p& )

we have q= N—(LI ~ L ) =g&(n)+g&(o. ).
-2

(A3)

(A4)

We will consider the limit N, L1 ~ ~ L~-~ with q finite. Our qg(o. ) was called g by deGroot df al. It is
convenient to study the condensation by increasing the density at fmed temperature. There are two cases
to consider.

For w ~ 5, it was shown in Ref. 16 that q (o.) may become arbitrarily large without condensation occur-
ring (i.e. , N-~ but n0/N-0). Since graf(n - 0, we see that g may become arbitrarily large without con-
densation taking place.

For zu ) 5, it was shown in Ref. 16 that condensation is necessary for g~(o.) greater than some finite
value. From the assumed properties of Ea we know q~(o.) has a finite upper bound for 0 & n «. By
increasing q, we may force q~(n) to take on arbitrarily large values from which condensation follows.
The critical "density "mill be increased and is given by

p =[(5 )I] (2mzT/v 5 ) g /6+7'~(0). (A6)

Since q (0) depends on temperature, it is not possible, in general, to invert this equation to find Tc in
terms o q; but it is clear that the addition of q (0) will decrease the critical temperature. As in the
system studied in Ref. 16, if N(I1 ~ L~DI ~ ~ z) is held finite as Lz ~, then Tc-0 unless 5=2.

APPENDIX B

A contour-integration technique for obtaining sums in terms of integrals plus corrections is demon-
strated in this appendix. As an example, me will consider

S= Z (eP + -1) '= Z f(l),
OQ l= —0

{Bl)

where p' «1 and n) 0. Consider the integral

I= f dzf (z) = fdzf (z)/-(e 1) fdzf-(z)/-(e -1), (B2)

where the contour c extends from -~+i& to+ ~+i& and where &is arbitrarily smallbutgreater thanzero. The
integrands have poles at all integers (z =0, +1, a2, . . . ) due to the (e+2v~z-1) ' factors. These factors
also give an exponential damping away from the real z axis and allow us to close the contour in the upper
(lower) half plane for the first (second) term in equation (B2). Using Cauchy s theorem and denoting the
poles of f(z) in the upper (lower) half plane by z„(zL)we have

00

I Zg(E) = f dlf(1)+2viZ (e "-1) [Residue f(z )]-2ziZ [e L-1] [Residue f(zL)].(B3)
Q L

For our example, this is explicitly

Pl +B I]-& f dl[ Pl +Q

~ Oo p' = 2 ' -1
(y )0)

where z =x +iy and
m m m

Pj's

27ri 8p 1Tczm

(y &0)™
(B4)

x = vmi'2/(eP' ) [I+(I+4vem'/ct )'I ]

y =+ v'a/(2P') [I+(I+4m'm'/o. ')"']'I'
m

(B6)

(B6)

From (B6) it is evident that lym I ) Vv lm I/P'. Since P' «1 we have lym I)) 1 for m e 0. This imPlies
that the m p 0 terms in (B4) are of order exp( 2v I'v1m I/-p') « 1. Since this decreases exponentially withal m I,
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it follows that Z I is of the same order. Thus, inpractice, keeping only the m =0 pole in (B4) introduces only
exponentially small corrections. This is the essential simplification for double and triple sums. For
other sums, slightly different contours must be used, It should be pointed out also that for other e& the
method may be more complicated and may be of no value. For example, if ek - v'k2, branch points in

f(s) appear instead of simple poles as before.

APPENDIX C

This appendix is devoted to the calculation of sums using the contour-integral technique discussed in
Appendix B. The number of particles in a box (L, & L, & L,,) is given by

N=Z-(ep'k ' -1)
k

(cl)

wit n) 0 and k =2v(I,/L, I /L, , I,/L, ) so Pe„-=(&pL, )'& '+(&JL2)'I2'+(~QL3)'I '. U»ng ye»odic
boundary conditions, we have lf =0, a1, +2 ~ ~ . Equation ( ) may be written schema ically as

Z = ff + (first pole)& + (higher poles)&,
1 1 1 1

(c2)

where (first pole) is the m =0 contribution and (higher poles) is the m 0 0 contribution. To separate out
the dominant terms, it is convenient to do the sums in order of decreasing Lz . Schematically we have

Z = Z [ ff + (first pole)& +(higher poles)& ]
. 1 1 1

(c3)

Z =Z [ f + ff (first pole)& +
f&

(higher poles) ] + Z [(first pole)& +(higher poles) ]
3 2 1 2 1 l,

2p

(c4)

Q = ff & &

+
f& I

(first pole)& +
f& &

(higher poles)& +Z ff (first poles)& +Z
f&

(higher poles)&
123 12 3 1 2 3 $ 1 2 ) . 1 2

3 3

+ Z [(first pole)& +(higher poles)& )
l2, l3

(c5)

(c8)

In all cases the (higher poles) terms contribute very little. Also ZI I (first pole)I = (first pole I I, = 0
-I with small error if Ll)) XZ. If Li - XZ, then Zif. ~ 0 will be smafl also. Finaby, ZI ~0 I )first
pole)I is small if L3 )) &2 . Of course all comparisons are made with respect to the other terms in the

2
expression.

Equations (C3), (C4), and (C5) are used for the one-, two-, and three-dimensional geometries,
respectively. The small terms pointed out above are included in a remainder R& and rigorous upper
bounds are given. The results are given below, where XT is the thermal wavelength [Xg=k'/(2meT)]
and the terms retained are in the same order as in equations (C3)-(C5).

Ll ))&2 )L2 )L3 (One-Dimensional Geometry):

N=LI(2v) 'f dkl[exp(pkl'/2m+n)-1] '+(LI/X&)(2v/v'n)[exy(2vLI&a/X )-1]

I Rl I ((LI/XT) 10'[exp(-AT'/L2') + 40 exp(-LIPm/2XT)] .

L1& L2 )) XT)L3 (Two-Dimensional Geometry):

N = LIL2(2w) ' f dk1 f dk2 (exp[p(kl' k2'+)/2 +mn]-I] + (LIL2/XT) f dk
1(n+ pk1'/2m)

x (exp[2«2 (n+Pkl'/2m)'~'/XT] Ij '+ (L-I/A. T)(2m/dn)[exp(2vLlv n/XT)-1] i+R2.

(cv)

(c8)

I R2 I ((LIL2/AT') (8sexy(-AT'/L3') + 48 exp(-w L2/L3 ) + 3000(A QL2) exp(- v'~'L2/X T) + 13,000 (XJL2)

x exp (- PAULI/2XT) +48m exp[ v(LI/L2+Llv'2n-/&T)] j. (c9)

L &L &L ))X (Three-Dimensional Geometry):
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N=LIL2L3(2m) 'f dkl f dk2 f dk3(exp[p(kin+k2'+k3')/2m+a] I—j '+LIL2L3/XT)(2g)

x f dkl f dk2 [a+p(kl'+k2')/2m] 'i'(exp(2vL3[a+ p(kl'+k2')/2m]'i'/X&j -1) '+(LIL2/&&)

x f dk [a+Pk '/2m] '~'(exp[2vL (a+Pk '/2m)'~'/X ]—1]-'+(L /A )(2n'/Wa)

x {exp[2wLlv a/XT]-lj '+R3. (Clo)

!R3 I & (32rLIL2/A T') (exp[-7r(L2'/L3'+2aL2'/X7, )'+] + exp[-r(L1'/L2'+2aL1 /X7 )'I'] + (200&yL3)

x exp(-m'"L3/2&&) +-,' (L3/L2)exp[-m(L1'/L3'+ aL1 /X& )'"j}. (Cll)

These expressions are useful for 0& a (1. In obtaining the bounds on Rz the following elementary
inequalities were useful:

(a) (u+v)'i') —,'(vu +Wv)

(b) (e"-I) '(2e "
for N)0 and v&0,

for g o1

(c) lim[z (e -1) ] l(6y e y for z=zqiyand y)l, and

m m -g-ol -0 -O.l ~ 5e for o )1 and m ~2.
(dj ~ e (e + die

l=1 1

The inequalities in (a)-(b) could be strengthened and the bounds on R could be reduced, but the present
bounds are sufficient to show that R; is negligible compared to the other terms in almost all applicationss'

The first integrals appearing in Egs. (C6), (CS), and (C10) are Bose integrals ss

(2w) ' f dk 1[e xp(pk 'I/2m+a)-1] '=(vm/X )F (a).

1

F,12(a) =(m/a)'-1. 460+0. 208a+0(a ); a&1.

(2z) ~ f dk1 f dk2 (exp[p(kl~+k2')/2m + a] I] ' = (w/X-&~)FI(a).

F,(a) = -ln(1-e ).

(2w)-& fd'k[exp(pk'/2m+a)-I] '=(z "/X ')F (a)T 3/2

F~in(a) = 2. 612-3.545' a + 1.460a+ 0(a'); a &1,

The remaining integral in Eq. (C8) is given by

&G(aL 2/y 2) -=f dk[a+ @pa/2m] &12 (exp[2zL (a + Pk2/2m)&n/y ]-I]

(C12)

(C13)

(C14)

(C15)

(C16)

(C17)

(C18a)

=4zX& ' Zif'0(l2wL2ve/X&)
l=1

= m/L2la+(w/X~)ln(aL2'/X~')-0. 7286/&T+0(&aL2/&T').

(Clsb)

(C18c)

At a =AT'/4z'L2', expansion (C18c) is in error by less than 2%. For a greater than this, the sum in
(C18b) is useful. The remaining integral in Eq. (C10) may be done exactly:

(2z) ' f dkl fdk2z '[exp(2vL3z/X&)-1] '= -(X+3) ' In[1-exp(-2zL3va /A&)]

= (Xg ) ' Fi(2zL3vn /A. &),
(C19)
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where z = [a+p(k, '+k, ')/am]'~'. Combining the above for Ll ~ La & La ))XZ, one obtains Eg. (12) for N.
The resul|ing expressions for two- and one-dimensional systems are

Ll ~ La &5
it&

)La (Two-Dimensional):

N= (vL1L2/XT')Fl(a)+ (L1L2/XT')G(aL2'/XT') +(avL1/%Tv'a)[exp(avL1&a/XT) 1]-'+Ra

Ll ))XT )La ~ La (One-Dimensional):

N= W(L1/X&)F1 2(a)+ (avL1/XTv'a)[exp(avLlvn/XT)-1] '+Rl.

(cao)

(C21)

The contour-integral technique has also been used to calculate the thermodynamic potential and number
density for a one-dimensional system governed by the Hamiltonian

II=Zk(k-eA/c)mak ak. (caa)

This Hamiltonian arises when considering an ideal gas confined to a ring geometry (L x Lx D with
L)& XZ ))D) in the presence of an external magnetic field. The thermodynamic potential is given by

pg = -in(Tre ) =Zl in(i-exp[-XT'(1-p)'/L3-a] )

pQ=lnI4 isn (vp-$)sin (vp+g)l +P f dzlnl1-exp(-XT z /L a) 1+0(-e );
Oo 22 2 -L/XT .

a&0 and -z.~P ~ z, (caa)

where ( =LV't a I/A. z-, p =eAL/avc, and P denotes the Cauchy principal-value integral. The number of
particles is given by

N=Z (exp[~ '(1-y)'/Lz+ a]-1)-'

N=(vL /DT )g '[cotv(p-&)-cotv(p+$)] +P f dz[exp{X&z /L +a)-1] +O(e 2);

a & 0 and --,'~ Q ~
z . (C24)

For a ~ 0 and —z ~
Q

~ —,', we find

PA = f dz in[1-exp(-X& z /I, -a)]+in[1+exp(-4m))-aexy(-aug)cosawg]+ O(e T)
ce 2 2 2 -L/~ (ca5)

N= f d [ezxp(X&'z'/L' a+)-1] ' (avL/X -Tv' a)[e xy( as)) cosmic-1 ]/[e xp(4 sg)-ae xp(2 vg)cosmic +1)

+O[exp(-I/~ )]. (Cae)

Expansions for integrals in (C28)-(C26) have been given by Dingle. zs Due to the branch points in the
summand in Eg. (C23) and the yole on the real z axis in the summand in Eg. (C24), the contour has
been chosen differently from that used in the previous calculation of N. However the technique is basi-
cally the same as before.

APPENDIX D

The reduced density matrix & (~ (x ) $(0)) for an ideal Bose gas in a slab (with dimensions ~x ~ xL2
with La ))&&) is evaluated in this appendix. The starting point is Eq. (26).

&g (x)g(0)& =(1/4v I2) f dkl fdkae Zk [exp(pk /2m+a)-1]
S

(26)

where x=(x„x„0).The sum on k, is done using Eg. (B4). We drop the m 40 pole terms which introduces
an error of order exp(-I 2/XT) «1 to obtain
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g (x)q(0)) =A+B

A =(2m) fd ke [exp(Pk /2m+ n)-1]

B= (2vyT) fd ke (pk /2m+ n) {exp[2vL&(pk /2m+ n) /XT]-I} (DS)

Doing the angular integrations and using Cauchy s theorem for the radial integral provides a straight-
forward evaluation of A

A = (z/XTzx) (exp(-2' n'I'/X ) + 0[exp(-2'/XT)]] . (D4)

Since we are primarily interested in x =- Ixl) XT and n «1, the last term in (D4) is dropped
In B the angular integration introduces the cylindrical Bessel function J0(kx). Using (e -1)

=Zi - 1 e lx an-ds4

f zdz(z'+b) "'8 (zy)exp[-2wl(z'+b)'I j =(y'+4zml ) 'Izexp[-(by +4m l b)'I ]

we obtain B=(2v/X ')Z (x'+L, 'l') "'exp[-2vn'"(x' l+'L ')"'/X &~ 0/=1 3 3

If f(l) & 0 and df/dl & 0 for 0 & l «, we have

f f(l)dl ~ Zl lf(l) ~ $ f(l)dl-f(0).

Evaluation of the integral in (D6) as applied to (D5) is done by using '

f dz(z(z 1)) -"'e y'z' '-=2K, (y)

(D5)

(De)

Ko(y) is the modified Bessel function of the second kind and has the following asymptotic behavior

K,(y)- -lny, ly I« I; K,(y)- (z/2y) e y, ly I)) 1.

Combining (D5)-(DV), we have

(2v/XT'x)-e x/~+ (2w/XT'L&)K0(x/r) & B & (2n/XT'L&)K0(x/4 ), (D8)

where r =X+(2wn'~') Using (Dl)-(D4) and (D8), we have

(2m/~ 2L )K (x/r) A&g (x-)y(0)) -(2v/~ 'L )K (x/r)+A. (D9)

For x ))r, this implies an exponential decrease in (g (x)$(0)) with a characteristic falloff distance ~ in
agreement with the uncertainty relation.

If T & TcB and L8 ))XT[(TcB/T)3+-I -' and x)) XT[(TcB/T)*1'-I] ', then A is negligible compared
to the K, term, and Eq. (D9) implies(g (x)g(0) = (2~/XQL2)K0(x/x). Using the asymptotic expansions for
K„weobtain Eqs. (31) and (22).
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